
Salable Computing: Pratie and ExperieneVolume 8, Number 1, pp. 1�13. http://www.spe.org ISSN 1895-1767© 2007 SWPSSPECIFICATION AND VERIFICATION OF AGENT INTERACTION PROTOCOLS IN ALOGIC-BASED SYSTEM∗MARCO ALBERTI, FEDERICO CHESANI, DAVIDE DAOLIO, MARCO GAVANELLI, EVELINA LAMMA, PAOLAMELLO AND PAOLO TORRONIAbstrat.A number of information systems an be desribed as a set of interating entities, whih must follow interation protools.These protools determine the behaviour and the properties of the overall system, hene it is of the uttermost importane that theentities behave in a onformant manner.A typial ase is that of multi-agent systems, omposed of a plurality of agents without a entralized ontrol. Complianeto protools an be hardwired in agent programs; however, this requires that only �erti�ed� agents interat. In open systems,omposed of autonomous and heterogeneous entities whose internal struture is, in general, not aessible (open agent soietiesbeing, again, a prominent example) interation protools should be spei�ed in terms of the observable behaviour, and omplianeshould be veri�ed by an external entity.In this paper, we propose a Java-Prolog-CHR system for veri�ation of ompliane of omputational entities to protoolsspei�ed in a logi-based formalism (Soial Integrity Constraints). We also show the appliation of the formalism and the systemto the spei�ation and veri�ation of three di�erent senarios: two spei�ations show the feasibility of our approah in theontext of Multi Agent Systems (FIPA Contrat-Net Protool and Semi-Open soieties), while a third spei�ation applies to thespei�ation of a lower level protool (Open-Connetion phase of the TCP protool).1. Introdution. Many information systems an be desribed as a set of mutually independent, interatingentities. A typial example is that of multi-agent systems. In suh a senario the interation is usually subjetto some kind of interation protools, whih the agents should respet when interating. This raises the obviousproblem of verifying that interation protools are atually followed.It is possible to design agents so that they will �spontaneously� omply to protools, and, if possible,formally verify that at design time. For instane, in [13℄, Endriss et al. propose an approah where protoolsare �imported� into individual agent poliies.However, this approah is not viable in open1 agent soieties, where interating agents are autonomous andheterogeneous and, in general, their internal struture annot be aessed. In this ase, agents should be hekedfor ompliane to interation protools based on their observable behaviour, by a trusted external entity.In previous work [5℄, we proposed a omputational logi-based formalism (based upon Soial IntegrityConstraints, SICs) to speify interation protools. Soial Integrity Constraints are meant to onstrain the agentobservable behaviour rather than agents' internal (mental) state or poliies. In other words, this approah doesnot restrit an agent's aess to soieties based on its internal struture; regardless of its poliies, any agent ansuessfully interat in a soiety ruled by SICs, as long as its behaviour is ompliant. The formal semantis ofSoial Integrity Constraints [4℄ is based on abdutive logi programming [18℄.The purpose of this paper is to demonstrate the viability of Soial Integrity Constraints as a formalism tospeify interation between omputational entities, inluding, but not limited to, agents in open soieties. Wewill use a modi�ed version of Soial Integrity Constraints, whih better �ts our needs in terms of both simpliityof presentation, and expressiveness.The paper is strutured as follows. In Set. 2, we introdue the version of Soial Integrity Constraints usedin this work, giving their syntax and an informal explanation of their semantis.In Set. 3 we speify in terms of SICs a ontrat net-based protool for resoure alloation and negotiationin multi-agent systems, alled FIPA CNP, and in Set. 4 we speify a protool for entering �semi-open� soieties,i. e., virtual environments haraterized by the presene of a �gatekeeper� agent and a protool that governs theagents' aess to the soiety. In Set. 5 we demonstrate the usage of SICs to speify a network ommuniationprotool, namely the three-way handshake opening of the TCP Internet Protool.The artile ends with the presentation of the ompliane veri�ation system (Set. 6), and some notes aboutits Java+Prolog implementation.
∗This artile is an extended version of the one by Alberti, Daolio, Gavanelli, Lamma, Mello, and Torroni, published in Haddad,Omiini, and Wainwright, eds., Proeedings of the 19th ACM Symposium on Applied Computing, SAC 2004, Speial Trak onAgents, Interations, Mobility, and Systems (AIMS). Niosa, Cyprus, Marh 14-17, 2004. pp. 72-78. ACM Press (2004).
1We intend openness in soieties of agents as Artikis, Pitt and Sergot [7℄, where agents an be heterogeneous and possiblynon-ooperative. 1

2 Maro Alberti, Federio Chesani et al.2. Soial Integrity Constraints. We distinguish between atual behaviour (happened events) and desiredbehaviour (expetations), sine in non-ideal situations they do not always oinide. In this setion, we let thereader get aquainted with our representation of events and we introdue Soial Integrity Constraints (SICs) asa formalism used to express whih expetations are generated as onsequene of happened events.Happened Events and Expetations. Happened events are in the form
H(Description,Time)where Desription is a term (as intended in logi programming, see [20℄) representing the event that hashappened, and Time is an integer number representing the time at whih the event has happened. For example,

