On Oraclizable Networks and Kahn's Principle*

James R. Russell**

TR 89-1046
October 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This paper will appear in the Proceedings of the 17th Annual ACM Symposium on

Principles of Programming Languages, January 1990. Copyright is with ACM.
**Supported in part by an NSF graduate fellowship, NSF grant CCR-8818979, and an
IBM graduate fellowship.

On Oraclizable Networks and Kahn’s Principle*

James R. Russellt
Computer Science Department, Cornell University
Ithaca, NY 14853

October 17, 1989

Abstract

In this paper we investigate generalizations of Kahn’s principle to nondeterministic
dataflow networks. Specifically, we show that for the class of “oraclizable” networks
a semantic model in which networks are represented by certain sets of continuous
functions is fully abstract and has the fixed-point property. We go on to show that
the oraclizable networks are the largest class representable by this model, and are a
proper superclass of the networks implementable with the infinity fair merge primitive.
Finally, we use this characterization to show that infinity fair merge networks and
oraclizable networks are proper subclasses of the networks with Egli-Milner monotone
input-output relations.

1 Introduction

Dataflow networks are an important model for asynchronous parallel computation, in
which concurrently executing processes communicate by sending streams of tokens along
FIFO channels. The well known Kahn’s principle [Kah77] gives a semantic model for de-
terminate dataflow networks in which the networks are represented by continuous stream
valued functions. This model has the two desirable properties that it is fully abstract and
that the denotation of a composite network can be computed from the denotations of its
components via a fixed-point construction. In this paper we investigate generalizations of
Kahn’s principle to nondeterministic dataflow networks.

Recently, there has been much work on the problem of finding semantic models gen-
eralizing Kahn’s to various kinds of indeterminate dataflow networks. The most common

examples of indeterminate networks are those containing the various merge primitives,

*This paper will appear in the Proceedings of the 17** Annual ACM Symposium on Principles of
Programming Languages, January 1990. Copyright is with ACM.
'Supported in part by an NSF graduate fellowship, NSF grant CCR-8818979, and an IBM graduate

fellowship.

e.g. fair merge, angelic merge, infinity-fair merge, and unfair merge. Recent work of
Panangaden, Stark, and others [MPS88,5ta88,PS88,PS87] has shown that these primi-
tives have provably inequivalent expressive power. In particular, they have shown that
these primitives form a hierarchy of expressibility, with fair merge at the highest level.

Many semantic models for indeterminate networks have been developed [Pan85,BA81,
KP85,Bro83,Pra86,Par82], and only recently have fully abstract models emerged [PS89,
Jon89,JK88,Kok88,Rus89]. However, these fully abstract models are based on traces or
similar formalisms, and do not have a fixed-point theory. Keller and Panangaden [KP86,
Pan85] and Broy [Bro83] have both developed models for the full range of nondeterminism
that employ fixed-point constructions, but they are cumbersome and not fully abstract.
Misra [Mis89)] has described a nice equational system for reasoning about nondeterministic
networks in which network meanings are ’smooth’ solutions to recursive equations, but
he does not consider full abstraction, nor provide fixed-point techniques for computing
the smooth solutions. Abramsky [Abr89] has developed a general categorical theory for
Kahn-type models for indeterminate dataflow networks.

The approach we take in this paper is to look at a restricted class of nondeterministic
dataflow networks, develop a model for this class that is both fully abstract and has a
fixed-point theory, and to characterize the representation and expressiveness of this class.
The class we consider is that of oraclizable networks. We show that for this class a
semantics based on sets of continuous functions is fully abstract and has a simple and
general fixed-point principle. We also show that this class is universal for the sets of
functions representation, i.e. that it is the largest class describable by sets of functions.

We relate the oraclizable networks to the hierarchy of nondeterministic primitives by
noting that they properly contain all networks implementable with infinity-fair merge.
One characteristic that separates infinity-fair merge networks from networks at higher
levels of the hierarchy is that the input-output relations of the infinity-fair merge networks
are monotone in the Egli-Milner ordering, while this is not necessarily the case for networks
at higher levels. It has been conjectured that infinity-fair merge is universal for Egli-
Milner monotone relations, i.e. that any Egli-Milner monotone relation is the input-
output relation of some network implementable with infinity-fair merge. Using the above
characterization and semantics we are able to show that this conjecture is false.

