
A Reconfigurable Unit for a Clustered
Programmable-Reconfigurable Processor

Richard B. Kujoth, Chi-Wei Wang, Derek B. Gottlieb, Jeffrey J. Cook, Nicholas P. Carter
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Urbana, IL 61801

{kujoth, cwang12, dgottlie, jjcook, npcarter}@crhc.uiuc.edu

ABSTRACT
In a clustered programmable-reconfigurable processor, mul-

tiple programmable processors and blocks of reconfigurable

logic communicate through a register-based communication

mechanism, which reduces the impact of wire delay on clock

cycle time. In this paper, we present a circuit-level de-

sign for the reconfigurable clusters used on the Amalgam

programmable-reconfigurable processor. We outline our in-

terleaved reconfigurable array design, which provides high

bandwidth to and from the register file without requiring large

amounts of register control logic. We characterize the la-

tency of operations in our array, and present results that

show the impact that this latency has on overall system per-

formance in a range of fabrication processes. Finally, we

present a pipelining scheme that enables the array to oper-

ate at clock rates closer to those of programmable processors

and allows for better scaling in future technologies.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays; C.1 [Processor Architectures]: Miscella-
neous

General Terms
Design, Performance

Keywords
FPGA, Reconfigurable processor, Technology scaling

1. INTRODUCTION
Clustered programmable-reconfigurable processors [6] are

a new class of processor architectures that integrate multiple
programmable processors and blocks of reconfigurable logic
onto a single chip, using a distributed, or clustered organiza-
tion to reduce wire lengths. As shown in Figure 1, the inde-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’04, February 22-24, 2004, Monterey, California, USA.
Copyright 2004 ACM 1-58113-829-6/04/0002 ...$5.00.

pendent processing resources, or clusters, communicate with
each other and with the shared memory system through an
on-chip network. This organization allows the clock rate of
the processor to be determined by the longest path through a
cluster, instead of the wire delay to communicate with cen-
tralized issue logic and register files. When clusters must
communicate over the on-chip network, its wire delay mani-
fests as additional cycles of latency, which are visible to the
compiler, allowing it to schedule operations in an order that
tolerates the network latency.

Clustered processors are similar in many ways to chip mul-
tiprocessors (CMPs). However, the key difference between
these two types of architecture is that, in CMPs, processing
resources may only communicate with each other through
the shared memory system, while clustered processors pro-
vide a more direct means of inter-cluster communication.
In the case of Amalgam, this mechanism takes the form of
a distributed register file. Each cluster, programmable or
reconfigurable, contains a 32-entry register file. Operations
executing on a cluster may only read from that cluster’s
register file, but may write their results into any cluster’s
register file.

Figure 1: Block diagram of an 8-cluster Amalgam
processor

Previous clustered processor architectures have integrated
multiple programmable processors onto an integrated cir-
cuit. Amalgam differs from these systems in that half of
its clusters contain reconfigurable logic, while the remain-
der contain conventional dual-issue in-order microproces-
sors. Our previous studies [6] have shown that this architec-
ture is extremely effective, achieving an average speedup of

200

almost 14x over a system containing just one programmable
cluster, and almost 3x over an architecture with an equal
number of clusters, all of which contain programmable pro-
cessors. The register-based inter-cluster communication mech-
anism has also been shown to significantly improve perfor-
mance. In our experiments, programs that took advantage
of the inter-cluster communication mechanism achieved up
to 69% better performance than versions of the same pro-
gram that communicated solely through memory.

In this paper, we present the logical and circuit-level de-
sign of the reconfigurable clusters used in Amalgam. While
Amalgam’s clustered architecture delivers high performance,
it places of a number of constraints on the design of the re-
configurable cluster. Chief among these is the need to in-
tegrate a register file with the reconfigurable logic in each
cluster, followed by the need to communicate with the on-
chip network. These constraints have led us to develop a
reconfigurable cluster that interleaves portions of the regis-
ter file with rows of the reconfigurable array, providing the
array with high-bandwidth access to the register file with-
out the need to implement register file control logic in the
reconfigurable array. An array control unit (ACU) controls
the overall flow of computation through the array and the
transfer of data to and from the network. This increases
the efficiency of the reconfigurable cluster by freeing up re-
sources in the reconfigurable array to implement computa-
tional datapaths.

The body of this paper begins with a description of our
reconfigurable cluster architecture. This is followed by a dis-
cussion of the circuit-level design and layout of the cluster
and its performance. We then present an analysis of the im-
pact that improvements in fabrication technology will have
on the performance of the reconfigurable cluster relative to
programmable processors, and a pipelining scheme designed
to improve performance in advanced fabrication technolo-
gies. Finally, we discuss related and future work, and then
conclude.

2. OVERVIEW OF THE AMALGAM
RECONFIGURABLE CLUSTER

As shown in Figure 2, each of Amalgam’s reconfigurable
clusters (RCs) [16] contains an array of reconfigurable logic,
a 32-entry register file, and an array control unit. The re-
configurable array is organized as 32 rows of 32 logic blocks.
To better support multi-bit computations, each row of logic
blocks is divided into two 16-block sections, each containing
a carry-select carry chain to reduce the latency of arithmetic
operations.

