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Abstract 

While concept-based methods for information re­
trieval can provide improved performance over more 
conventional techniques, they require large amounts 
of effort to acquire the concepts and their qualitative 
and quantitative relationships. 

This paper discusses an architecture for probabilistic 
concept-based information retrieval which addresses 
the knowledge acquisition problem. The architecture 
makes use of the probabilistic networks technology 
for representing and reasoning about concepts and in­
cludes a knowledge acquisition component which par­
tially automates the construction of concept knowl­
edge bases from data. 

We describe two experiments that apply the architec­
ture to the task of retrieving documents about terror­
ism from a set of documents from the Reuters news 
service. The experiments provide positive evidence 
that the architecture design is feasible and that there 
are advantages to concept-based methods. 

1 Introduction 

In this paper we describe some preliminary research 
on the use of probabilistic networks for information 
retrieval. In particular, we introduce an architecture 

· •Trus work was funded by ADS' Internal Research and De­
velopment Program.. 

for probabilistic, concept-based information retrieval 
(henceforth PCIR) that can be used first to automat­
ically generate relationships between concepts and 
then reason about them given the evidence provided 
by individual documents. As in our previous research 
on concept-based methods [12, 16, 17], our goal has 
been to develop techniques that can be used to sup­
port a specific class of information retrieval problems. 
Specifically, we believe that the ideas we present here 
can form the basis for an effective sy stem to assist 
users in sorting through large volumes of time sensi­
tive material. We have in mind such applications as 
the day-to-day monitoring of newswires for specific 
topics of interest. 

The architecture of a generic concept-based system 
is shown in Figure 1. A knowledge base contains a 
set of concepts together with their qualitative (i.e., 
structural) and quantitative relationships with other 
concepts. Queries specify a user's information need 
in terms of these concepts. When a new document 
is presented with respect to a particular query, fea­
tures are extracted from the document. The features 
currently used are the presence or absence of certain 
key words, and these features constitute evidence for 
the presence of concepts in the document. Using the 
features extracted from the document and the sys­
tem knowledge base, inference is performed to assess 
the impact of the evidence on the belief in the query 
concept. The documents are sorted by belief and 
retrieved by a user-specified rule (e.g., retrieve the 
"best" ten). 
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Figure 1: Generic Concept-Ba6ed Architecture for IR 

Thus, concept-based methods view information re­
trieval primarily as a problem of evidential reason­
ing. However, while they can provide improved per­
formance over more conventional techniques, they do 
require large amounts of effort to acquire the con­
cepts and their relationships. Our current research 
attempts to address this weakness with the use of 
new probabilistic methods to represent, reason about, 
and learn the relationships between concepts. While 
probabilistic methods have been recognized as an im­
portant evidential reasoning technology with well­
defined semantics (e.g., frequency, strength-of-belief) 
and solid theoretical foundations, they have often 
been passed over because of their computational com­
plexity. Their use in information retrieval has also 
been limited, although many authors have recognized 
the benefits of employing such techniques [2, 11; 14]. 

The probabilistic network technology [7, 13) is a re­
cent development which is computationally tractable. 
A probabilistic network is a graph of nodes and arcs 
where the nodes represent uncertain variables and 
the arcs represent relationships between the variables. 
Computationally efficient algorithms have been de­
veloped which perform inference. The technology has 
been applied to a wide variety of problems includ­
ing medical diagnosis, machine vision, petroleum ex­
ploration, military situation assessment, and multi­
target tracking. Some initial work has applied this 
technology to information retrieval in hypertext [3, 5]. 

tionships between variables through experience (i.e., 
data). CoNSTRUCTOR [6] is a system for building 
probabilistic networks from data. It serves as the pri­
mary mechanism for learning about the relationship 
between concepts. 

In the following section of the paper, we discuss both 
probabilistic networks and the CONSTRUCTOR sys­
tem in more detail, and then, in Section 3, we de­
scribe the PCIR architecture. In Sections 4 and 5, 
we present the results of two exploratory experiments 
that show how we might use these techniques for 
concept-based retrieval. We conclude, in Section 6, 
with some comments and conclusions on the utility 
of the ideas we have presented. 

2 Component Technologies 

The two major component technologies of PCIR are 
probabilistic networks and CONSTRUCTOR. 