H(request(ai, aj, give(10$), d1), 7)represents the fat that agent ai requested agent aj to give 10$, in the ontext of interation d1 (dialogueidenti�er) at time 7.All happened events form the history of a soiety. Given the history of a soiety at a given time, someevents will have to happen in order for interation protools to be satis�ed: we represent suh events by meansof expetations, whih an be positive or negative. Positive expetations are of the form
E(Description,Time)and represent an event that is expeted to happen (typially, an ation that an agent is expeted to take).Negative expetations are of the form

EN(Description,Time)and represent the fat that an event is expeted not to happen.Expetations may (and, typially, will) ontain variables, to re�et the fat that the expeted event is notfully spei�ed; however, CLP [17℄ onstraints an be imposed on variables to restrit their domain. For instane,
E(aept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15 (2.1)represents the expetation for agent ak to aept giving agent aj an amount M of money, in the ontext ofinteration d2 at time Ta; moreover, M is expeted to be at least 10$, and Ta to be at most 15.Sine we impose no restritions on the Desription term of an expetation, expetations an regard any kindof event that an be expressed by a Prolog-like term. However, expetations only regard point-time events; thusit is not possible to express onisely that some proposition is expeted to be true along a given time interval.Sine we make no assumptions about the agents' internal struture or poliies, their behaviour may or maynot satisfy expetations. We represent these two ases by means of the notions of ful�llment and violation. Wesay that an event mathes an expetation if and only if:

• their ontents unify (à la Prolog);
• all relevant CLP onstraints on variables (if any) are satis�ed.A positive expetation an get ful�lled by a mathing event, whereas a negative expetation an get violated bya mathing event.For instane, event

H(aept(ak, aj , give(20), d2), 15)ful�lls expetation (2.1); the same event would, instead, violate a negative expetations with the same ontentand CLP onstraints.If we assume at some point that no more events will ever our, we say that the history is losed. In thatase, all positive expetations that are not ful�lled are violated, and all negative expetations that are notviolated are ful�lled.

Spei�ation and Veri�ation of Agent Interation Protools 3Table 2.1BNF syntax of Soial Integrity ConstraintsSIC::=χ → φ
χ::=EventLiteral [∧ EventLiteral℄∗ [:CList℄
φ::=PriorityLevel [⇒ PriorityLevel℄∗PriorityLevel::=HeadDisjunt [∨ HeadDisjunt℄∗, PEventLiteral::=H(Term,T)HeadDisjunt::=Expetation [∧ Expetation℄∗ [:CList℄Expetation::=E(Term,T) | EN(Term,T)Soial Integrity Constraints. The way expetations are generated, given a (partial) history of a soiety,is spei�ed by Soial Integrity Constraints (SICs). In this artile, we adopt a modi�ed version of the SICsintrodued in [2℄ (we disuss and motivate suh modi�ations in Set. 7).Table 2.1 reports the BNF syntax of SICs. Term is a logi programming term [20℄, P is an integer numberand T is a variable symbol or integer number. CList is a onjuntion of CLP onstraints on variables.SICs are a kind of forward rules, stating what expetations should be generated on the basis of happenedevents. By means of SICs, it is possible to express that onjuntions of expetations (HeadDisjunts in Table2.1) are alternative, and it is also possible to assign a priority, represented by an integer number, to eah list ofalternatives (PriorityLevels in Table 2.1).For instane, the following SIC:

H(e0, T0) ∧ H(e1, T1) : T0 < T1

→ E(e2, T2) : T2 < T1 ∨EN(e3, T3) : T3 < T0, 1

⇒ E(e4, T4) : T4 < T0, 2

(2.2)means that, if e0 happens before e1, then either of the two ases below hold:
• e2 should have happened before e1 or e3 should not have happened before e0,
• e4 should have happened before e0;and the �rst ase has higher priority than (or is preferred to) the seond one. Intuitively, a SIC means that,when a set of events mathing its body happens, then at least one of the �priority levels� in its onlusionshould be satis�ed (the higher the priority, the better). In this ase, we say that the SIC is ful�lled ; otherwise,it is violated. While priorities have no e�et upon the ful�llment status of the soiety, they ould instead beused by a possible omputational entity representing the soiety to guide its members' behaviour towards somepreferred state. This an be useful when expetations are aounted for by agents deliberating about futureations. At eah point in time there are in general several equally ful�lled sets of expetations. But if someare more preferred to others, an imaginary �soial reasoner� whih produes expetations based on events ouldthen evaluate and hoose whih sets of expetations better �t its goals, and transmit only them to the soietymembers. If suh members take expetations into aount, the whole soiety ould evolve towards preferredstates.The expetations in SIC (2.2) regard events that should have (or have not) happened before the time ofthe event that raises them: we all this kind of expetations bakward. Expetations that regard events thatare expeted to happen (or not to happen) after the event that raises them are named forward. We restritthe possible SICs by requiring that they ontain only either bakward expetations or forward expetations:in the �rst ase, we will all the SIC bakward, in the seond ase forward. We disuss this restrition inSet. 7.3. Spei�ation of the FIPA Contrat-Net. FIPA-CNP [1℄ is a protool based on FIPA-ACL [14℄de�ned for regulating transations between entities by negotiation. The protool �ow, represented as an AUML[21℄ diagram in Fig. 3.1, starts with an Initiator whih issues a request for a resoure (fp, standing for allfor proposals) to other Partiipants. The Partiipants an reply by proposing a prie that satis�es the request(propose), or by refusing the request altogether (refuse). The Initiator must aept (aept-proposal) or rejet(rejet-proposal) the reeived proposals. A Partiipant whose proposal has been aepted must, by a givendeadline, inform the Initiator that it has provided the resoure (by sending an inform-done message, or a moreinformative inform-result message) or that it has failed to provide it (failure).