One of the early challenges in the design of the RC was
determining how the reconfigurable array would communi-
cate with the register file. Our main goals were to provide
extremely high bandwidth between the array and the reg-
ister file to support parallel computation, and to limit the
amount of logic required to control the register file in order
to leave more of the reconfigurable array available for com-
putation. To achieve these goals, we divided the register file
into four banks of eight registers each and the reconfigurable
array into four segments of eight rows. Register file banks
and array segments are interleaved in a ring topology, as
illustrated in Figure 2.

Rather than requiring the reconfigurable array to gener-
ate the indices of the registers it needs to access on each

������� �	�
������������
� ������� �	�
�������������

� �������������! "�����#�
� ��$!%&���������

������� �	�
����������('
� ���)��� �	�
�����#*��)'!+��

� �������������! "�����,'
� ��$!%&��*���'-+�� �.����� �/�
�����������0

� �.����� �	�
���)�,'!1���0�2��

� ���������3�)�! 4�����50
� �.$!%6�7'!1���082��

�.����� �/�
�����������2
� �.����� �	�
���)�#0�9���2:'!�

� ���������3�)�! 4�����52
� �.$!%6��0�9���2;'!�

<6��� %&$!���>= ���
����?���@)�

Figure 2: Block diagram of an Amalgam reconfig-
urable cluster

cycle, each bit in the register file drives its output on a
read channel (RCH) that is visible to all the logic blocks
in the corresponding column of the array segment “below”
the bank. Similarly, the input to each register file bit is
a write channel (WCH) that can be driven by any of the
logic blocks in the segment “above” the bank. Logic blocks
can be configured to read any of the registers in the bank
“above” them by simply configuring their input multiplexors
to route the appropriate read channel to one of the inputs of
the logic block’s LUT. Similarly, logic blocks can be config-
ured to write any of the registers in the bank “below” them
by driving their outputs onto the appropriate write channel.

This organization provides very high register bandwidth
with low overhead, potentially allowing the entire contents
of the register file to be read and written in each cycle.
It also leads to a counter-clockwise flow of data through
the reconfigurable cluster, similar to the structure found in
PipeRench [5]. Each register has a write enable input driven
by the array control unit (ACU).

The segmented and circular nature of the reconfigurable
cluster significantly reduces the length of the longest wire
that a signal must traverse in a single clock cycle, which
helps reduce the effects of wire delay on clock cycle time.
Also, to help reduce the effects of wire delay for the ACU,
which handles all control and configuration for the entire
RC, we have situated the ACU in the center of the four
segments.

Communication between logic blocks occurs over a set of
horizontal and vertical wires (HWIREs and VWIREs). Each
logic block has a dedicated VWIRE that it may drive, which
is visible to the 8 rows of logic blocks directly below it, ensur-
ing that each row of logic blocks can communicate directly
with at least one row in the next segment. As shown in Fig-
ure 3, HWIREs run in channels between rows of a segment
and span the entire width of the segment. The pattern of
HWIREs between two rows can be configured to allow any
logic block to read the output of any of the logic blocks in
the row above it. In addition, each VWIRE can be con-
figured to drive one of the HWIREs in each row that the
VWIRE crosses to broadcast its value across the row, and

201

Register Bank 0

Register Bank 1

LB LB LB

LB LB LB

LB LB LB

LB LB LB

LB LB LB

LB LB LB

LB LB LB

LB LB LB

RCHs(i)

WCHs(i)

RCHs(31)

WCHs(31)

col(31) col(0)

RCHs(i)

WCHs(i)WCHs(0)

RCHs(0)

WCHs(0)

RCHs(0)RCHs(31)

WCHs(0)

col(i)

32

32

32

32

32

32

32

32

8 8 8

8 88

8 8 8

HWIREs

HWIREs

HWIREs

HWIREs

HWIREs

HWIREs

HWIREs

HWIREs

V
W

IR
E

s

V
W

IR
E

s

V
W

IR
E

s

"input bank"

"output bank"

Figure 3: Detailed view of an RC segment, illustrat-
ing the routing resources

the HWIRE’s in the first row of a segment can be set to
drive the read channels in the segment, creating a broadcast
mode that makes the value on an HWIRE visible to every
logic block in the segment. Finally, a local feedback network
connects each logic block’s output to its two nearest neigh-
bors on either side, allowing propagation of data across a
row. This set of wiring resources provides a very flexible set
of communication paths within the array, allowing a large
set of applications to be efficiently mapped onto the array.

3. DESIGN OF THE RECONFIGURABLE
CLUSTER

In the last section, we described the architecture of Amal-
gam’s reconfigurable clusters at a high level. We now pro-
ceed to cover the design of selected elements of the recon-
figurable cluster in more detail, including the translation of
the architecture into circuit-level designs and layout.