2.1 Probabilistic Networks 

Probabilistic networks is a technology for represent­
ing and reasoning with uncertain beliefs, and is based 
on the well-established theory of Bayesian probabil­
ity. A successor to decision tree technology, proba­
bilistic networks have been shown to be to be more 

Because of the clear semantics behind probabilistic understandable and computationally more tractable 
networks, it is possible to identify and quantify rela- than the older technology. These advantages are 
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Table 1: p(shootikill) 
-,shoot shoot 

-,kill 0.9 0.1 
kill 0.1 0.9 

achieved primarily through one innovation: the ex­
plicit representation of relevance relations between 
factors modeled in the network. 

There are two major types of probabilistic net­
works, Bayesian networks which contain directed arcs 
and Markov networks which contain undirected arcs. 
Both types are used in PCIR. There are two types of 
nodes: state and evidence nodes. A state node repre­
sents a mutually exclusive and collectively exhaustive 
set of propositions about which there is uncertainty. 
A state node is represented graphically by a circle. 
For example, whether a document is or is not about 
terrorism may be uncertain. To model this situation, 
the two propositions "this document is about ter­
rorism" and "this document is not about terrorism" 
could be represented by a state node in a probabilistic 
network. An evidence node represents an observation 
and is represented graphically with a rectangle. For 
example, the observation that the word "bombing" 
is contained as a document may be represented as a 
evidence node in a probabilistic network. 

Relationships between nodes in probabilistic net­
works are indicated with arcs. In a Bayesian network, 
a node's relationship with its predeceuors1 is what is 
modeled in a probabilistic network. Each node con­
tains a probabilistic model of what is expected given 
every combination of predecessor value5. For exam­
ple, the predecessor of the shooting node in Figure 2 
is the killing node. The probabilistic model for the 
shooting node is shown in Table 1. The model can be 
interpreted as saying that when the concept killing 
is present in a document, the concept shooting will 
probably be in the document and that when the con­
cept killing is not present in a document then the 
concept shooting will probably not be found in the 
document. 

1 The set of nodes which have an arc which points to a given 
node are that node's predeeesson. 
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In a Markov network, relationships between nodes 
are also indicated with arcs but represented in a dif­
ferent way. Probabilistic models are associated with 
the diques (i.e., maximally connected subset) of a 
network instead of individual nodes. 

Relevance relations are specified by the connectivity 
of the network-what arcs are placed between what 
nodes, and in what direction. The concept of rele­
vance in a Bayesian network is related loosely with 
graph separation and can be illustrated by exami­
nation of Figure 2. If it is known that the concept 
killing is present in a document, then the structure 
of the network implies that any other known infor­
mation (e.g., the concept terrorism is present in the 
document) will be irrelevant to beliefs about whether 
the shooting is present in the document. This is 
because the node killing separates the node shooting 
from every other node in the graph. Similarly, if it is 
known that the concepts politician and terrorism 
are both present in a document then any other piece 
of known information is irrelevant to whether the con­
cept subject is present in the document. These rel­
evance relations are useful not only from a qualita­
tive point of view, but are also useful in reducing the 
amount of quantitative information needed and the 
amount of computational resources needed in infer­
ence. 

Useful inferences can be made given a probabilis­
tic network that represents a situation and evidence 
about the situation. For example, given the net­
work representing the terrorism query and the ev­
idence (i.e., extracted features) from a document, 
one can infer an updated belief that the document 
is about terrorism. Several techniques are avail­
able for making inferences (i.e., reaching conclusions) 
from a network and evidence. Shachter [15), Pearl 
[13), and Lauritzen and Spiegelhalter [10) all describe 
approaches to inference with probabilistic networks. 
Each approach has its advantages and disadvantages. 
For this work, we used the distributed algorithm 
[1, 9). 

2.2 CONSTRUCTOR 

The CONSTRUCTOR system [6) induces discrete, 
probabilistic models from data. These models con- . 
tain a quantitative (i.e., probabilistic) characteriza-
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Figure 2: Probabili&tic Network for Terrori1m 

tion of the data but, perhaps more importantly, also 
contain a qualitative structural description of the 
data. By qualitative structure we mean, loosely, the 
positive and negative cau1al relationships between 
factors as well as the positive and negative correla­
tive relationships between factors in the processes un­
der analysis. CoNSTRUCTOR has as a primary focus 
the recovery of qualitative structures since structure 
not only determines which quantitative relationships 
are recovered, but also because such structure have 
been found to be cognitively stable [8] and thus are 
valuable in explaining the real world processes under 
analysis. 