4 Maro Alberti, Federio Chesani et al.

Fig. 3.1. FIPA-Contrat-Net Interation Protool (AUML Diagram)3.1. De�nition by Soial Integrity Constraints. The whole set of SICs used to de�ne FIPA-CN isomposed of 14 bakward SICs and 3 forward SICs. This hoie of SICs is obviously not the only possibility.We are urrently investigating a general mapping of AUML protool diagrams and other graphial formalismsto SICs, so as to allow for an automati translation. Some progress in this sense has been done with the GOSpelgraphi language [10℄ in the health are appliation domain.In the SICs in the remainder of this setion, I will represent the initiator, P a partiipant, R the resoure,
Q the prie, D the dialogue identi�er, S the explanation of a result, and T, T1, . . . the time. We will not usepriority levels.Bakward SICs. Bakward SICs are used to express that an ation is only allowed if some other events have(not) ourred before.SICs (3.1) and (3.2) state that propose and refuse are only allowed in reply to a fp.

H(tell(P, I, propose(R, Q), D), T) →

E(tell(I, P, fp(R), D), T1) : T1 < T
(3.1)

H(tell(P, I, refuse(R), D), T) →

E(tell(I, P, fp(R), D), T1) : T1 < T
(3.2)SICs (3.3) and (3.4) express mutual exlusion between propose and refuse.

H(tell(P, I, propose(R, Q), D), T) →

EN(tell(P, I, refuse(R), D), T1) : T1 ≤ T
(3.3)

Spei�ation and Veri�ation of Agent Interation Protools 5
H(tell(P, I, refuse(R), D), T) →

EN(tell(P, I, propose(R, Q), D), T1) : T1 ≤ T
(3.4)SICs (3.5) and (3.6) state that aept-proposal and rejet-proposal are only allowed in reply to a propose.

H(tell(I, P, aept-proposal(R, Q), D), T) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T
(3.5)

H(tell(I, P, rejet-proposal(R, Q), D), T) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T
(3.6)SICs (3.7) and (3.8) express mutual exlusion between aept-proposal and rejet-proposal.

H(tell(I, P, aept-proposal(R, Q), D), T) →

EN(tell(I, P, rejet-proposal(R, Q), D), T1) : T1 ≤ T
(3.7)

H(tell(I, P, rejet-proposal(R, Q), D), T) →

EN(tell(I, P, aept-proposal(R, Q), D), T1) : T1 ≤ T
(3.8)SICs (3.9), (3.10) and (3.11) say that inform-done, inform-result and failure are only allowed in reply to anaept-proposal.

H(tell(P, I, inform-done(R), D), T) →

E(tell(I, P, aept-proposal(R, Q), D), T1) : T1 < T
(3.9)

H(tell(P, I, inform-result(R, S), D), T) →

E(tell(I, P, aept-proposal(R, Q), D), T1) : T1 < T
(3.10)

H(tell(P, I, failure(R), D), T) →

E(tell(I, P, aept-proposal(R, Q), D), T1) : T1 < T
(3.11)SICs (3.12), (3.13) and (3.14) express mutual exlusion between inform-done, inform-result and failure.

H(tell(P, I, inform-done(R), D), T) →

EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-result(R, S), D), T1) : T1 ≤ T

(3.12)
H(tell(P, I, inform-result(R, S), D), T) →

EN(tell(P, I, failure(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T

(3.13)
H(tell(P, I, failure(R), D), T) →

EN(tell(P, I, inform-done(R), D), T1) : T1 ≤ T ∧

EN(tell(P, I, inform-result(R, S), D), T1) : T1 ≤ T

(3.14)

6 Maro Alberti, Federio Chesani et al.Forward SICs. SIC (3.15) says that, after reeiving a fp, a Partiipant is expeted to issue a propose or arefuse by 200 time units.2
H(tell(I, P, fp(R), D), T) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T + 200 ∨

E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(3.15)SIC (3.16) states that the Initiator is expeted to reply to a propose with an aept-proposal or a rejet-proposalby 200 lok tiks.
H(tell(P, I, propose(R, Q), D), T) →

E(tell(I, P, aept-proposal(R, Q), D), T1) : T1 < T + 200∨

E(tell(I, P, rejet-proposal(R, Q), D), T2) : T2 < T + 200

(3.16)SIC (3.17) states that a Partiipant is expeted to reply to an aept-proposal with an inform-done, aninform-result or a failure by 200 lok tiks.
H(tell(I, P, aept-proposal(R, Q), D), T) →

E(tell(P, I, inform-done(R), D), T1) : T1 < T + 200∨

E(tell(P, I, inform-result(R, S), D), T2) : T2 < T + 200∨

E(tell(P, I, failure(R), D), T2) : T2 < T + 200

(3.17)Note that, in all the three ases, bakward SICs make the alternative expetations mutually exlusive.4. Spei�ation of a semi-open soiety aess protool. Aording to [11℄, soieties an be lassi�edinto 4 groups, eah haraterized by a di�erent degree of openness. In the following, we give an example of howour framework an model a semi-open soiety, i. e., a soiety that an be joined by an agent exeuting an aessprotool. In this example we imagine that a speial gatekeeper agent is in harge of reeiving joining requests,and it requests agents willing to enter to �ll in some registration form.The aess protool is de�ned by the following SICs, in whih C represents the name of an agent willing tojoin in:
H(tell(C, gatekeeper, ask(register), D), T) →