3.1 Logic Block
As shown in Figure 4, Amalgam’s logic blocks (LBs) con-

sist of a four-input lookup table (LUT), a data register
(DREG) that latches the output of the LUT, input and out-
put multiplexors, and optimized carry chain logic. The four-
input LUT was selected because 4-LUTs have been shown
to allow area-efficient mappings of a wide range of circuits
[14]. However, our carry chain design required that the logic
block be able to generate multiple outputs. To accommo-
date this, the 4-LUT is implemented as a pair of 2-LUTs and
a 3-LUT, which can either be configured as a single 4-LUT
or as separate LUTs to generate the values required by the
carry chain.

The initial design of the logic block called for eight modes

4-LUT

A

input crossbar

optimized carry chain

B D

0

1

2

3

C

OUT

COUT CIN

global clk

INV

input muxes

secondary
signals

DREG
R
S

CE Q

D

Figure 4: High-level view of the LB

of operation: registered and non-registered versions of com-
binational, arithmetic, ALU, and shortcut (pass-through)
operation. After implementing the fast carry chain, it be-
came apparent that two types of arithmetic and ALU modes
were required: ones that utilize the carry chain to perform
wide computations and ones that use a ripple carry for com-
putations on small bit widths. This brings the total number
of modes of operation of the LB to 12, registered and non-
registered versions of each of the following:

• LBM ARITH: Arithmetic mode. The 4-LUT is split
into two 3-LUTs to compute the sum and carry in
parallel. The LUTs are indexed using the a, b, and
c inputs. Carry-ins are provided via the carry-select
carry chain or can be an arbitrary value, depending on
the programming.

• LBM RARITH: Arithmetic mode w/ripple chain. The
same as LBM ARITH mode, but using the ripple carry
chain instead of the fast carry chain.

• LBM ALU: ALU mode. The same as LBM ARITH
mode, but the d input controls the inversion of the
b input to implement both addition and subtraction
with the d input being the operation select.

• LBM RALU: ALU mode w/ripple chain. The same as
LBM ALU, but using the ripple carry chain.

• LBM COMB: Combinational mode. The a, b, c, and
d inputs are used as indices into the 4-LUT.

• LBM SHORTCUT: Shortcut mode. Drives the d in-
put onto the output of the LB. This mode is used for
HWIRE to VWIRE routing.

3.2 Carry-select Carry Chain
The reconfigurable cluster is intended to support compu-

tations, and is therefore optimized for multi-bit operations.
A key part of this optimization was the decision to include

202

LB0LB1LB2LB3LB4LB5LB6LB7LB8LB9LB10LB11LB12LB13LB15 LB14

carry-in

carry-outs

Figure 5: Block diagram of the carry-select carry chain

two fast 16-bit carry chains in each row of the array, which
can be used to either implement two parallel 16-bit opera-
tions in one cycle or a 32-bit operation with a latency of two
cycles. Two 16-bit carry chains were used instead of a single
32-bit chain because we believed that it was unreasonable
to expect to perform a 32-bit operation in one clock cycle,
an assumption that was supported by our circuit studies.

Implementation of the carry chain required that the 4-
LUT be split into two 2-LUTs and one 3-LUT, as mentioned
in the previous section. One 2-LUT, which we will call the
C1 2-LUT, calculates the carry-out assuming the carry-in
will be a logic 1. The C0 2-LUT, in turn, calculates the
carry-out assuming the carry-in will be logic 0. These results
are propagated to the next LB’s carry chain hardware, which
calculates its carry-outs based on these two predicted carry-
ins using a 2-to-1 multiplexor. These chains create several
short adders (of increasing length) from the 16-bit half-row
of LBs. These short adders execute in parallel, with the
output being selected by the previous short adder’s carry-
out. For our circuit, short adders of length 1, 3, 5, and 7
were optimal for our multiplexor delays.

The 16-bit carry chain can be split into smaller bit lengths
via programming bits. Carry chain splits can be made at
the short adder boundaries and each short adder can be ex-
tended by one bit by including the most significant bit of
the previous short adder in its chain. This allows for sev-
eral lengths of adders, most notably two 8-bit computations.
Additional computation lengths beyond the splits between
the short adders can be also implemented by using a com-
bination of the ripple carry chain and the carry-select carry
chain, but are limited by the latency of the ripple carry
chain. Our current timing estimates show that a 3-bit rip-
ple carry chain has the same latency as a 16-bit carry-select
carry chain.

3.3 Input Multiplexor and Crossbar
Four input multiplexors (muxes) and a crossbar allow the

logic block to select its inputs from among the routing re-
sources available to it. The crossbar is necessary because
the 4-LUT in each logic block is implemented as two 2-LUTs
and a 3-LUT. In modes where these smaller LUTs operate
independently, the crossbar allows the inputs to the logic
block to be routed to the LUT that needs them. Initially,
the design of the RC allowed each input mux to select from
any of the 32 HWIREs in the row above it as well as the
read channels and VWIREs in its column. This led to a
total of 46 inputs at each mux, making them unacceptably
large. To reduce multiplexor area, the number of HWIRE
inputs to each mux was reduced from 32 to 16, lowering the
total number of inputs to 28 (16 HWIREs, 2 VWIREs, 8
read channels, and 2 local feedback connections).