The CoNSTRUCTOR system is built upon techniques 
and research results from the fields of probabilistic 
networks, artificial intelligence (AI), and statistics. 
The probabilistic network technologies are central to 
the CoNSTRUCTOR system since they not only pro­
vide the representation language for CONSTRUCTOR 
results but, more importantly, provide the concep­
tual impetus-the identification of conditional inde­
pendence relations-that drives the CoNSTRUCTOR 
system. 

From the field of AI we have made use of heuristic 
search methods. These methods provide the primary 
problem solving paradigm of CoNSTRUCTOR and al-

low for a computationally efficient implementation. 
From classical statistics, we make use of the x2 test 
for probabilistic independence and from the newer 
field of computer-intensive statistical analysis [4] we 
make use of crou-validation to prevent "overfitting" 
of models to data. 

The CONSTRUCTOR algorithm works by finding the 
complete set of (graphical) neighbors for each feature 
in the data set. The neighbor relations for each fea­
ture can then be used to identify the structure of a 
belief network. The complete set of neighbors for a 
feature is called the Markov boundary. The neigh­
bors are identifiable as the smallest set of features 
such that all other features are conditionally inde­
pendent of that feature given any fixed set of values 
for the feature's neighbors. 

Network identification involves successively finding 
the neighbor1 of each attribute in the training set. 
Despite these observations, managing the exponen­
tial process of finding neighbors is the primary chal­
lenge for the network identification task. Finding the 
neighbors for every attribute in a training set is an 
.iterative search process based on finding the Markov 
boundary for each attribute. 
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Knowledge 
Acquisition 

Figure 3: PCIR Architecture 

3 Architecture 

The PCIR architecture is shown in Figure 3. The ma­
jor difference between it and the generic architecture 
in Figure 1 is the addition of the knowledge acquisi­
tion component. The rest of this section will discuss 
the PCIR knowledge base, the inference component 
and the knowledge acquisition component. 

3.1 Knowledge Base 

Central to the idea of a concept-based approach to 
information retrieval is a knowledge base which con­
tains knowledge about relationships between con­
cepts and features extractable from the document. 
In the PCIR architecture, the knowledge base takes 
the form of a set of probabilistic networks and can be 
obtained directly from a user or from the knowledge 
acquisition component of PCIR. The knowledge base 
consists of concept networks and concept-evidence re­
lationships. A concept network relates concepts to 
other concepts. A concept-evidence relationship re­
lates a concept to a subset of the features that will 
be extracted. 
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For example, the terrorism concept network shown in 
Figure 2 contains 24 concepts and requires the speci­
fication of 47 quantitative parameters. Also included 
in the knowledge base are 61 concept-evidence rela­
tionships which require the specification of an addi­
tional 64 parameters. The relationships encoded by 
both sets of parameters are intuitive and include: 

• If the concept terrorism is in a document, it 
is almost twice as likely that the concept vio­
lent act will be in the document compared with 
the case that the document does not contain the 
concept terrorism. 

• If the concept bombing is in a document, it is 
nine times as likely that the concept explosion 
will be in the document compared with the case 
that the document does not contain the concept 
bombing. 

• If the concept explosion is in a document, it 
is four times as likely that the word "explosion" 
will occur in the document compared with the 
case that the document does not contain the con­
cept explosion. 

3.2 Inference 

Given a document, a concept of interest and some 
decision criteria, the function of the inference com­
ponent is to use the knowledge base created by the 
knowledge acquisition component to first judge the 
likelihood that the document contains the concept of 
interest and secondly to use that likelihood and the 
decision criteria to make a decision about retrieval of 
the document. Figure 4 shows the functional flow for 
the inference component. 

The first step in the inference process is to extract a 
set of features from the document. Each feature must 
have values which are well-defined and must be mutu­
ally exclusive and exhaustive. The features currently 
used by PCIR are words that have been deemed to 
be relevant (by a PCIR user) to the set of concepts 
in the PCIR knowledge base. For example, the words 
"explosive" "blast" and "explosion" would likely be 
deemed relevant to the concept explosion. The fea­
tures currently used in PCIR are binary-valued. The 

. values represent whether or not a particular word is 
present or absent in a document. 
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Figure 4: PCIR Inference 

The result of feature extraction is a set of feature 
values. These feature values are instantiated as evi­
dence nodes in the PCIR network and are attached 
to the appropriate state nodes (i.e., concepts) in the 
network. The likelihoods which are required for the 
evidence nodes are derived from the concept-evidence 
relationships stored in the knowledge base. 

The third step of the process is to perform proba­
bilistic inference on the modified network. Given a 
concept of interest, the inference process computes 
the posterior distribution (i.e., updated belief) of the 
concept given the evidence (i.e., feature values) in the 
network. Since the concept of interest can be any of 
concepts in the network, a single network can serve 
to answer many queries. 

The fourth step of the process is to apply the given de­
cision criteria to the updated belief that the concept 
of interest is in the document. The decision criteria 
may be a simple threshold or may require comparison 
with the beliefs from other documents (e.g., best n). 

The probabilistic networks technology provides a 
probabilistic, model-based approach to deriving the 
strength of belief that a document contains a par­
ticular concept. By probabilistic, we mean that the 
domain knowledge of relationships between concepts 
and evidence is represented in probabilistic terms 

(i.e., frequencies) and inference is performed with re­
spect to the laws of probability. By model-based, 
we mean that the domain knowledge is represented 
as much as possible, in terms of behavioral models 
of cause and efFect. For example the arc between 
the nodes killing and •hooting in Figure 2 represents 
the belief that the presence of the concept killing in 
a document will with some probability, "cause" the 
presence of the concept shooting. 

A model-based approach stands in contrast with 
an evidential-accrual approach, such as in RUBRIC 
[12, 16, 17]. The flow of reasoning in evidence-accrual 
approaches is directly from from effect to cause (i.e., 
evidence to conclusions). Evidence is accrued to the 
first level of conclusions which in turn act as evidence 
for the next higher layer of conclusions. In contrast, 
the flow of reasoning in model-based reasoning ap­
proaches can be viewed as a two pass process. In 
the first pass, reasoning flows from cause to effect in 
order to set up expectations for the evidence. And 
in the second pass, these expectations are compared 
with the actual evidence, and the comparisons are 
transmitted back from the effects to the causes. 

In applying belief networks to information retrieval, 
. one major decision was required-what states should 

the nodes represent. We choose to follow RUBRIC by 
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assigning two states to each node in a network, where 
the states represent that a concept is present or ab­
sent in a document. Given this choice of states the 
probability distributions of a network represent be­
liefs about how the presence of sets of concepts in a 
document "causes" or "correlates with" the presence 
of other concepts in the document. For example, the 
model shown in Figure 2 shows that the presence of 
the concept terrorism in a document "causes," to 
some (probabilistic) degree, the inclusion of the con­
cept terrorist actor to be in the document. 

3.3 Knowledge Acquisition 

While concept-based approaches such as RUBRIC are 
able to provide good results, the effort needed to ac­
quire the knowledge bases needed by such approaches 
from experts requires substantial resources. PCIR 
provides an approach to reducing the effort needed 
for knowledge acquisition. 

Given a set of documents, a set of features, and a 
set of concepts, the function of the knowledge ac­
quisition component is to develop a knowledge base 
which establishes relationships between concepts and 
features. Figure 5 shows the functional flow for the 
knowledge acquisition component. 

The user of PCm must provide the inputs to the 
knowledge acquisition component. The inputs are 
a set of documents, a set of features, and a set of 
concepts. The document set is a population of doc­
uments which should be representative of the docu­
ments which will be faced in retrieval. The Reuters 
document collection used to generate the terrorism 
network contains 730 documents. 

A set of concepts must be identified. Usually the 
concepts are identified through association (by the 
user} to the concept on which it is anticipated most 
retrievals will be performed. For example, the con­
cepts included to generate the terrorism network were 
associated with the concept terrorism. 

Given these inputs, there are two steps required to 
create a CONSTRUCTOR data set: feature extraction 
and concept specification. 

Feature extraction is exactly the same process as in 
the inference component and is performed for each 
document in the document set. 

398 

Concept specification is the most user-intensive pro­
cess in the architecture. The user must specify for 
each document in the data set which of the concepts 
in the concept specification are contained in the doc­
ument. 

Appending the concept specification and the feature 
values for each document creates a data set which can 
be processed by CoNSTRUCTOR. The data set con­
sists of an array of values. Each row represents the 
concepts and features present in a particular docu­
ment. Each column represents a particular feature or 
concept. 

The result of processing the data set through CoN­
STRUCTOR is a probabilistic network that can act as 
the knowledge base for the inference component. 

If the user desires, a threshold decision criteria can 
be obtained for a particular concept of interest by 
passing each of the documents through the inference 
component of PCIR. A threshold can then be chosen 
by the user which provides for an appropriate tradeoff 
between precision and recall. 

4 Experiments 

Two simple experiments were performed with the 
Reuters database. The first experiment entailed 
building a probabilistic network where both the struc­
ture of the network and the probability distributions 
were given by a "user" (the principal author). In the 
second experiment, a probabilistic network was built 
using the Reuters database as input to the knowledge 
acquisition component of PCIR. 

4.1 "Hand-constructed" Network 

A simple network was built around the terrorism 
concept, using as a model a RUBRIC concept tree 
built for terrorism. The network contains 23 con­
cepts and was developed in a hierarchical fashion sim­
ilar to the RUBRIC concept tree. The terrori&m node 
was broken down into an actor performing a violent 
act on some &ubject. Similarly, violent act was broken 
down into different types of violent acts etc.. This 
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Figure 5: PCIR Knowledge Acqui6ition 

network required 47 independent probability assess­
ments. Except for the prior distribution on the ter­
rori6m node which was set to the frequency of terror­
ist documents in the document set, the probabilities 
were assessed qualitatively by the "user." 

A set of61 features (i.e., words) were extracted from 
each document. Each of these features requires a 
concept-evidence relationship to be present in the 
knowledge base. (These relationships are not shown. ) 
Each of the 61 words were assigned by the user to a 
single concept and probabilities were specified for the 
events that a word appears in a document given their 
assigned concept is present in a document. 

Because of the difficulty of the knowledge acquisition 
task, several assumptions were made to reduce the 
number of parameters needed to be specified for this 
network. The assumptions included the hierarchical 
structure of the network as well as a constant likeli­
hood that a word does not appear given its assigned 
concept does not appear in a document. The latter 
assumption effects the posterior probabilities so that 
they are not "normalized." However the assumption 
does not effect the separation of the populations. 

Using the concept-evidence relationships, evidence 
was attached to the probabilistic network in Figure 
2. The mean and standard deviation of the posterior 

probability for both documents about terrorism and 
documents not about terrorism is shown in Table 2. 
It can be seen that the posterior probability of docu­
ments about terrorism is significantly higher than for 
the documents not about terrorism. 

The precision and :recall results for a range of pos­
sible thresholds are shown in Figure 6. In the mid­
dle range both precision and recall are approximately 
50%. While RUBRIC results are significantly better, 
much less effort was expended on this experiment a.nd 
the :results are competitive with conventional tech­
niques. 

The goal of the experiment was to assess the feasi­
bility of using probabilistic networks as the eviden­
tial reasoning mechanism in a concept-based infor­
mation retrieval scheme. This experiment seems to 
suggest that this is feasible. Some effort was made 
to see if some parameter modification might easily 
improve performa.nce. To this end the feature sets 
of relevant, unretrieved documents and irreleva.nt, 
retrieved documents were examined. While several 
modifications where made, no significant performance 
improvements were found. This points out the diffi­
culty of knowledge acquisition from experts, not only 

.in the initial acquisition stage but also in the knowl­
edge base tuning stage. 
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Table 2· "Hand con&tructed" re& lt - u If 

avg std dev 

terrorism .035 .03 
-,terrorism .015 .008 

100%,-------------------------------------------------� 

80%-

60%-

40%-�···········¢········· 

20%-

I I 
.016 .022 .028 

Threshold 

.032 

Figure 6: Preci&ion (&olid line) & Recall (dotted line) 
V6. Thre6hold. 

4.2 Using CONSTRUCTOR 

For this experiment, each of the 730 Reuters docu­
ments was tagged according to whether or not the 
document was "about" terrorism. Decisions about 
the relevancy of each document to the terrorism 
concept were made by a independent pair of read­
ers. A total of 50 documents were judged to contain 
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Table 3: Concepts 

unnaaned terror1st named terror1st assasaanataon 
polihclaD govera:aneat oppositioll 

reason takeover encounter 
k1dnap event ransom explosion 

boanb1ng device shooting 

killing v1olent act v1olent effect 

VIOL 

Figure 7: CONSTRUCTOR Network for Terrori11m 

data. the concept terrorism and the other 680 were judged 
not to contain the concept terrorism. A set of 82 
words was selected as the feature set. The presence • "A bombing causes an explosion." 

or absence of each of the 82 words was determined • "A shooting is a violent act." 

for each document in the document set. In addition, • "A killing is a violent act." 

18 concepts were chosen as being possibly relevant to • "A terrorist event is present if two or more 

the concept of terrorism. The concepts are shown in of the concepts bombing, named terrorist, 

Table 3. The two readers were also asked to indicate killing or kidnapping is present except for the 

which of the 18 different concepts were relevant to combination named terrorist and killing." 

each of the 730 Reuters documents. The concept-evidence relationships were derived for 

CoNSTRUCTOR was first run with a data set made each of 8 concepts in the network, by running CoN­

up of the 18 concepts plus the terrorism concept. STRUCTOR on a data set which included one of the 

The resulting Markov network is shown in Figure 7. concepts and the words associated with the concepts. 

Nodes for which there is not a path to the clau node Given these results, the knowledge base was com-

( i.e., terrorism) are not shown. Many of the arcs plete. 

have intuitive interpretations which are supported by . To test the network's performance, each of the 730 
the underlying probability distributions found in the documents was processed by the inference component 
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Table 4: CONSTRUCTOR results 

terrorism 
-,terrorism 

o. 

avg std 
dev 

.45 .21 

.036 .09 

. <> . . . . . <> . . . . . ·<>· . . . . ·0. 

I 
.1 .2 .3 .4 

Threshold 

.5 

Figure 8: Precision (solid line) & Recall {dotted line) 
vs. Threshold. 

of PCIR using the CONSTRUCTOR-derived knowledge 
base. The mean and standard deviation of the poste­
rior probability for both documents about terrorism 
and documents not about terrorism is shown in Ta­
ble 4. It can be seen that the posterior probability 
of documents about terrorism is significantly higher 
than for the documents not about terrorism and that 
separation of the populations is well-defined. 

The precision and recall results for a range of possible 
thresholds are shown in Figure 8. In the middle range 
both precision and recall are in the 70% to 80% range. 

As this was the first application of CONSTRUCTOR to 
real data, we were pleased with the robustness and 
intuitiveness of the relationships and the performance 
of the resulting network. 

Many of the relationships that were found are quite 
robust and had similar structures. Consider Table 
5, and Table 6 as examples. In both these tables, 
the relations between the nodes can be interpreted as 
noisy if-then statements: 

• "If the concept bombing is not in a document, 
then the concept explosion will not be in the 
document" 
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Table 5: p(ezplosionlbombing) 
-,explosion explosion 

-,bombing 0.98 0.02 

bombing 0.59 0.41 

Table 6: p(terroristiterr01'iam) 
-,terrorist terrorist 

-,terrorism 0.98 
terrorism 0.64 

0.02 
0.36 

• "If the concept terrorism is not in a document, 
then the concept terrorist will not be in the 
document" 

On the other hand, the contrapositive versions of 
these statements which are perhaps more intuitive, 
are not true. It is not true that: 

• "If the concept bombing is in a document, then 
the concept explosion will be in the document" 
or 

• "If the concept terrorism is in a document, then 
the concept terrorist will be in the document" 

While many of the structural relationships and their 
corresponding quantitative relationships in the net­
work are intuitive, there are some complicated re­
lationships present in the network which are quite 
subtle. For example, consider the relationship be­
tween the concept killing and the concept terror­
ism. Whereas the other neighbors of terrorism 
(i.e., bombing, kidnap, and named-terrorist) 
have strong, uncomplicated relationships with ter­
rorism, the concept killing seems to have a rel­
atively small effect by itself but seems to act as a 
magnifier of the positive influence of the other neigh­
bors. This can be seen in Table 7 and was borne out 
when the frequencies of these events were examined 
in the raw data. Such subtle relationships may be the 
cause of the CoNSTRUCTOR network's improved per­
formance over the "hand-constructed" network and it 

. is easy to imagine that such relationships would take 
much effort to find manually. 
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Table 7: p(terrorismibombing, kidnap, killing, terrorist) 

-,bombing -.kidnap -.killing 

-,bombing -.kidnap -.killing 

-.bombing -.kidnap killing 

-.bombing kidnap -.killing 

bombing -.kidnap -.killing 

bombing kidnap -.killing 

bombing -.kidnap killing 
-.bombing kidnap killing 

bombing -.kidnap -.killing 

-,bombing kidnap -.killing 

-,bombing -.kidnap killing 
bombing -.kidnap killing 

-.bombing kidnap killing 
bombing kidnap -.killing 

bombing kidnap killing 
bombing kidnap killing 

5 Conclusions 

We believe that the experimental results presented 
above provide positive evidence that the PCIR ar­
chitecture design is feasible. The choice of prob­
abilistic networks for the knowledge base represen­
tation provides for an intuitive and well-defined se­
mantics for acquiring knowledge either from an ex­
pert or automatically. The first experiment shows 
that reasonable performance can be obtained through 
use of probabilistic networks as the evidential rea­
soning mechanism for concept-based information re­
trieval. The second experiment reinforces this eon­
elusion while also showing that partially automating 
the knowledge acquisition task is possible. 

The central hypothesis of concept-based methods for 
information retrieval is that the representation of, 
and reasoning about, unobservable concepts is effec­
tive both from an organizational and from a com­
putational point of view. We feel that a secondary 
contribution of this work is positive evidence for this 
hypothesis. All the evidence stems from the assump-

-.terrorism terrorism 

-.terrorist 0.994 0.006 

terrorist 0.85 0.15 

•terrorist 0.96 0.04 

-.terrorist 0.61 0.39 

-.terrorist 0.68 0.32 

-,terrorist 0.02 0.98 

-.terrorist 0.44 0.56 

-.terrorist 0.51 0.49 

terrorist 0.24 0.76 

terrorist 0.05 0.95 

terrorist 0.8 0.2 

terrorist 0.53 0.47 

terrorist 0.07 0.93 

terrorist 0.003 0.997 

-.terrorist 0.03 0.97 

terrorist 0.02 0.98 

tion that the CoNSTRUCTOR-induced network is close 
to being correct and the fact that the network is 
sparse (i.e., has few arcs). Out of the 153 possible 
arcs between the 18 concept nodes of the graph, only 
12 of the arcs are instantiated. In addition, there 
are the 82 connections to the 82 evidence (e.g., fea­
ture) nodes. In contrast, consider the situation if all 
the concept nodes except the terrorism node were re­
moved from the graph by probabilistic manipulation. 
The resulting graph would be extremely dense. This 
would correspond to the situation of deriving proba­
bilistic relations between terrorism and the features 
directly. 

Three advantages for concept-based methods can 
be seen from this analysis. F irst, concepts orga­
nize information into a small number of manageable 
concept-to-concept and concept-to-feature relations. 
This makes both manual and automatic knowledge 
acquisition easier. Secondly, concepts reduce the 
computational complexity of inference. Probabilis-

. tic inference is inherently easier in sparse networks 
than in dense networks. Thirdly, concepts make the 



automatic knowledge acquisition problem tractable 
by dramatically reducing the sampling problem. The 
probability tables of dense networks are exponentially 
larger than the probability tables for sparse networks. 
Dense networks will therefore spread the examples in 
the training set over a much larger space. U ndersam­
pling can be a serious problem in such situations. On 
the other hand, sparse networks do not suffer from 
such problems. 

As a secondary point, we feel that not only are 
concepts useful computationally, but the robustness 
of the relationships between concepts seen in the 
CoNSTRUCTOR-induced network provides strong ev­
idence for the psychological intuition that these con­
cepts are cognitively significant in people's thought 
processes. 

The most visible drawback of this research is the 
amount of work needed by a user to identify what 
concepts are present for each document in a large 
document set. However, we think a scenario in which 
a user incrementally performed this is certainly fea­
sible. Also, if the concepts of interest are not in a 
special domain, this work can be done by relatively 
untrained people. A research goal is to identify con­
cepts automatically by clustering. 

We think that the results are promising and intend to 
pursue further research in this direction. Further ex­
perimentation with the Reuters document set and the 
terrorism query is planned. Another area of research 
is experimentation with different document sets, dif­
ferent features, and different concepts. The CoN­
STRUCTOR algorithm itself is new and evolving. Im­
provements to the algorithm could be the source of 
important improvements to PCIR. 
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