E(tell(gatekeeper, C, ask(form), D), T1) : T1 < T + 10
(4.1)

H(tell(C, gatekeeper, ask(register), D), T)∧

H(tell(gatekeeper, C, ask(form), D), T1) ∧ T < T1 →

E(tell(C, gatekeeper, send(form, F), D), T2) : T2 < T1 + 10

(4.2)
H(tell(gatekeeper, C, ask(form), D), T1)∧

H(tell(C, gatekeeper, send(form, F), D), T2) ∧ T1 < T2 →

E(tell(gatekeeper, C, accept(register), D), T3) : T3 < T2 + 10 ∨

E(tell(gatekeeper, C, reject(register), D), T3) : T3 < T2 + 10

(4.3)SIC (4.1) says: if C asks gatekeeper to join the soiety (register), then the gatekeeper should ask for aregistration form; SIC (4.2) imposes that, after the �rst two messages, the agent should provide the form;and SIC (4.3) says that, after reeiving the form, the gatekeeper should either accept or reject the registrationrequest.
2Time unit is an abstrat onept, whose instantiation atually depends on the appliation. A time unit may represent forexample a lok tik, or a transation time.

Spei�ation and Veri�ation of Agent Interation Protools 7For the sake of simpliity, in the sequel we assume that member agents do not leave the soiety. Then, thepresene in the history of an event of type:
H(tell(gatekeeper, C, accept(register), D), T)an be regarded as C's �formal� at of �membership�, and it an be used in SICs as a ondition for generatingexpetations.For instane, SIC (3.15) from the FIPA-CNP (Set. 3.1) ould be modi�ed as follows to take membershipinto aount:

H(tell(gatekeeper, I, accept(register), D), TI)∧

H(tell(I, P, fp(R), D), T) →

E(tell(P, I, propose(R, Q), D), T1) : T1 < T + 200 ∨

E(tell(P, I, refuse(R), D), T2) : T2 < T + 200

(4.4)5. Spei�ation of the TCP protool opening phase. In this setion, we present a spei�ation of theopen-onnetion phase of the TCP protool. We will fous on the well known �three-way handshake� opening,summarized below:1. a peer A sends to another peer B a syn segment;32. B replies by aknowledging (with an ak segment) A's syn segment, and by sending a syn segment inturn;3. A aknowledges B's syn segment with a ak segment, and starts sending data.The following two integrity onstraints desribe suh a protool:
H(tell(A, B, tp(syn,null, NSynA, AckNumber), D), T 1) →

E(tell(B, A, tp(syn, ak, NSynB, NSynAAck), D), T 2) :

NSynAAck = NSynA + 1 ∧ T 2 > T 1.

(5.1)SIC 5.1 says that if A sends to B a syn segment, whose sequene number is NSynA, then B is expeted tosend to A an ak segment, whose aknowledgment number is NSynA + 1, at a later time.
H(tell(A, B, tp(syn,null, NSynA, AckNumber), D), T 1)

∧ H(tell(B, A, tp(syn, ak, NSynB, NSynAAck), D), T 2) :

T 2 > T 1 ∧ NSynAAck = NSynA + 1 →

E(tell(A, B, tp(null, ak, NSynAAck, NSynBAck), D), T 3) :

T 3 > T 2 ∧ NSynBAck = NSynB + 1.

(5.2)SIC 5.2 says that, if the previous two messages have been exhanged, then A is expeted to send to B anak segment aknowledging B's syn segment, and with aknowledgement number is NSynB +1, where NSynBis the sequene number of B's syn.A third integrity onstraint has been added, to verify the interation between peers with di�erent responsetime. A faster peer in fat ould not wait enough for the aknowledge message, and try to resend a syn messageto a slower peer. This situation an lead to several problems in the slower peer, whose queue of the inomingmessages ould easily get saturated by requests.
H(tell(A, B, tp(syn,null, NSynA, ANY), D), T 1)

∧ ta(TA) →

EN(tell(A, B, tp(syn,null, NSynA, ANY), D), T 2) :

T 2 < T 1 ∧ T 2 > T 1 − TA.

(5.3)SIC 5.3 says that, if A has sent to B a syn segment to open a onnetion, then A is expeted not to sendanother syn segment before TA time units, where TA is an appliation-spei� onstant, de�ned by the ta/1prediate.The above spei�ation has been used to hek the interation between experimental mobile phones and aserver.
3The term �segment� is used in the TCP spei�ation to indiate bit on�guration or streams.