To determine the subset of 16 HWIREs available to each

input mux, we tested our cycle-accurate Amalgam simu-
lator, amalsim, with several different possible input mux
configurations and chose the best from these. Each config-
uration required that two of the four input muxes are able
to select each HWIRE, so that each HWIRE could be con-
nected to an alternate input mux if any routing conflicts
occurred in one input mux.

The four outputs from the input muxes are passed into
the crossbar, which selects the final inputs into the LB. In
addition to selecting from the input mux outputs, the cross-
bar can also select from a logic 0 or 1, the ripple-carry in,
and a feedback loop from the LB’s DREG to be driven on
any of the LUT’s a, b, c, or d inputs. The crossbar also
includes logic to invert the b input into the LUTs in ALU
mode and a bypass mux for the carry-select carry-in.

�����

� � � �	 ����
 �

� ���� ���� � ����

� � �

� � � � � � � �

Figure 6: Crossbar design, with the selective invert-
ing of the b input and selection of carry-in

Our circuits use a transmission gate architecture because
we felt that the stronger signal propagation provided by
transmission gates was more critical than the area savings
that would have been achieved through the use of nmos-only
pass gates. In spite of this, buffers are still required at sev-
eral points in the logic block (generally every three or four
transmission gates) to provide sufficient drive strength. An
example of this can be seen in Figure 6.

3.4 Register File
As described earlier, the register file in each RC is divided

into four banks of eight registers, which are interleaved with
the segments of the reconfigurable array. Each column in
the array has access to the values in the corresponding bits
of each register in the bank above it and can write the corre-
sponding bits of registers in the bank below it. To support
this architecture, the register file is divided into columns,
and each column is pitch-matched to a column of the ar-
ray. The structure of each column of a register file bank is
shown in Figure 7. The eight register bits in the column
are organized into two rows of four bit cells to match the

203

width of the logic block. Write channels enter the column
from above, and the outputs of the column are continuously
driven onto the read channels. Control bits from the ACU
allow it to determine when each register is written, and a
data channel allows the ACU to read and write one register
in each bank per cycle.

��� ��� ��� ���

��� ��	 ��
 ���

� ������

������� ��� ��������� �

��� � � ��� ��������� �

! � �"#�$���

Figure 7: One column of a register file bank

Each of the 32 registers in a cluster is implemented as 32
flip-flops with set and reset capabilities. This allows initial-
ization of the register file and control from the ACU. The
ACU can also initialize the register file with arbitrary values
by initiating register transfers to each of the registers one at
a time.

3.5 Array Control Unit
The array control unit (ACU) controls all computation

and configuration in the RC. It is composed of four main
parts: the fixed control unit (FCU), the programmable con-
trol unit (PCU), the network interface controller (NIC), and
the configuration cache (CC). The FCU controls reconfigu-
ration of the array and all register-based communication.
The PCU drives several control signals into the array: the
read/write wires to the register banks, the set/reset wires to
the DREGs, and a subset of the HWIREs. The NIC is the
interface for the RC to the intercluster network and the CC
stores configurations to support run-time reconfiguration of
the array.

Due to its irregular structure, the ACU is the one compo-
nent of the RC that we have not performed a circuit-level
design of by hand. Instead, the ACU is currently being
implemented in Verilog for synthesis down to a gate-level
design. We expect that the ACU will be the component of
the RC most likely to change as we continue our studies of
Amalgam; implementing it in Verilog will allow us to im-
plement these changes much more quickly than would be
possible in a full circuit-level design.

3.6 Programming the RC
One of the major design issues in reconfigurable systems

is the method by which configurations are loaded into the
reconfigurable fabric. Programming bits are required for
configuring routing between VWIREs and HWIREs, read-
ing data off of the RCHs, and configuring the LB’s inner
components, the LUTs and crossbar.

There are several methodologies for programming described
in [3]. Each methodology revolves around one of two cen-
tral ideas: modeling the programming bit registers as a long
shift register and modeling them as a parallel loading regis-
ter. Most architectures find a compromise between the two,
balancing the lengthy programming times of the shift ap-
proach and the area requirements for the parallel approach.
Our programming bit registers for each LB are simple D
flip-flops connected in a chain, similar to a shift register or a
scan chain. These flip-flops are located throughout the LB.
Each LB has 32 pbits for its configuration and 20 pbits for
routing the LB result for a total of 52 pbits per LB.

As illustrated in Figure 8, we have intelligently positioned
the programming bits within the shift registers to allow one
portion of the configuration to be changed without changing
the entire RC configuration, to reduce configuration times
if only the contents of the LUTs need to change. The first
programming bits in the shift register are the LUT memory
bits, which can be changed by only activating the clock to
their shift registers and feeding them with data from the
ACU. Our study of run-time reconfiguration in this archi-
tecture is just beginning, but we expect that this feature
will help reduce the overhead of reconfiguring the array at
run-time.

%'&�(*)�+-,/.�0 1 %'243 5-6'7 8/)�7:9

;=< >@? ;=< >BA

C�2�3 (
D�+:E

C�2�3 (
D�+:E

C�2�3 (
D�+:E

C�2�3 (
DF+ E

C�2�3 (
DF+ E

C�2�3 (
DF+ EG

H
&

Figure 8: Example of a programming bit register
chain such that a subset of the registers can be re-
configured without changing the entire set

Programming bits are propagated to the programming bit
registers in the LBs via wires from the ACU. These wires
are driven by shift registers in the ACU whose contents are
loaded out of the configuration cache. These ACU shift
registers are loaded with programming bits from the con-
figuration cache (CC) prior to programming the RC. This
configuration architecture allows the array to be configured
very quickly as long as the desired configuration is in the
configuration cache, with reconfiguration time being limited
only by the number of programming bits in each logic block.

3.7 Layout
Because Amalgam is a high-performance architecture, we

chose to layout the reconfigurable cluster by hand using Ca-
dence Virtuoso. We did not feel that we could achieve either
the performance or the area required by the RC with a syn-
thesized design. As mentioned above, the ACU is the one
exception to this because of its irregular structure and the
expectation that its design will change over time. To per-
form our layout, we used the NCSU Cadence Design Kit [1]
for their design rules for the TSMC 180nm technology.

The regular structure of the RC helped laying it out im-
mensely. Since the RC is primarily an array of LBs, most
of the time in the layout phase was devoted to design of the
LB. A complete layout of the LB annotated with the floor-
plan can be seen in Figure 9. It is worthwhile to note that
despite reducing the number of inputs into the input muxes,
the four of them still take up nearly half of the area of the

204

��������� �
	

�� �
���
����� � �

� �
������� � �

� �
�������������

����� ��

Figure 9: Floor-plan of the LB overlayed on top of
its layout

total LB. We have created a full layout of the RC without
the ACU in a 180nm process, the results of which will be
discussed in the next section.

3.8 Results
We have created a full circuit schematic and layout of the

entire RC except for the ACU. SPICE simulation of this
schematic has provided us with accurate estimates of the
latencies and power requirements of each component in the
RC, while the hand layout has given us a good idea of the
area required. An annotated layout of one segment of the
RC can be seen in Figure 10. Table 1 gives a breakdown of
the area required for each component of the segment. The
worst case power consumption for a single row is 27.79mW,
in the case that all logic blocks are switching simultane-
ously every clock cycle, which leads to a worst case power
consumption for the entire array of 0.889W. We are plan-
ning to run simulations to determine an average case power
consumption for the array.

It is useful to compare the chip area required for the pro-
grammable and reconfigurable clusters to determine whether
the reconfigurable clusters provide enough performance ben-
efit to justify their area cost. Using the methods described
in [7], we estimate the area of a programmable cluster to be
6.26 mm2, approximately half of the 11.34 mm2 required for
a reconfigurable cluster.

Through simulation in HSPICE, we have obtained esti-
mates of latencies in the RC, a selection of which are shown
in Table 2. A 16-bit addition, the main component of the
RC’s clock period, has been found to have a latency of

�! #"#$&% '

(#)+* ,#-/.

(#)+* ,#-10

(#)+* ,#-/2

(#)+* ,#-/3

(#)+* ,#-/4

(#)+* ,#-/5

(#)+* ,#-/6

(#)+* ,#-/7

8!9;: <>=@? ACB>D

Figure 10: Layout of one segment from the recon-
figurable cluster in 180nm

Component Area for % of Tot.
Name Each (mm2) RC Area

RC 11.35 100
RC Segment 2.27 80

LB 8.58e-3 77.44
Bit Reg. 5.35e-5 25.11

ACU (est.) 2.27 20
Reg. Bank 5.95e-2 8.39

Carry Chain 1.26e-3 0.71

Table 1: Layout-extracted component area values
and their percentage of the total area of the RC in
180nm

18.29 FO4 delays. This is in line with the cycle times of
recent Intel processors, which have ranged from 12-20 FO4
delays [11]. However, future programmable processors are
expected to include much less logic than current designs in
each pipeline stage, leading to greater increases in clock rates
than would be caused by technology scaling alone. The next
section will describe the impact that this scaling has on the
performance of our architecture.

We chose to add the carry-select chain because we believed
that it would increase performance greatly at a negligible
area cost. Our simulations in HSPICE showed that a 16-bit
add required 18.29 FO4 delays with the carry-select chain
and 77.83 FO4 delays with the ripple chain, a 76.5% im-
provement in performance. The carry-select logic only com-
prised of 0.71% of the total RC area, which we considered
an acceptable usage of area, considering the performance
benefits.

4. IMPACT OF TECHNOLOGY SCALING
ON AMALGAM’S RC

We have now presented a design for the Amalgam recon-
figurable cluster and described its performance, as designed
in 180nm technology. A large body of research has been
done to determine the effects that technology scaling has

205

Component Latency (FO4)
Carry-select 16-bit ADD 18.29
Ripple-carry 16-bit ADD 77.84

LB (COMB Mode) 9.55
LB (COMB SEQ Mode) 13.70
LB (SHORTCUT Mode) 3.04

VWIRE 0.37
HWIRE 0.63

RCH 0.37

Table 2: HSPICE simulated values for FO4 delays
of several components of the RC in 180nm

on circuit design; some of these challenges are discussed in
[2] and [10]. One of the main difficulties of technology scal-
ing is the discrepancy of latency scaling between wires and
transistors. Wire delay is becoming the bottleneck in high
performance circuit designs. We will now study the effect
that technology scaling has on the performance of the RC,
and its effect on the performance of Amalgam.

To begin technology scaling of the RC, we assume that
the latency of the RC’s clock cycle will continue to be de-
termined by the critical path through the traversal of an
HWIRE, VWIRE, RCH, and a 16-bit add. This path has
been determined to have a latency of 19.96 FO4 delays in
180nm technology through simulations in HSPICE. The 16-
bit add’s latency is the majority of the total path’s latency,
accounting for 18.29 FO4 delays. For our technology scal-
ing studies that follow, we assume that the 16-bit add’s la-
tency only increases slightly in future technologies, due to
the traversal of the carry chain. This is a good assumption,
as FO4 delays are technology independent. High-level inter-
connects, including the intercluster communication network,
VWIREs, HWIREs, etc., have been scaled using the models
in [17] with the future technology parameters found in [13].
The interconnect latencies increase the critical path of the
RC from 19.96 FO4 delays in 180nm to 27.57 FO4 delays in
22nm.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Number of Clusters (Half RCs)

R
e

la
ti

v
e

 E
x

e
c

u
ti

o
n

 T
im

e

180nm

130nm

90nm

65nm

45nm

32nm

22nm

Figure 11: Average multicluster speedup over future
technologies

To estimate the clock rate of the programmable clusters
in each technology, we used the values presented in the
2001 International Technology Roadmap for Semiconduc-
tors (ITRS) [12]. Relative cycle times of the programmable
and reconfigurable clusters were estimated by converting the
cycle times given in the ITRS to FO4 delays, as shown in
Table 3. Our FO4 delays for future technologies were esti-
mated as 500 picoseconds times the transistor’s drawn gate
length, which is a worst case estimate. This model of FO4
delays appears to be accurate model of worst case FO4 delay
through devices with drawn dimensions of 18nm [10].

We used our delay findings to model an Amalgam’s per-
formance in future technologies in our Amalgam simulator,
amalsim. To model the increased latency of the RC with
respect to the PC, we scaled the clock frequency of the RC
using the RC/PC ratios found in Table 3. We accounted
for the network latency by introducing multicycle transfers
across the network, the number of cycles being determined
by the technology.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

0 1 2 3 4 5 6 7 8 9

Number of Clusters (Half RCs)

S
p

e
e

d
u

p

180nm

130nm

90nm

65nm

45nm

32nm

22nm

Figure 12: Average speedup of Amalgams with RCs
over 1 PC in future technologies

To compare performance across all of the future technolo-
gies, we used a standard set of benchmarks which we have
developed for the Amalgam architecture. The benchmarks
we include are Dither, Rijndael, nQueens, and DNA. Dither
uses Floyd-Steinberg error diffusion to convert a 512x512
pixel image from 24-bit RGB format into an 8-bit/pixel one.
Rijndael is an implementation of the AES block encryption
algorithm using a block size of 128 bits and 10 iterations over
a sequence of 512 blocks. nQueens determines the number of
arrangements of N queens on an NxN chessboard such that
none of the queens can capture any of the others in a sin-
gle move. DNA uses a dynamic programming algorithm to
compute the edit distance between two sequences of genetic
information. All of these benchmarks were hand-coded in
assembly language.

Figure 11 shows how the execution time of our bench-
marks scales with the number of clusters used in each of the
fabrication technologies. This graph shows that the overall
performance of clustered programmable-reconfigurable pro-
cessors will improve significantly in future fabrication pro-
cesses, although an increasing fraction of that performance

206

Gate PC Clock Delay of PC Cycle RC Cycle RC/PC Delay RC Eff. Clock
Length (nm) Freq. (GHz) FO4 (ps) Delay (FO4) Delay (FO4) Ratio Freq (GHz)

180 0.75 90 14.81 19.96 1.35 0.56
130 1.68 65 9.14 19.53 2.14 0.79
90 3.99 45 5.57 20.60 3.70 1.08
65 6.74 32.5 4.57 21.36 4.68 1.44
45 11.51 22.5 3.86 22.74 5.89 1.95
32 19.35 16 3.23 24.39 7.55 2.56
22 28.75 11 3.16 27.57 8.72 3.30

Table 3: Projected cycle delays and frequencies for the PC and RC

will come from cycle time improvements instead of paral-
lelism. While this result was not unexpected given the grow-
ing importance of wire delays, it is a strong motivation for
research into techniques to minimize the amount of commu-
nication required during program execution.

Figure 12 shows how the speedup of a full Amalgam pro-
cessor over a processor with a single programmable clus-
ter will change as fabrication technologies improve. As ex-
pected, total speedups decline as technology advances, due
to the impact of wire delays and the fact that merely im-
plementing our reconfigurable cluster in future technologies
will not allow its clock rate to scale to match expectations
for future programmable processors.

In past publications, we have shown how an Amalgam
processor composed of RCs and PCs performs much better
than an Amalgam composed of solely PCs. In Figure 13,
we compare the performance of an 8-cluster PC Amalgam
with an 8-cluster PC/RC Amalgam. In current technologies,
our previous findings hold true, but in future technologies,
we find that the PC Amalgam performs better with the
crossover point being right at the 65nm technology.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

180 130 90 65 45 32 22

Process Technology (nm)

R
el

at
iv

e
E

xe
cu

ti
o

n
 T

im
e

8-Cluster PC
8-Cluster PC/RC

Figure 13: Comparison of average execution times
of an 8-clustered Amalgam composed of PCs and an
8-clustered Amalgam of PCs and RCs over future
technologies

We attribute this result to the fact that our RC scal-
ing does not take into account any pipelining support and
that the estimates in the ITRS for future clock rates are
extremely aggressive. Matching the predictions in the ITRS
requires that the clock period of a programmable cluster de-
crease to 3.16 FO4 delays in 22nm processes. Results from

[11] indicate that reducing clock periods to less than 6 to 8
FO4 delays per cycle hurts overall performance, leading us
to believe that programmable processor clock rates will not
scale at the rates predicted by the ITRS.

5. PIPELINING
Achieving predicted clock rates for programmable proces-

sors in advanced fabrication processes will require increas-
ing pipeline depths to reduce the amount of work performed
in each stage. As we have seen in the previous sections,
this will lead to an increasing clock-rate gap between the
programmable and reconfigurable clusters if the current re-
configurable cluster design is merely re-implemented in each
fabrication process. In this section, we present a pipelining
scheme for the reconfigurable cluster that will reduce this
gap in clock rates.

5.1 Clock Rate Limitations in the Original RC
In the baseline reconfigurable cluster design, the output

D-flip-flop (DFF) in each logic block provides a natural
mechanism for pipelining computations. Using the DFFs
in each row of logic blocks as pipeline latches, we can de-
rive maximum clock-rates for our design in two ideal cases:
the case where the computation in each stage is performed
within a single logic block, and the case where each pipeline
stage makes use of the carry chain to perform a 16-bit com-
putation. In both cases, the maximum clock rate of the RC
is equal to the time to perform the computation in a pipeline
stage plus the longest possible wire delay to the input of the
next stage.

The longest inter-stage communication path in our design
goes from the output of a logic block, through a VWIRE,
a HWIRE, and a read channel (RCH). HSPICE simulations
with logical effort techniques [15] have determined that the
delay along this path is 1.7ns for our design when imple-
mented in a 180nm process1.

In the case where each logic stage’s computation is per-
formed within a single logic block, the minimum clock cycle
time is 1.7ns (interconnect) + 0.5ns (input mux) + 1.108ns
(crossbar/LUT) = 3.308ns. If we assume that each pipeline
stage contains a single 16-bit computation using the embed-
ded carry chains, the cycle time becomes 1.7ns (intercon-
nect) + 2.121ns (16-bit add) = 3.821ns (263MHz).

1This value includes the setup and hold times for the logic
block’s output DFF, as well as the delays of the buffers re-
quired in the signal path. The numbers given previously
for HWIRE, VWIRE, and RCH delays considered only the
actual propagation delays along these wires, for technology
scaling purposes.

207

5.2 Pipelined RC Architecture
We pipeline the reconfigurable cluster by adding two sets

of flip-flops to the design: one set that breaks up all delays
longer than the delay through a logic block into multiple
cycles, and another set that provides retiming at logic block
inputs to handle cases where the inputs to a logic block take
different numbers of cycles to arrive.

5.2.1 Pipelining Long Delays
As described above, our worst-case interconnect delay is

fairly close to the time required to perform a 16-bit addition
in the RC. Therefore, our first attempt at pipelining the RC
will be to add pipelining latches at the output of each logic
block’s input multiplexers, breaking the longest path into
two cycles: one for interconnect delay and input multiplex-
ing, and one for computation. Placing the pipeline flip-flops
on the outputs of the input multiplexers rather than the
inputs significantly reduces the number of latches required
to implement this pipelining. With this change, the mini-
mum cycle time of the RC becomes 2.8ns when performing
a 16-bit addition in each stage.

To further reduce the minimum cycle time, we need to
pipeline both the interconnect and 16-bit computations that
use the carry chain. Adding flip-flops to the C0 and C1
outputs as well as the carry out of each logic block allows us
to partition a 16-bit add into two operations with latencies of
1.504 and 1.617ns (including the flip-flop delay). Similarly,
we can pipeline our interconnect delays by adding flip-flops
at the junctions between VWIREs, HWIRES, and RCHs.
These flip-flops serve two purposes: they allow wire delay to
be pipelined across multiple cycles, and they insulate paths
from the resistance and capacitance of segments that they do
not use. With this set of pipeline latches, the interconnect
becomes capable of supporting clock periods down to 1.7ns
in our 180nm process.

5.2.2 Retiming
With all large delays pipelined, the target clock period

becomes 1.75ns, the delay from the input flip-flop of a logic
block to its output register, giving a clock rate of 570 MHz.
However, adding these pipeline latches to our design creates
problems for the designer, because different inputs to a logic
block may now take different numbers of cycles to reach the
logic block. To address this, we add a set of retiming latches
to each input of the logic block, which are configured as a
variable-length FIFO queue.

Because of the reconfigurable cluster’s segmented struc-
ture, rows of logic blocks near the top of each segment tend
to need less retiming than rows near the bottom, as they are
more likely to read their inputs from the register file. There-
fore, we use two different configurations of retiming registers.
The top four rows in each segment have five retiming flip-
flops on each input, while the bottom four rows have seven
retiming flip-flops on each input. Since logic blocks in the
top rows will occasionally require large numbers of retiming
registers, our architecture allows each input an LB in one of
these rows to “borrow” up to two flip-flops from the adja-
cent input’s retiming chain if they are not needed by that
input.

The final logic block architecture is shown in Figure 14.
By adding pipelining to the reconfigurable array, we are

able to significantly reduce the number of FO4 delays in each
clock cycle at the cost of some increase in the number of cy-

Figure 14: New LB Architecture

cles required to perform a computation. Each path through
the array can be pipelined independently, and our pipelining
scheme isolates pipelining overheads so that paths that do
not require pipelining do not see the delay of the retiming
flip-flops. The area cost of pipelining was also a major factor
in our design. Adding these flip-flops to the reconfigurable
cluster will increase the area of each segment of the array by
25% and the total area by 20%. We believe that the clock
rate increases made possible by these pipelining techniques
will allow the reconfigurable cluster to achieve significantly
better performance in future fabrication processes than the
base design. We are currently porting our benchmarks to
take advantage of pipelining, and expect to have applica-
tion results in the near future.

6. RELATED WORK
Clustered multiprocessors have been shown to be a suc-

cessful alternative to traditional programmable processor
designs. Amalgam builds on this success with the addition
of reconfigurable logic in the form of reconfigurable clusters.
The integration of programmable and reconfigurable logic
has been attempted in Garp [9] and Chimaera [18]. The row-
based design of the reconfigurable cluster is based heavily off
of the architecture of Garp. Inclusion of fast carry chains
in reconfigurable logic to increase performance of arithmetic
options has also been investigated by the Chimaera project
[8].

Pipelined reconfigurable computing systems have varied
from coarse-grain to more flexible fine grain architectures.
RaPiD [4] is a 1-dimensional linear pipeline. The datapath is
formed by a row of coarse-grain word-based functional units
connected to a programmable interconnect with a variable
configurable length. PipeRench [5] is another coarse-grain
architecture that organizes its functional units into multiple
rows, or stripes, consisting of 8 bit ALUs, registers and a
local communication interface. Similar to Amalgam’s RC,
global communication is performed by a vertical global bus
which gives the architecture a direction of computational
flow.

208

7. FUTURE DIRECTIONS
Despite having a nearly complete RC design, we are still

actively researching improvements on Amalgam’s RC de-
sign. Runtime reconfiguration offers a large advantage over
traditional systems, but is limited by long reconfiguration
latencies. In order to support quick reconfigurations, we are
currently investigating techniques for configuration caching.
After the design for the RC is finalized, the ultimate goal
is to have Amalgam and its RCs fabricated onto a chip.
This drove the selection of tools for our implementation as
described in this paper. We are also developing a suite of
tools to automatically compile standard C-code to the re-
configurable clusters.

8. CONCLUSIONS
In this paper, we have presented a design for Amalgam’s

reconfigurable cluster. We have described several key com-
ponents of the reconfigurable cluster in detail, namely the
logic block, the fast carry chain, the register file, and a
method of programming the reconfigurable cluster. We have
also shown that Amalgam reconfigurable cluster’s perfor-
mance will change in future fabrication technologies.

Our results from our technology scaling study show that
reconfigurable cluster performance will remain superior to
programmable cluster performance on near future technolo-
gies, but will lose its performance margin in the distant fu-
ture. A redesign of the reconfigurable cluster will be needed
for it to maintain its substantial edge over the programmable
cluster. Adding pipelining support for the reconfigurable
cluster will improve its performance and allow for better
scaling in future technologies, which we have also detailed
in this paper.

9. ACKNOWLEDGMENTS
This work was funded by the Office of Naval Research un-

der award number N00014-01-1-0824. Any opinions, find-
ings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily
reflect the views of the Office of Naval Research.

10. REFERENCES
[1] NCSU Cadence Design Kit.

http://www.cadence.ncsu.edu/.

[2] S. Borkar. Design Challenges of Technology Scaling.
Proceedings of the International Symposium on

Microarchitecture, 19(4):23–29, July 1999.

[3] P. Chow, S. O. Seo, J. Rose, K. Chung,
G. Paez-Monzon, and I. Rahardja. The Design of a
SRAM-Based Field-Programmable Gate Array–Part
II: Circuit Design and Layout. IEEE Transactions on

VLSI Systems, 7(3):321–330, Sept. 1999.

[4] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and
C. Ebeling. