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APPLICATIONS OF FINITE FIELDS TO DYNAMICAL

SYSTEMS AND REVERSE ENGINEERING PROBLEMS

MARÍA A. AVIÑÓ, EDWARD GREEN, AND OSCAR MORENO

Abstract. We present a mathematical model: dynamical systems over finite
sets (DSF), and we show that Boolean and discrete genetic models are special
cases of DFS. In this paper, we prove that a function defined over finite sets
with different number of elements can be represented as a polynomial function
over a finite field. Given the data of a function defined over different finite sets,
we describe an algorithm to obtain all the polynomial functions associated to
this data. As a consequence, all the functions defined in a regulatory network
can be represented as a polynomial function in one variable or in several vari-
ables over a finite field. We apply these results to study the reverse engineering
problem.

1. Introduction

In this paper we introduce the definition of dynamical systems over different finite
sets (DSF) and we develop its applications to regulatory networks and the Reverse
Engineering Problem. We consider variables over sets with different numbers of
elements and we change that to variables over a finite field.

The justification for considering dynamical systems over different finite sets is
related with the method Generalized Logical Networks developed by Thomas and
colleagues, [11, 13, 14, 15, 16]. The generalized logical networks has a mean consid-
eration: a variable can have more that two possibilities but always the number of
possibilities is finite. In addition, the network is described by a function which acts
over several variables and for each variable there are different number of values.
These considerations are very important for biologists because it is known that in a
regulatory network all the variables do not have the same number of states. Here,
we prove that all of these functions can be considered over a finite field and as a
consequence of that we can represent them by polynomial functions. In section 2
we present an algorithm which changes a function over different set of values to a
function over a finite field.

In Section 2 we introduce the method to construct functions over a finite field
using functions defined over finite sets with different number of elements. In Section
3, we apply the partially defined functions to Reverse Engineering Problem. In
Section 5, we introduce the definition of Dynamical Systems over different finite
sets.
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2. Partially defined functions

Now, in this section we introduce the mathematical background which will permit
the application of modelling methods such as generalized logical networks.

Let Xj = {0, 1, . . . , j − 1} and let Zp be the set of integers modulo p, with p a
prime number. Suppose that p ≥ j, and we consider a canonical map from Xj to
the field Zp given by a → a( mod p). In the following we consider Xj ⊂ Zp. Let
x = (x1, . . . , xn) ∈ Zp

n. We denote the polynomial ring in n variables over Zp by
Zp[x1, . . . xn]. We begin with some definitions. Let D ⊆ Zp.

Definition 2.1. Let S ( Zp
n. Let f : S → D be a function. We will call f a

partially defined function over Zp.

Example 2.2. Now, let g : X2 × Z3 → X2, given by the following table:

g(x1, x2) 0 1 2
0 1 0 1
1 0 0 1

.

Then the table of values of the partially defined function ĝ is the following:

ĝ(x1, x2) 0 1 2
0 1 0 1
1 0 0 1
2 * * *

.

Let S = Xm1
× · · · × Xmn

( Zp
n, and let D ⊆ Zp. Since a partially defined

function f̂ : S → D is not a function from Zp
n to Zp, we are interested in solving

the following problem:
[DF(Zp):] Let S ( Zp

n and let f : S → D be a function. We want a polynomial
function P : Zp

n → Zp such that P (x) = f(x), for all x ∈ S ( Zp
n.

A function P associated to f will be called a polynomial function for f . Now,
we prove that the problem DF(Zp) can have more than one solution.

Proposition 2.3. For each function f : S → D there is a polynomial P (x) ∈
Zp[x1, . . . , xn], such that f(x) = P (x) for all x ∈ S. The polynomial P can be
chosen with degree less than or equal to n(p− 1) but in general, it is not unique.

Proof. If k is a finite field and f : kn → k is a function then there exists a polynomial
P in the variables x1, . . . , xn, with coefficient in k, such that f(x) = P (x1, . . . , xn)
for all (x1, . . . , xn) ∈ kn, [7]. But, in our case we do not have a function from
kn → k, so we will prove that the polynomial function exists associated to the
partially defined function but it is not unique.