2 Dataflow Networks

2.1 Background and Definitions

In this section we briefly review the definitions and terminology of dataflow networks.
Since the main point of this paper is to investigate relations between semantic models and

observable properties of networks, we only give an informal presentation of the main con-

cepts. See, for example, [Sta89,PS88,5ta87,JK88,Jon89,PS89] for the formal development
on which this is based.

The fundamental unit of a network is an input-output port automaton. These automata
communicate with each other and the outside world by sending and receiving data values
on “ports”. Each port is either an input or an output port for the automaton, and in
each step of its execution an automata may poll or read an input port, write to an output
port, or change its internal state (do internal computations).

A dataflow network consists of a set of concurrently executing port automata connected
together by directed channels. The channels act as perfect, unbounded FIFO queues. Each
channel may be connected to at most one input port, and at most one output port. There
are three types of channels: input channels, which are not connected to an output port of
any automaton, and transmit data into the network from outside; output channels, which
are not connected to an input port of any automaton, and transmit data from the network
outside; and #nternal channels, which transmit data between network nodes.

An important feature of dataflow networks is that they can be composed, and larger
networks built using smaller networks in place of individual automata. There are two
atomic operation of network composition: aggregation and looping. The aggregate of
networks M and N, written M||N, is the network formed by combining them ’side-by-
side’ with no identification of channels. Given a network M, loop(a,b, M) is the network
formed from M by identifying input channel a with output channel . It is clear that any
network can be constructed from these operations.

A computation of a network is a sequence of state transitions of the component au-
tomata. We define communication events as transitions of a computation in which data
either arrives on an input channel or is sent along an output channel (input events and
oulput events, respectively). A trace of a network is a sequence of communications events
on the external channels of a network. Traces are commonly written as sequences of pairs
(channel_name, data_value), and we write T7[N] for the set of traces of a network N. We
call the sequence of values of the events on the input (or output) channels the input (or
output) history of a trace.

2.2 Operational Semantics

The input-output relation of a network N is the set of all pairs of input and output histories
for traces in T[N]. The input-output relation of a network is what we consider to be the
“observable” behavior. From the outside, an observer can see the values of the input and
output channels, but cannot distinguish the relative order of the input events, output
events, and internal events. Note that we consider the full, possibly infinite, streams of
values to be observable. Other, more restrictive notions are possible, as in the work of
Rabinovich and Trakhtenbrot [RT88], who consider a theory based on finite observations.

We write ZO[N] for the input-output relation of the network N, and take it as our
operational semantics.

We now define properties useful in relating abstract semantics to observable opera-
tional behavior. We say two networks Ni and N, are operationally equal if, for every
network context C[], the composite networks C[N;] and C[N,] have the same input-output
relation, i.e. that ZO[C[MV]] = TO[C[N.]]-

A semantic model D[] is adequate if whenever D[N;] = D[N-], N1 and N, are oper-
ationally equal. A semantic model D[] is fully abstract if the converse of adequacy holds
as well, i.e. that D[N;] = D[N,] if and only if N; and N, are operationally equal.

3 Kahn’s Semantics and Traces

The first major work in the area of dataflow semantics was by Kahn [Kah77], who gave
a simple and elegant semantics for dataflow networks in which all the processes are de-
terminate. His semantics describes networks as continuous stream valued functions corre-
sponding to the (functional) input-output relation of the network. This semantics has the
desirable properties that it is fully abstract, and the denotation of a composite network can
be obtained from the denotations of its components as the least fixed point of the equations
describing the network. Specifically, a network M with m input channels and n output
channels is represented as a function fys : S™ — S”, where S is the domain of streams. If
N is a network with m’ inputs and n’ outputs, then farn = (fm, fn) : gmtm’ _, gnin'
where (fa, fn) is the function that on input (i,i') € S™+™ (with i € S™,i’ € S™')
produces output (fap(3), fn(i')) € S*+*. Similarly, fioop(ap,my = fix(a,b, far), where
g = fix(a,b, far) is the function in S™-! — S"-1 that computes fixed points of fas;
g(i) = o means that o is the least output on the components other than b such that
there exists a stream ! with fas(i,1) = (0,1) (where [is actually the ath component of the
input and the bth component of the output). The importance of the semantics having
this fixed-point property is that it provides us with a simple method for computing the
meaning of a looped network as a limit.