8 Maro Alberti, Federio Chesani et al.Table 6.1State of an expetationType Veri�ed Expired State
E yes ful�lled
E no no wait
E no yes violated

EN yes violated
EN no no wait
EN no yes ful�lled6. Veri�ation System. In this setion, we desribe a prototypial system that we have developed toverify the ompliane of the agent behaviour to interation protools spei�ed by means of SICs.The system heks for ompliane by aomplishing two main tasks:1. it �res (ativates) SICs whose onditions beome true as relevant events ours;2. it deides whether ativated SICs are ful�lled or violated.The system is designed to work during the evolution of the soiety, so it will only have, at eah instant, a partialhistory available, and it must take into aount that new events may happen in the future. For instane, let usonsider again the sample expetation in Set. 2:

E(aept(ak, aj , give(M), d2), Ta) : M ≥ 10, Ta ≤ 15.Let us now suppose that, at time 12, no mathing event has yet ourred. So, while this expetation hasnot been ful�lled, neither it has (yet) been violated: sine a mathing event ould still happen at time 13, 14or 15. It will atually be violated instead, in ase a mathing event fails to our by time 15, beause the CLPonstraint on the time variable beomes unsatis�able as of time 16.More generally, it may not be possible to state whether a SIC is ful�lled or violated at the same time it�res; thus, we identify three possible states for an ativated SIC:
• ful�lled, if the SIC is ful�lled;
• violated, if the SIC is violated;
• wait, if the SIC is still neither ful�lled nor violated.The initial state for an ativated SIC is wait; happening events will eventually hange its state to ful�lled orviolated.If we proess events in the orret order in time, in the ase of bakward SICs, the transition from a waitstate to a ful�lled or violated state is immediate, beause expetations in a bakward SIC regard events thatshould have (not) happened in the past and, thus, they an be immediately heked for ful�llment.6.1. Runtime identi�ation of the state of a SIC. In the following, we explain how the state of aSIC hanges at runtime.The ativation of a SIC auses the reation of an instane of its �head� (organized in priority levels, eahbeing a disjuntion of onjuntion of expetations, as explained in Set. 2). Afterwards, the state of eah singleexpetation is de�ned, followed by the state of the priority levels, and �nally by the state of the SIC.State of an expetation. An expetation is alled �veri�ed� if there exists a mathing event in the soiety his-tory. The state of a veri�ed positive expetation is ful�lled ; the state of a veri�ed negative expetation is violated.An expetation is alled �expired� if CLP onstraints over its time variable annot be any longer satis�ed(typially, this is the ase with onstraints representing deadlines whih have expired). The state of an expiredand not veri�ed expetation is violated if the expetation is positive and ful�lled if the expetation is negative;the state of a not expired and not veri�ed expetation is instead wait.Table 6.1 summarises all these ases.State of a onjuntion of expetations. The state of a onjuntion of expetations is de�ned by the followingrules:1. if the state of at least one expetation in the onjuntion is violated, then the state of the onjuntionis violated ;2. if the state of all expetations in the onjuntion is ful�lled, the state of the onjuntion is ful�lled ;3. otherwise, the state is wait.

Spei�ation and Veri�ation of Agent Interation Protools 9State of a priority level. A priority level is a disjuntion of onjuntions of expetations. The state of apriority level is then de�ned by the following rules:1. if the state of at least one of the disjunts is ful�lled, then the state of the priority level is ful�lled ;2. if the state of all of the disjunts is violated, then the state of the priority level is violated ;3. otherwise, the state is wait.State of a SIC. If all the priority levels of a SIC are violated, then the SIC is violated ; otherwise, the stateof the highest non-violated priority level of the SIC de�nes the state of the SIC.6.2. Veri�ation of Compliane. As shown in Set. 3.1 in relation to the FIPA CNP, bakward SICsan express that events are only allowed if some other events have (not) happened before; sine their state anbe immediately resolved to ful�lled or violated, bakward SICs an be used to verify that an event is allowedas soon as it ours. In designing our system, we made a hoie to ignore the events that are not allowed.However, the system aptures the violation: in a riher soial model, we an imagine some authority to reatto the violation.The set of forward SICs assoiated with a legal ation is then used to generate expetations about the futureevents in the soiety (i. e., the heads of assoiated forward SICs will be heked for ful�llment).In order to verify the ful�llment of SICs, we have de�ned two di�erent phases: the Event Driven phase andthe Clok Driven phase.Event-driven phase. An event-driven phase starts eah time a new event ours. The system ativates allbakward SICs assoiated with the event; if they are all ful�lled, then the event is reognized to be allowed andthus marked as �legal� and added to the history of the interation. If some of the bakward SICs are violated,then the event is marked as �illegal�, sine it is not allowed, and it is not reorded in the history of the soiety.If the event is marked legal, the system proesses the new updated history by ativating the forward SICsassoiated with the new event. Forward (ativated) SICs de�ne the expeted future behaviour of the soiety,and they will be heked for ful�llment.Clok-driven phase. The lok-driven phase starts whenever a speial event alled �lok,� or �urrent time,�is registered by the soiety. The system proesses the set of ativated forward SICs identifying the state of eahone. If the state of a SIC is ful�lled, the SIC is removed from the list of pending (waiting) SICs. If the stateof a SIC is violated, the SIC is removed but a violation is raised. If the state is wait, the SIC is kept pendinguntil the next lok-driven phase or the next event-driven phase. Note that the time assoiated to events andthe �urrent time� event whih �res a lok-driven phase must synhronize.6.3. Implementation. The veri�ation system has been implemented on top of SICStus Prolog's Con-straint Handling Rules (CHR) library [22℄.CHR[16℄ are essentially a ommitted-hoie language onsisting of guarded rules that rewrite onstraintsin a store into simpler ones until they are solved. CHR de�ne both simpli�ation (replaing onstraints bysimpler onstraints while preserving logial equivalene) and propagation (adding new, logially redundant butomputationally useful, onstraints) over user-de�ned onstraints.6.3.1. Ativation of SICs. Eah event happened in the system is represented by the CHR onstrainth/2, where the arguments are a Prolog ground term representing the happened event and an integer numberrepresenting the time.Positive (resp. negative) expetations are represented by the Prolog term e (resp. en). Its arguments are:a Prolog term desribing the event expeted to happen (resp. not to happen), the time (typially non ground),and a list of CLP onstraints over the variables in the desription.A PriorityLevel is represented by the Prolog term pr, whose arguments are the list of alternative HeadDis-junts of the priority level and the integer number representing the priority (the lower the number, the higherthe priority). Priority levels generated by a SIC are olleted as the list argument of a plist term.The argument of the CHR onstraint le/1 is the list of all ativated plists (one for eah ativated SIC).Eah SIC is represented by a simpagation CHR. In general, simpagation rules have the form
H1, . . . , Hl\Hl+1, . . . , Hi ⇔ G1, . . . , Gj |B1, . . . , Bk (6.1)where l > 0, i > l, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . , Hi is a nonempty sequene of CHRonstraints, the guard G1, . . . , Gj is a sequene of built-in onstraints, and the body B1, . . . , Bk is a sequene ofbuilt-in and CHR onstraints. Operationally, when the onstraints in the head are in the onstraint store and

10 Maro Alberti, Federio Chesani et al.the guard is true, H1, . . . , Hl remain in the store, and Hl+1, . . . , Hi are substituted by B1, . . . , Bk. For instane,the following CHR implements SIC (2.2):h(event0,T0), h(event1,T1) \ le(LExp) <=> T0<T1 &append(LExp,[plist([pr([and([e(event2,T2,[min(T2,T1)℄) ℄),and([en(event3,T3,[min(T3,T0)℄) ℄)℄,1),pr([and([e(event4,T4,[min(T4,T0)℄) ℄)℄,2)℄,id1)℄, LExp1)| le(LExp1).If event0 and event1 have ourred and are part of the �history,� the two CHR onstraints h(event0,T)and h(event1,T1) are in the onstraint store; if the guard T<T1 is true, then the rule is ativated. The store(the LExp list) of the heads of ativated SICs is updated appending a new plist(), whih ontains the list ofpriority levels (two in this example) in the head of the SIC. The CHR onstraint le/1, whih ontained the oldLExp before the ativation of the rule, is removed by simpagation and replaed by the same onstraint with thenew list LExp1 as argument.Note that two di�erent symbols are used to represent the CLP onstraint <: < if its arguments are thetimes of two happened events4, and min if they are instead the times of two expetations.The translation of a SIC into a simpagation CHR is rather straightforward, whih makes it easy to implementnew protools.As further examples, we report below the CHR implementation of SIC (3.1) and SIC (3.15):h(tell(P,I,propose(R,Q),D),T) \le(LExp) <=>true &append(LExp,[plist([pr([and([e(tell(I,P,fp(R),D),T1,[min(T1,T)℄)℄)℄,1)℄)℄, LExp1) | le(LExp1).h(tell(I,P,fp(R),D),T) \le(LEv,LExp) <=>Td is T+200 &append(LExp,[plist([pr([and([e(tell(P,I,propose(R,Q),D),T1,[min(T1,Td)℄)℄),and([e(tell(P,I,refuse(R),D),T2,[min(T2,Td)℄)℄)℄,1)℄)℄,LExp1) | le(LExp1).
4In this ase, the times are ertainly ground and the Prolog prede�ned prediate an be applied to them.

Spei�ation and Veri�ation of Agent Interation Protools 11
historyGeneratorListener

Interface

Class

historyGenerator

Interface

expectationsEngineListener
Interface

timerInterface

Class

expectationsEngine

Interface

messageDispatchListener
Interface

timerListener

Class

messageDispatcher

Interface

eventRecorderInterface

Interface

eventRecorderListenerFig. 6.1. UML diagram6.3.2. Identi�ation of the state of SICs. The identi�ation of the state of a SIC is oded in standardProlog. The system performs all the steps desribed in Set. 6.1. It analyses all its stored plists, thusimplementing the event-driven and lok-driven phases desribed above.6.3.3. Interfae to the veri�ation system. In order to use the system in onrete ase studies, aJava pakage (using the SICStus Prolog's Jasper library [22℄) has been implemented. This pakage has beendeveloped to be used as a Java wrapper for the veri�ation system.The UML diagram of the system is represented in Fig. 6.1. To use the system the user must reate a histo-ryGenerator objet giving as parameter the path to a (ompiled) Prolog �le ontaining the protool de�nitionexpressed by SICs. The Java system implements the Event Driven phase reeiving messages from the even-tReorderListener interfae and the lok-driven phase reeiving �urrent time� events from the timerListenerinterfae. The rest of the system implements the Java-Prolog interfae.7. Disussion and related work. The syntax of Soial Integrity Constraints proposed in this paper is amodi�ed version of that proposed in [2℄ and in [5℄. The modi�ations have been made in order to takle bothexpressiveness and implementation issues. Spei�ally:
• we added priority levels to SICs (see Set. 2). This allows for a more �exible spei�ation of protools,enabling the protool designer to devise alternative protool �ows while being able to speify preferenesamong them;

12 Maro Alberti, Federio Chesani et al.
• we imposed the restrition of having only either bakward or forward expetation in a SIC (see Set. 2).While this improves e�ieny, on the downside it prevents from writing SICs suh as

H(a, Ta)

→E(b, Tb) : Tb < Ta, 1

⇒E(c, Tc) : Tc ≤ Ta + τ, 2

(7.1)whih one might want to use to express that an event (b) that does not ful�ll a bakward expetationan, with lower priority, still be allowed, provided that ertain �bakup� event (c) our at some pointin the future. However, in our experiene, SICs suh as (7.1) are generally not neessary to expressprotools of ommon use.In [4℄ we have de�ned an abdutive semantis for SICs, in the ontext of agent soieties, and a more gen-eral framework, in whih the veri�ation proedure is performed by an abdutive proof proedure [6℄, whoseimplementation has been integrated into a software omponent [3℄, interfaed to several multi-agent platformssuh as Jade [8℄, PROSOCS [9℄, and tuProlog [12℄. Other authors have proposed alternative approahes to thespei�ation and in some ases animation of interation among agents. Notably, in [7℄, Artikis et al. present atheoretial framework for providing exeutable spei�ations of partiular kinds of multi-agent systems, alledopen omputational soieties, and they present a formal framework for speifying and animating systems wherethe behaviour of the members and their interations annot be predited in advane, and for reasoning aboutand verifying the properties of suh systems. A noteworthy di�erene with [7℄ is that we do not expliitlyrepresent the institutional power of the members and the onept of valid ation. Permitted are all soial eventsthat do not determine a violation, i. e., all events that are not expliitly forbidden are allowed.In [24℄, Yolum and Singh apply a variant of Event Calulus [19℄ to ommitment-based protool spei�a-tion. The semantis of messages (i. e., their e�et on ommitments) is desribed by a set of operations whosesemantis, in turn, is desribed by prediates on events and �uents ; in addition, ommitments an evolve, in-dependently of ommuniative ats, in relation to events and �uents as presribed by a set of postulates. Suha way of speifying protools is more �exible than traditional approahes based on ation sequenes in that itpresribes no initial and �nal states or transitions expliitly, but it only restrits the agent interation in that, atthe end of a protool run, no ommitment must be pending. Agents with reasoning apabilities an themselvesplan an exeution path suitable for their purposes (whih, in that work, is implemented by an abdutive eventalulus planner). Our notion of expetation is more general than that of ommitment found in [24℄ or in otherommitment-based works, suh as [15℄: it represents the neessity of a (past or future) event, and is not boundto have a debtor or a reditor, or to be brought about by an agent.8. Conlusions. We have presented a framework for the spei�ation and runtime veri�ation of ompli-ane of agent interation to protools. The spei�ation at a soial level of interation protools onstrains theagent observable behaviour from the outside, rather than its internal state or struture. This is a harateristiof soial approahes to agent protool spei�ation, and it is partiularly suited for usage in open agent soi-eties. Protool spei�ations use a omputational logi-based formalism alled soial integrity onstraints. Thesystem's Java-Prolog-CHRbased implementation has been tested on di�erent types of protools [23℄. In thisartile, we have demonstrated the usage of SICs in three ases: the FIPA CNP, taken from the agent literature,a made up protool for joining semi-open soieties, and the well known three-way handshake phase of the TCPIP protool for onnetion establishment. The veri�ation system, implemented in Prolog and CHR, an beused as a module in a Java-based system, thanks to the Java-Prolog interfae of SICStus Prolog. The modularstruture of the system makes it (hopefully) easy to adapt it to new appliations.9. Aknowledgments. This researh has been partially supported by the National MIUR PRIN 2005projets No 2005-011293, Spei�ation and veri�ation of agent interation protools, 5, and No 2005-015491,Vinoli e preferenze ome formalismo uni�ante per l'analisi di sistemi informatii e la soluzione di problemireali, 6 and by the National FIRB projet TOCAI.IT 7.
5http://www.rieraitaliana.it/prin/dettaglio_ompleto_prin_en-2005011293.htm
6http://www.si.unih.it/�bista/projets/prin2006/
7http://www.dis.uniroma1.it/�toai/

Spei�ation and Veri�ation of Agent Interation Protools 13REFERENCES[1℄ FIPA Contrat Net Interation Protool, Teh. Report SC00029H, Foundation for Intelligent Physial Agents, 2002. Availableat http://www.fipa.org[2℄ M. Alberti, A. Ciampolini, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, A soial ACL semantis by deontionstraints, in Multi-Agent Systems and Appliations III. Proeedings of the 3rd International Central and EasternEuropean Conferene on Multi-Agent Systems, CEEMAS 2003, V. Ma�rík, J. Müller, and M. P�ehou�ek, eds., vol. 2691of Leture Notes in Arti�ial Intelligene, Prague, Czeh Republi, June 16�18 2003, Springer-Verlag, pp. 204�213.[3℄ M. Alberti, M. Gavanelli, E. Lamma, F. Chesani, P. Mello, and P. Torroni, Compliane veri�ation of agentinteration: a logi-based software tool., Applied Arti�ial Intelligene, 20 (2006), pp. 133�157.[4℄ M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni, An Abdutive Interpretation for Open Soieties, inAI*IA 2003: Advanes in Arti�ial Intelligene, Proeedings of the 8th Congress of the Italian Assoiation for Arti�ialIntelligene, Pisa, A. Cappelli and F. Turini, eds., vol. 2829 of Leture Notes in Arti�ial Intelligene, Springer-Verlag,Sept. 23�26 2003, pp. 287�299.[5℄ , Spei�ation and Veri�ation of Agent Interations using Soial Integrity Constraints, Eletroni Notes in TheoretialComputer Siene, 85 (2003).[6℄ , The SCIFF abdutive proof-proedure, in Proeedings of the 9th National Congress on Arti�ial Intelligene, AI*IA2005, vol. 3673 of Leture Notes in Arti�ial Intelligene, Springer-Verlag, 2005, pp. 135�147.[7℄ A. Artikis, J. Pitt, and M. Sergot, Animated spei�ations of omputational soieties, in Proeedings of the FirstInternational Joint Conferene on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part III, C. Castelfranhiand W. Lewis Johnson, eds., Bologna, Italy, July 15�19 2002, ACM Press, pp. 1053�1061.[8℄ F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, Jade - a java agent development framework, in Multi-AgentProgramming: Languages, Platforms and Appliations, R. H. Bordini, M. Dastani, J. Dix, and A. E. Fallah-Seghrouhni,eds., vol. 15 of Multiagent Systems, Arti�ial Soieties, and Simulated Organizations, Springer-Verlag, 2005, pp. 125�147.[9℄ A. Braiali, U. Endriss, N. Demetriou, A. C. Kakas, W. Lu, and K. Stathis, Crafting the mind of prosos agents,Applied Arti�ial Intelligene, 20 (2006), pp. 105�131.[10℄ F. Chesani, A. Ciampolini, P. Mello, M. Montali, and S. Storari, Testing guidelines onformane by translatinga graphial language to omputational logi, in ECAI 2006 Workshop on AI tehniques in healthare:evidene basedguidelines and protools, Riva del Garda, Italy, August 2006. http://www.openlinial.org/gp2006_2.html[11℄ P. Davidsson, Categories of arti�ial soieties, in Engineering Soieties in the Agents World II, A. Omiini, P. Petta,and R. Tolksdorf, eds., vol. 2203 of Leture Notes in Arti�ial Intelligene, Springer-Verlag, De. 2001, pp. 1�9. 2ndInternational Workshop (ESAW'01), Prague, Czeh Republi, July 7, 2001, Revised Papers.[12℄ E. Denti, A. Omiini, and A. Rii, Multi-paradigm Java-Prolog integration in tuProlog, Siene of ComputerProgramming, 57 (2005), pp. 217�250.[13℄ U. Endriss, N. Maudet, F. Sadri, and F. Toni, Protool onformane for logi-based agents, in Proeedings of theEighteenth International Joint Conferene on Arti�ial Intelligene, Aapulo, Mexio (IJCAI-03), G. Gottlob andT. Walsh, eds., Morgan Kaufmann Publishers, Aug. 2003.[14℄ FIPA: Foundation for Intelligent Physial Agents. Home Page: http://www.fipa.org/[15℄ N. Fornara and M. Colombetti, Operational spei�ation of a ommitment-based agent ommuniation language, inProeedings of the First International Joint Conferene on Autonomous Agents and Multiagent Systems (AAMAS-2002),Part II, C. Castelfranhi and W. Lewis Johnson, eds., Bologna, Italy, July 15�19 2002, ACM Press, pp. 535�542.[16℄ T. Frühwirth, Theory and pratie of onstraint handling rules, Journal of Logi Programming, 37 (1998), pp. 95�138.[17℄ J. Jaffar and M. Maher, Constraint logi programming: a survey, Journal of Logi Programming, 19-20 (1994),pp. 503�582.[18℄ A. C. Kakas, R. A. Kowalski, and F. Toni, The role of abdution in logi programming, in Handbook of Logi inArti�ial Intelligene and Logi Programming, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, eds., vol. 5, OxfordUniversity Press, 1998, pp. 235�324.[19℄ R. A. Kowalski and M. Sergot, A logi-based alulus of events, New Generation Computing, 4 (1986), pp. 67�95.[20℄ J. W. Lloyd, Foundations of Logi Programming, Springer-Verlag, 2nd extended ed., 1987.[21℄ J. Muller and J. Odell, Agent UML: A formalism for speifying multiagent software systems, International Journal ofSoftware Engineering and Knowledge Engineering, 11(3) (2001), pp. 207�230.[22℄ SICStus prolog user manual, release 3.11.0, Ot. 2003. http://www.sis.se/isl/sistus/[23℄ The SOCS protool repository, 2005. Available athttp://edu59.deis.unibo.it:8079/SOCSProtoolsRepository/jsp/index.jsp[24℄ P. Yolum and M. Singh, Flexible protool spei�ation and exeution: applying event alulus planning using ommitments,in Proeedings of the First International Joint Conferene on Autonomous Agents and Multiagent Systems (AAMAS-2002), Part II, C. Castelfranhi and W. Lewis Johnson, eds., Bologna, Italy, July 15�19 2002, ACM Press, pp. 527�534.Edited by: Marin Paprzyki, Niranjan SuriReeived: Otober 1, 2006Aepted: Deember 10, 2006