We will show the idea using the example 2.2. In the table of f̂ we can complete
the table in some way. Then there exists a unique polynomial for this table. But
we can complete the table in many ways, so the polynomial function exists but, it
is not unique. �

As a consequence of Proposition 2.3 we have an algorithm which solves the
problem DF(Zp). Let f : S → Zp be a function. Let m = |S| be the cardinality of
S (m =

∑n

i=1 mi when f : Xm1
×· · ·×Xmn

→ Zp). Now, we write a polynomial P
in n variables x1, . . . , xn. P has degree less than or equal to p−1 in each variable,
so has degree less than or equal to n(p − 1). We denote P in the following form:
P (x1, . . . , xn) =

∑

α∈Zp
n bαx

α, where α = (α1, . . . , αn), xα = xα1 . . . xαn

n . Now, we
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evaluate P for all a ∈ S and we obtain a system of m linear equations in the pn

unknowns bα which always has solutions. The system is the following:

(I)
∑

α∈Zp
n

(a)αbα = f(a) for all a ∈ S.

Solving the system using elementary row operations, we finally obtain all the so-
lutions. In [3], it is proved that the rank of this system is m. Then, there are
bβ1

, . . . , bβm
coefficients of the polynomial P whose are determined in term of the

free coefficients denoted by bγ1
, . . . , bγpn−m

. Now, let Zp
(p−1)[x1, . . . , xn] be the

subspace of Zp[x1, . . . , xn] of all polynomials with maximum degree p − 1 in each
variable and coefficients in Zp. So, we have the following theorem.

Theorem 2.4. All the polynomial solutions with degree ≤ n(p− 1) of the problem
DF(Zp) are given by a particular solution f0(x) of (I) plus the subspace

U = {g ∈ Zp
(p−1)[x1, . . . , xn]|g(a) = 0, ∀a ∈ S}

of dimension pn −m.

Proof. We know by linear algebra that all the solutions of (I) are given by

f0(x) + bγ1
g1(x) + · · ·+ bγpn−m

gpn−m(x)

where bγ1
, . . . , bγpn−m

∈ Zp and g1, . . . , gpn−m ∈ U . Let h1 and h2 be two polyno-
mial solutions of (I). Then h1 − h2 ∈ U , so the theorem holds. �

3. Reverse Engineering Problem
over finite sets

Now, we connect the problem DF(Zp) with the Reverse Engineering Problem
over Zp. The problem for partially defined functions is equivalent to the following.

[P(Zp):] Given a1, . . . , am ∈ Zp
n, b = (b1, . . . , bm) ∈ Zp

m, with m < pn. Find a
polynomial P ∈ Zp[x1, . . . , xn] such that P (aj) = bj for j = 1, . . . ,m.

The problems P(Zp) and DF(Zp) are equivalent. In fact, we only need to take
S = {a1, . . . , am} and b = (f(a1), . . . , f(am)).

The problem P(Zp) was solved by E. Green in [2]. He called the problem P(Zp)
for (a1, . . . , am;b) and he proved that if P(Zp) has solutions then the Reverse
Engineering Problem over Zp has solutions.

Now, we define the Reverse Engineering Problem over sets with different number
of elements. Let {kj} be a family of n finite sets where |kj | = mj. We denote
by k = k1 × · · · × kn. Let r1, . . . , rm+1 ∈ k. We assume that the vectors
rj = (rj1, . . . , rjn) are obtained by experiments (like microarray) and we assume
that rj determines rj+1. Then the Reverse Engineering Problem over k is to find
a function F = (f1, . . . , fn) : k → k such that F (rj) = rj+1 for j = 1, . . . ,m. But,
we rewrite:

[(REP)] The Reverse Engineering Problem over k is to find polynomial functions
fs : k → ks such that

fs(rj) = rs,j+1 for j = 1, . . . ,m and s = 1, . . . , n

Now, we prove that if we can solve DF(Zp), we can solve (REP) and use the
same algorithm. In fact, if Zp is the field such that p ≥ mj for all j, we take the

partially defined functions f̂s over Zp considering ks ⊆ Zp. Let r = (r1, . . . , rn) ∈ k.

So, we consider S ( Zp
n and f̂s(rj) = rs,j+1 for j = 1, . . . ,m and s = 1, . . . , n.
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We have proved the following proposition.

Proposition 3.1. The reverse engineering problem over set with different number
of elements has polynomial solutions by Proposition 2.3, and Theorem 2.4.

Definition 3.2. The matrix A = (rj)m×n will be called the matrix of the problem
REP.

Example 3.3. Suppose we have the following data: r1 = (1, 2, 0), r2 = (2, 2, 1),
r3 = (1, 0, 1), r4 = (0, 1, 1), and r5 = (1, 1, 0). And, we have the additional infor-
mation:
(a) the variables {x, y, z} are defined over different finite sets, but we take finite
fields: x, y ∈ Z3 = {0, 1, 2} and z ∈ Z2 = {0, 1}.
(b)the variable x depends of x and z, y depends of x and y, and z depends of y and
z.

The matrix A of the problem is the following:

A =













1 2 0
2 2 1
1 0 1
0 1 1
1 1 0













We want polynomial functions f1, f2, and f3, such that F = (f1, f2, f3) and F (rj) =
rj+1 for j = 1, 2, 3, 4.

The additional information (b) means that the functions that we are looking for
are as follows:

f1(x, z) = a0 + a1x+ a2z + a3xz + a4x
2 + a5z

2

+a6x
2z + a7xz

2 + a8x
2z2

f2(x, y) = b0 + b1x+ b2y + b3xy + b4x
2 + b5y

2

+b6x
2y + b7xy

2 + b8x
2y2

f3(y, z) = c0 + c1z + c2y + c3yz + c4y
2 + c5z

2

+c6y
2z + c7yz

2 + c8y
2z2

Using the data we have the table of f1.

f1(x, z) 0 1 2
0 * 1 *
1 2 0 *
2 * 1 *

Using the above table and the algorithm for problem DF(Zp), we obtain a system
of 4 linear equation with 9 unknown. The matrix of the system of linear equation
is:

A1 =









1 1 0 0 1 0 0 0 0 2
1 2 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 1 1 0
1 0 1 0 0 1 0 0 0 1









Using elementary row operations, we have the following:

a2 = 1 + 2a3 + 2a5 + 2a6 + 2a7 + 2a8, a4 = 1 + 2a6 + 2a8,

a1 = 1 + 2a3 + 2a7, a0 = a3 + a7 + a6 + a8.
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A particular solution of the system is f1 = x + z + x2. And all the solutions are
given by f1 + a3g1 + a5g2 + a6g3 + a7g4 + a8g5, where

g1 = 1 + 2x+ 2z + xz, g2 = 2z + z2, g3 = 1 + 2z + 2x2 + x2z

g4 = 1 + 2x+ 2z + xz2, and g5 = 1 + 2z + 2x2 + x2z2.

If we denote by U1 the subspace of Z3[x, y, z] generated by {g1, g2, g3, g4, g5}, then
all the solutions with degree ≤ 2 in each variable, are f1 + U1.

Similarly we obtain:
(1) f2 = x + y2 and all the solutions are f2 + U2, where U2 is the subspace

generated by the polynomials

h1 = 2 + x+ xy + y2, h2 = 2 + 2y + x2 + 2y2,

h3 = 1 + 2x+ 2y2 + xy2, h4 = y + 2y2 + x2y, h5 = 2y + y2 + x2y2.

(2) f3 = 1 + y + y2 and all the solutions are f3 + U3, where U3 is the subspace
generated by the polynomials

v1 = 2 + z + 2y + yz, v2 = 1 + 2z + 2y2 + y2z,

v3 = 2 + z + 2y + yz2, v4 = 1 + 2z + 2y2 + y2z2, v5 = 2z + z2.

Finally one of the functions that can describe the genetic network is the following

f(x, y, z) = (x+ z + x2, x+ y2, 1 + y + y2)

4. Solution over the finite field GF(pn)

We can solve the problems DF(Zp) and (REP) using Lagrange interpolation over
the field GF(pn) = K [8, 9]. Let f : S → Zp be a function with S ( Zp

n. Let
|S| = m be the cardinality of S. let {α1, α2, . . . , αn} be a fixed basis of K. There
is a natural one to one correspondence between the sets Zp

n and K, namely

λ : (a1, . . . , an) 7→ a1α1 + · · ·+ anαn.

Let S = λ(S) ( K. Now we have the partially defined function f̂ = λ ◦ f ◦λ−1 :
S → Zp. We denote the elements of S by a.

Now, using the Lagrange interpolation formula we have the following: a1, . . .,

am are m distinct elements of the finite field K and f̂(a1) = b1, . . . , f̂(am) = bm,
with b1, . . . , bm elements in Zp. We know that Zp ⊂ K. We rewrite the problem
DF(Zp) as follows:

[DF(pn):] Let S ( K and let f : S → K be a function. We want a polynomial
P (x) ∈ K[x] such that

P (x) = f(x), for all x ∈ S ( K.