Indeterminate dataflow networks are those for which the input-output relation is not
functional. Obviously such networks cannot be represented by a function, and a represen-
tation by the (nonfunctional) input-output relation fails to be fully abstract [BA81,Rus89).
Thus, the naive generalizations of Kahn’s semantics to the indeterminate setting fail, and
different models have to be sought out. In this paper we develop such a model for the
class of oraclizable nondeterministic networks.

The work in [Jon89,PS89,Rus89] shows that the trace semantics 7] is fully abstract,
and in the following sections we compare our semantics to 7[] rather than directly to
the operational semantics. We also employ an alternative shorthand notation for traces
which we call checkpoint sequences. We define a checkpoint sequence for a network M as

a sequence (4o, 0p), (i1,01), . . .(i,0) where i,, and o, are tuples of finite input and output
streams (one for each channel), (in,0n) C (in41,0n41) for all n, and (i,0) = U(#n,0n). We
regard such a checkpoint sequence as shorthand for a trace t of M consisting of all the
input events of ip, followed by the output events of oy, followed by the input events of
i1 —1g, followed by the output events of 0; — 0y, etc. Furthermore the entire input history of
t must be i, and the output history of ¢ must be 0. Note that a given checkpoint sequence
actually represents a family of traces related by the permutation of adjacent input (or
output) events on different channels, since trace sets are closed under such permutations.

4 Semantics of Oraclizable Networks

In this section we investigate semantic models that generalize Kahn’s to the class of ora-
clizable networks. In the first subsection we define oraclizable networks and present our
first semantic model. This model is a straightforward extension of Kahn’s in which ora-
clizable networks - which can be thought of as nondeterministic networks choosing among
many different determinate behaviors - are represented by sets of stream valued functions,
corresponding to the sets of possible determinate behaviors. With this representation the
fixed-point property of Kahn’s semantics extends directly to this model, by applying it to
each of the possible equations.

Unfortunately, this straightforward representation fails to be fully abstract. In the
second subsection we modify the model of the first and represent oraclizable networks by
sets of functions that are closed in a certain sense. With this modification, we show that
this second semantics becomes fully abstract, and preserves the fixed-point property of
the first.

4.1 The Direct Semantics

Definition 1. A nondeterministic network M is oraclizable if it is operationally equal to
a nondeterministic network Mo without input channels (the “oracle”), connected to some

inputs of a determinate network Mp.

It is easily seen that the class of oraclizable networks is closed under composition.

Given an oraclizable network M, we can identify its oracle part My with the set of
possible outputs of Mp. Additionally, we can regard its determinate part Mp, which
we know acts as a function fps, from oracle inputs and external inputs to outputs, as
function from oracle inputs to functions from external inputs to outputs. This view leads

naturally to our first semantic model.

Definition 2. Given an oraclizable network M, we represent it by its set of possible

functional behaviors

AMIY U fup(0).
0€EMo

l{a’ b}

{a,b}
101 ! J Lol !
0: 0:
a— 0,b— 2 a—0,b—3
1: 1:
a— 1,b— 3 ar1,b— 2

J{o,1,2,3} Y{0,1,2,3}

Both the above processes take as input a single token, either a or b, and if it is an a produce either
0 or 1, and if it is a b produce either 2 or 3. However, the left process uses its oracle to choose
between the functions a +— 0,b+ 2 and a — 1,b — 3, while the right process uses its oracle to

choose between the two different functions a — 0,b+ 3 and a — 1,5 2.

Figure 1: Two indistinguishable processes with different sets of functions.