We can observe that this is the same problem (REP) if we consider S = {r1, . . . , rm+1}
and f(rj) = rj+1 ∈ K. So in the following we denote both problem by DF(pn).

Using Lagrange Interpolation, we know that: there exists a polynomial P ∈ K[x]
of degree d ≤ m− 1 such that P (ai) = bi ∈ K for i = 1, . . . ,m. The polynomial is
given by

P (x) =

m−1
∑

i=1

bi

m−1
∏

k=1,k 6=i

(ai − ak)
−1(x− ak).

Then, we have proved the following theorem.
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Theorem 4.1. The problem DF(pn) has solutions over the field K =GF(pn) using
Lagrange Interpolation. That is, there exists a polynomial P 0 ∈ K[x], such that
P 0(ai) = bi ∈ K, for i = 1, . . . ,m. The degree of the polynomial P 0 is less than or
equal to m− 1. If I is the ideal of k[x] generated by P (x) = (x − a1) · · · (x− am),
then all the solutions are given by P 0(x) +G(x), where G(x) ∈ I.

Now, we have a new algorithm to solve the problem. We know by the Theorem
4.1 that the solution is a polynomial of the following form: P (x) =

∑m−1
k=0 Bkx

k.

We evaluate P (x) in all the elements of S. Then we obtain a system of linear
equations with one solution

(II)

m−1
∑

k=0

Bka
k
i = bi for i = 1, . . . ,m

We want to remark that the system (II) has rank m, since ai 6= aj for i 6= j.
Finally we have an output a polynomial in one variable with degree less than or
equal to m− 1.

Example 4.2. Let S = {(0, 1), (1, 0), (1, 1), (2, 1)} ( Z3
2, and f : S → Z3. The

function f has the following table of values.

f(x1, x2) 0 1 2
0 * 1 *
1 2 0 *
2 * 1 *

Let α be a root of the polynomial X2 + X + 2 in Z3. Then α2 = 2α + 1, and
a basis for GF (32) is {α, 1}. A natural correspondence is (x1, x2) 7→ x1α + x2

We have a1 = (0, 1), a1 = 1; a2 = (1, 0), a2 = α; a3 = (1, 1), a3 = α + 1; and
a4 = (2, 1), a4 = 2α + 1. Then, the particular solution is given by a polynomial
P0(x) = c0 + c1x+ c2x

2 + c3x
3. We evaluate in the four elements of GF(32) using

the table of values. The matrix of the system is the following:

M =









1 1 1 1 1
1 α α2 α3 2
1 α+ 1 2α+ 1 2α 0
1 2α+ 1 2 α+ 2 1









Solving the system we obtain the polynomial P0(x) = α3+2x+α6x2+x3. Now, we
change the polynomial in two polynomials with two variables x1, x2 and coefficients
in Z3. We use the correspondence λ−1 and obtain the following:

f(x1, x2) = (2 + x1 + 2x1x2 + x2
2, 2 + 2x1 + x2

1 + 2x1x2 + 2x2
2).

5. Dynamical Systems over finite sets with different number of
elements

In this section we present a definition of dynamical system over finite sets.

Definition 5.1. A dynamical system over finite sets is a pair (S, f) such that
(a) S ⊆ Zp

n.
(b) A function, f = (f1, . . . , fn) : S → S, and each function fi : Si → Zp is a
partially defined function with Si ⊆ S for all i.
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The DSF is a time discrete dynamical system, that is the dynamics is generated
by iteration of the function f .

Definition 5.2. The state space Sf of the dynamical system f : S → S is a finite
directed graph (digraph) with vertex set S and arc set A = {(x, y) ∈ S : f(x) = y},
that is the ordered pair (x, y) stands for and arrow from a vertex x = (x1, . . . , xn) ∈
S to a vertex y = (y1, . . . , yn) ∈ S if and only if f(x) = y.

Theorem 5.3. Let (S, f) be a dynamical system over finite sets. Then
(a) f can be represented as a polynomial function in one variable over the finite

field GF(pn), for some prime p.
(b) If f = (f1, . . . , fn) then each function fi can be represented as a polynomial

function in one variable or in several variables over Zp, for some prime p.

(c) Part (a) and (b) hold for all prime number p ≥ maxi|Si|, where |Si| is the
maximal number of different elements in the coordinate i of the set Si

Proof. It is a consequence of the Sections 1 and 2. �

6. Examples and applications

In this section we present two applications of the representation of the dynamical
systems by polynomials over a finite fields. One very important things is to deter-
mine the steady states, that is the elements x such that f(x) = x. We determine
that in the first example.

In the reverse engineering problem, we have a set of solutions and here we suggest
a method for biologist to determine if one of the solution is the right one.

In Fig. 1, an example of regulatory network is shown. This example of Gener-
alized Logical Networks appear in [5]. Here, we use the usual words for biologists.
Gene 1 regulates genes 2 and 3, so that it has two thresholds (two values different 0)
and the corresponding logical variable x1 takes its value from {0, 1, 2}. Similarly, x2

and x3 have one and two thresholds, respectively, and hence possible values {0, 1}
and {0, 1, 2}. The functions f1(x), f2(x), and f3(x) need to be specified such as
to be consistent with the threshold restrictions in the graph. Examples of logical
functions allowed by the generalized logical method are shown in Fig. 1(b).

Consider the case of f2(x). If x1 6= 0 and x3 6= 0, so that x1 and x3 have values
above their first threshold, the inhibitory influences of genes 1 and 3 on gene 2
become operative. Figure 1(b) indicates that x2 will tend to 0, that is, below the
first threshold of the protein produced by gene 2. If either x1 = 0 or x3 = 0, that
is, if only one of the inhibitory influences is operative, then gene 2 is moderately
expressed. This is here represented by the value 1 for the image of x2. In general,
several logical functions will be consistent with the threshold restrictions. Exactly
which logical function is chosen may be motivated by biological considerations or
may be a guess reflecting uncertainty about the structure of the system being
studied.

Example 6.1.

G3 	

րց
G1 ⇄ G2

Figure 1 (a)

f1(x2) 0 2
x2 0 1
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f2(x1, x3) 0 1 2
0 1 1 1
1 1 0 0
2 1 0 0

f3(x1, x3) 0 1 2
0 2 2 1
1 2 2 1
2 0 0 0

Figure 1 (b)

Now, we describe this example using a dynamical system over finite sets. We
have three genes, and the regulatory network is the following:

(1) The digraph: Y
3 	

ր ↓
1 ⇄ 2

(2) The variables x1 and x3 are in Z3 = {0, 1, 2}, and the variable x2 is in X2 =
{0, 1},
(3) There are several possibilities for functions f1 and f2, but f3 is the unique
function. Then the polynomial functions f1, f2, and f3 are:

f1(x2) = 2x2

f2(x1, x3) = 1 + 2x2
1x

2
3

f3(x1, x3) = 2 + x1 + 2x3 + x1x3 + 2x2
1 + x2

3 + 2x2
1x3

+2x1x
2
3 + x2

1x
2
3

(4) The global function f : (Z3)
3 → (Z3)

3,

f(x1, x2, x3) = (f1(x2), f2(x1, x3), f3(x1, x3)).

The state space has vertices V = Z3×X2×Z3. We want to know the steady states
of the dynamical system f , in general it is a very difficult problem. But, in this
particular case we have three equations in three variables,

2x2 = x1, 1 + 2x2
1x

2
3 = x2,

2 + x1 + 2x3 + x1x3 + 2x2
1 + x2

3 + 2x2
1x3 + 2x1x

2
3 + x2

1x
2
3 = x3

For x2 we have only two values, if x2 = 0 then x1 = 0 and we obtain 0 = 1 in
the second equation, that is impossible. If x2 = 1 then x1 = 2 and 1 + 2x2

3 = 1 so
x3 = 0. We can check in the last equation and the only solution is (2, 1, 0).

Example 6.2. In the example that we present in Section 3, we have 315 = 14, 348, 907
different solutions. But, we can select the particular solution f(x, y, z) = (x + z +
x2, x+ y2, 1+ y+ y2), and try to find which vectors in the state space go to the first
state (1, 2, 0).

Solving over Z3 the equations x + z + x2 = 1, x + y2 = 2, and 1 + y + y2 = 0,
we obtain that: 1 + y + y2 = 0 has one solution y = 1. So x = 1 and z = 2 ≡ 0(
mod 2). Therefore, f(1, 1, 0) = (1, 2, 0). Now, we can check that in the laboratory.
Since the state space has only 18 elements, there are several functions with this
property.
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