Lemma 1.
Fi[M||IN] = {glg = (f, '), f € F[M], ' € A[N]}
Filloop(a, b, M)] = {f|f = fix(a,b, f'), ' € Fr[M]}

Proof: These follow directly from the definitions.

F1l] is an attractive semantic model, since the network composition operations of
aggregation and looping correspond to function aggregation and least fixed point applied
to each of the functions in the representation, as we desire. Now we compare the semantics
Fi1[] to the fully abstract trace semantics 77].

Lemma 2.
T[M] = {(i0, 00), (i1,01), - . .(3,0)|3f € F1[M], f(i) = 0, f(3n) 3 0, for all n}

Proof: Direct from the definition of F;[M] and the observation that for a determinate
network D,

T[D] = {(i0, 00), (i1, 01), - - . (i, 0)| fD() = 0, fD(in) 3 0, for all n}

From lemma 2 we conclude that F,[M] = F,[N] implies 7[M] = T[N], and hence
Fi[] is adequate. It is not, however, fully abstract, as can be seen in the example in
figure 1.

4.2 A Fully Abstract Variation

Intuitively, F;[M] fails to be fully abstract because it only includes the functional be-
haviors explicit in M, while there may be other functions inherent in the behavior of M,
though not corresponding to any single oracle value. In order to be fully abstract, the
representation must identify networks differing only by such functions.

Definition 3. Given a set of functions F, CI(F) is the closure of F under the addition
of functions not finitely distinguishable from F. These are the functions inherent in the
behavior of F.

CI(F) def {f] V chains of finite inputs i C ¢; C +--,¢ = | |in, and
V chains of finite outputs og C 01 C - - -, f(¢) = || 0n,0n C f(is) for each n,
3f' € F with f'(i) = f(), f'(in) 3 on for each n}

Definition 4. Given an oraclizable network M, we represent it by the closure of its set

of functional behaviors.

FIM]E ci(F[M])

Clearly F2[M] 2 F1[M] for any M.
As justification for the claim that the additional functions were inherent in M we have

the following:

Lemma 3. Given an oraclizable network M, suppose M’ is an oraclizable network whose
functional behaviors are all those in F,[M] (i.e. F1[M'] = F;[M]). Then M and M’ are
operationally indistinguishable.

Proof: We will show T[M'] = T[M]. Using lemma 2 and the definition of F,[] we have

TIM] = {(io,00), (ir,01),-..(5,0)|3f € F1[M'], (i) = 0, f(in) 2 0n for all n}
= {(0,00), (i1,01),...(3,0)|3f € CU(F[M]), f(i) = o, f(ia) 2 0, for all n}
= {(i0,00); (i1, 01), - .. (i, 0)|3f" € F1[M], f'(i) = f(i) = 0, f'(in) I 0n for all n}
= T[M]

Thus, the sets F,[M] and F;[M] represent the same operational behavior. However,
F2[] is general enough that it is fully abstract.

Theorem 1 (Full Abstraction for Oraclizable Networks) Given oraclizable networks
M and N,
Fa[M] = F[N] <= T[M] = T[N]

Proof: <=: It is clear from lemma 2 and the definition of F,[] that

Fo[M] = {f| V chains ioC 43 C---,i=]|]in, and
Y chains o9 C 0y C - -+, f(i) = || on,0n C f(in) for each n,
the checkpoint sequence (g, 0p), (41,01), . ..(3, f(2)) is in T[M]}

Hence T[M] determines F,[M], and the result follows.

=: Say (49,00),(¢1,01),...(3,0) € T[M]. Then by lemma 2 we know there exists
f € F[M] with f(i) = o, f(in) D on for each n. But f € F1[M] C Fo[M] = F,[N], so
from the above equality we conclude (49, 09), (¢1,01),...(i,0) € T[N].

Thus, F3[] is a modification of F;[] that is fully abstract. We now verify that F;[]
preserves the desirable composition and fixed-point properties of F;[].

Theorem 2. F,[] has the same composition and fixed-point properties as F;[]. Specifi-
cally,

F2[M||N] = {glg = (£, f'), f € F[M], f' € F2[N]}

Fa[loop(a, b, M)] = Ci({glg = fix(a,d,9'),¢" € Fo[M]}).

Proof. The aggregation property follows directly from the definitions.
We see Fy[loop(a,b, M)] C Cl({glg = fix(a,b,¢'),9' € Fo[M]}) directly, since

-7'-2|['°°P(a, b, M)] = Cl(}-lﬂloop(a’b’ M)]]) = CI({flf = fix(a,b, fl)s fl € F1 IIM]})

and F1[M] C F[M].
Finally, we show CI(F;[loop(a,b, M)]) 2 {g|g = fix(a,b,¢'),g’ € F;[M]} via an intricate
construction that we only outline here.

Given ¢’ € F3[M], g = fix(a,b, g’), choose chains 4o C iy C ---4,and 09 C 03 C - -0,
with g(i,) 3 on, g(7) = 0. Now we know that g(i,) = p, means that p,, is the least tuple of
output streams such that there exists a stream [(the ’looped’ input) with ¢’(in, 1) = (pn,!)
(where [is actually the ath component of the input and the bth component of the output).

Using approximations to the fixed point, we are able to construct chains of finites

(iO’E) cC (iO’Il) cC "'(iO’Iko) - (il,lko+1) c-- '(ial)
(o, 11) E (p1,12) T -+ - (Pro» lko+1) T (Pro+15ko+2) T+ (p,1)

with pr, 3 0,Yn, p = 0, ¢'(in, k) 3 (Pk,lk+1)Vn, k, and ¢'(i,1) = (p,1).

Then, since g’ € F2[M], there exists f' € Fi[M] with f'(in,lk) 3 (Pk,lks1)Vn,k,
and f'(i,I) = (p,1). Finally, we let f = fix(a,b, f') € Fy[loop(a,b, M)], and we have
£(in) 2 Pr, T 0wV and £(3) = p = o. Hence, g € CI(Fi[loop(a, b, M)]).

Thus, we have succeeded in finding what we want: A semantic model for the class
of oraclizable networks that is fully abstract and that comes equipped with a fixed-point

8

principle, thereby generalizing both aspects of Kahn’s principle to this class. In the
next section we investigate characterizations of this class in terms of this model and its

expressibility.

5 The Universality of Oraclizable Networks

In the previous section we restricted ourselves to the class of oraclizable networks and
discovered that the representation by certain sets of functions was fully abstract. In this
section we show that the oraclizable networks are universal for this representation; i.e.
that the oraclizable networks are the largest class of networks representable by sets of
functions. We go on to show that all networks constructible using the infinity-fair merge
primitive are oraclizable, and that the infinity-fair merge networks are a proper subclass
of the oraclizable networks.

Finally, we use these characterizations to show that another tempting conjecture fails
to hold. Namely, that although the input-output relations of infinity-fair merge networks
(and of all oraclizable networks) are monotone in the Egli-Milner ordering, the class of
oraclizable networks (which includes infinity-fair merge networks) is a proper subset of
the Egli-Milner monotone networks.

Theorem 3. The oraclizable networks are exactly the whose behavior can be described

by a set of functions

Proof. By lemmas 4 and 5.

Lemma 4. The behavior of any oraclizable network is representable by a set of functions.
Proof: This is the semantics of the previous section.

Lemma 5. Given any set of functions F, there is an oraclizable network M implements
F (i.e. ;[M]=F).

Proof: Given F, we explicitly construct the network M, with determinate part Mp, and
oracle part Mp.

The idea behind Mp is that F can be organized into a countably branching tree
indexed by infinite integer sequences. For a stream i we define the notation [i], to denote
the prefix of i of length at most n; similarly for [f(i)],. Given functions f, f’ € F, we
write f =, f' iff for all 1,

[f([é]a)ln = [f([]n)]n-

Now we note that there are only countably many equivalence classes of F modulo =;.
Hence we can index them by integers and denote them Cy,. Similarly, for every integer

k1, we index the equivalence classes of Cix, modulo =; by integers and denote them Cj, .
Proceeding in this way, we can define C, for any finite sequence s of integers. For s
infinite, C, is the intersection of all C,, with s’ a prefix of s, and hence is either empty
or contains a single function from F. We will let S be the set of infinite sequences s for
which C, is not empty.

Now we define a function P such that given input : and a sequence of integers s, we

have

[£([Z]n)]ns f € Cs if s finite of length n
P(s,i) ¥ f(i),feC, if s infinite and C, not empty
LI{P(s',%)| 8’ a finite prefix of s} if s infinite and C, empty

It is easy to see that P is continuous, and that for infinite s with C, not empty, P computes
the unique function f € F indexed by s. We take Mp to be the determinate process that
computes P.

Finally, we take Mo to be an oracle process that produces exactly the streams s € S.
Clearly, with this definition of M, M can behave like any and all the functions in F —
that is, /1[M] = F. Note that although Mp is defined for infinite streams not in S (and
may not compute a function in F on such streams), restricting the oracle Mo to the set
S assures that the “extra” functions are not possible behaviors for M.

Theorem 4. The class of all networks constructible with infinity-fair merge is a proper

subclass of the oraclizable networks.
Proof: By the following two lemmas.

Lemma 6. All networks constructible with infinity-fair merge and determinate processes

are oraclizable.

Proof: Infinity-fair merge is oraclizable, since it is equivalent to an oracle that produces
fair bit streams connected to a deterministic merge that uses the oracle input to decide
which channel to read next. Since oraclizable networks are closed under composition, the

result follows.

Lemma 7. The set of oraclizable networks has strictly greater cardinality than the set

of infinity-fair merge networks.

Proof: As we have already noted, infinity-fair merge is equivalent to an oracle that pro-
duces all fair bit streams connected to a determinate merge. Hence any infinity-fair merge
network can be implemented as this fair oracle connected to some determinate network.
Thus, the number of infinity-fair merge networks is bounded by the number of deter-
minate networks, which by Kahn’s principle is the same as the number of continuous

10

(1,1) {(1,1,6,1),(1,¢,1,1)}

(1,¢) (e,1) {(1,1,¢,¢€),(¢,€,1,1)} {(1,¢1,¢€),(€,1,¢,1)}

N

<€7€) {(1,6, €,€),(€s€’€’ 1)}

Inputs Outputs

Figure 2: An Egli-Milner monotone input-output relation from S2 to S4.

stream-valued functions. Since the domain of streams is w-algebraic, this is the same
cardinality as the powerset of w, P(w).

In general, the oracle part of an oraclizable network may emit any set of streams.
Hence there are at least as many oraclizable networks as the powerset of the domain of
streams, P(S). Since the domain of streams is as large as P(w), the cardinality of the
set of oraclizable networks is at least that of P(P(w)), which is strictly greater than the
~ cardinality of P(w).

|

Finally, we show that the conjecture that the infinity-fair merge networks are exactly
those whose input-output relations are Egli-Milner monotone fails to be true. In fact, we
show that even the oraclizable networks fail to capture all of the Egli-Milner monotone
input-output relations. Recall that given sets A and B, A Cgp B iff

Vae Adbe Bs.t.aCb & Voe BJda€c As.t. aCb.

We say that the input-output relation of a network M is Egli-Milner monotone iff : C ¢
implies
{ol(i,0) € TO[M]} Cem {d'|(7',0") € TO[M]}.

Theorem 5. The class of oraclizable networks (and hence the infinity-fair merge net-
works) is a proper subclass of the class of networks with Egli-Milner monotone input-

output relations.

Proof. 1t is easily seen that all oraclizable networks have Egli-Milner monotone input-
output relations. To see that the containment is proper, consider the input-output relation
described in figure 2 (lines are drawn between comparable elements). It is clearly Egli-
Milner monotone, but cannot be represented by any set of functions, since the “diamond”
of relations among the inputs does not appear in the output. Since we know that sets of
functions are universal for infinity-fair merge networks, no such network can implement

this relation.

11

6 Conclusions and Future Work

In the above we have considered the characterization and semantics of oraclizable networks
in terms of sets of functions. Another possible representation of this class is on by certain
functors relating appropriate categorical powerdomains. An approach along these lines
may extend the results of this paper to broader classes of nondeterminism.

Another interesting direction is an investigation of the relations among classes of net-
works constructed using more powerful merge primitives, such as angelic merge or fair
merge, and the oraclizable networks, Egli-Milner monotone networks, or networks with

weaker monotonicity properties.

References

[Abr89] S. Abramsky. Unpublished lecture at MFPS, 1989.

[BA81] J. D. Brock and W. B. Ackerman. Scenarios: A model of non-determinate
computation. In Formalization of Programming Concepts, pages 252-259, 1981.
LNCS 107.

[Bro83] M. Broy. Fixed point theory for communication and concurrency. In Formal
Description of Programming Concepts II, pages 125-148. North-Holland, 1983.

[JK88] B. Jonsson and J. Kok. Comparing dataflow models. Manuscript, 1988.

[Jon89] B. Jonsson. A fully abstract trace model for dataflow networks. In Proceed-
ings of the Sizteenth Annual ACM Symposium On Principles Of Programming
Languages, 1989.

[Kah77] G. Kahn. The semantics of a simple language for parallel programming. In
Information Processing 74, pages 993-998. North-Holland, 1977.

[Kok88] J. Kok. Dataflow semantics. Technical Report CS-R8835, Centre for Mathe-
matics and Computer Science, August 1988.

[KP85] R. M. Keller and P. Panangaden. Semantics of networks containing indeter-
minate operators. In Proceedings of the 1984 CMU Seminar on Concurrency,
pages 479-496, 1985. LNCS 197.

[KP86] R. M. Keller and P. Panangaden. Semantics of digital networks containing
indeterminate operators. Distributed Computing, 1(4):235-245, 1986.

[Mis89] J. Misra. Equational reasoning about nondeterministic processes. unpublished

manuscript, 1989.

12

[MPS88] D. McAllester, P. Panangaden, and V. Shanbhogue. Nonexpressibilty of fairness

[Pan85]

[Par82]

[Pra86]

[PS87]

[PS88]

[PS89]

[RTSS]

[Rus89]

[Sta87]

[Sta88]

[Sta89]

and signaling. In Proceedings of the 29th Annual Symposium of Foundations of
Computer Sctence, 1988.

P. Panangaden. Abstract interpretation and indeterminacy. In Proceedings of
the 1984 CMU Seminar on Concurrency, pages 497-511, 1985. LNCS 197.

D. Park. The “fairness problem” and non-deterministic computing networks. In
Proceedings of the Fourth Advanced Course on Theoretical Computer Science,
Mathematisch Centrum, pages 133-161, 1982.

V. Pratt. Modeling concurrency with partial orders. International Journal Of
Parallel Programming, 15(1):33-71, 1986.

P. Panangaden and V. Shanbhogue. On the expressive power of indeterminate
primitives. Technical Report 87-891, Cornell University, Computer Science De-
partment, November 1987.

P. Panangaden and E. W. Stark. Computations, residuals and the power of
indeterminacy. In Timo Lepisto and Arto Salomaa, editors, Proceedings of the
Fifteenth ICALP, pages 439-454. Springer-Verlag, 1988. Lecture Notes in Com-
puter Science 317.

P. Panangaden and V. Shanbhogue. Traces are fully abstract for networks with
fair merge. unpublished manuscript, 1989.

A. Rabinovich and B. A. Trakhtenbrot. Nets of processes and dataflow. To
appear in Proceedings of ReX School on Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, LNCS, 1988.

J. R. Russell. Full abstraction for nondeterministic dataflow networks. To ap-
pear in Proceedings of the 30th Annual Symposium of Foundations of Computer
Science, 1989.

E. W. Stark. Concurrent transition system semantics of process networks. In
Proceedings Of The Fourteenth Annual ACM Symposium On Principles Of Pro-
gramming Languages, pages 199-210, 1987.

E. W. Stark. On the relations computable by a class of concurrent automata.

Manuscript in preparation, 1988.

E. W. Stark. Concurrent transition systems. Theoretical Computer Science,
1989.

13

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif

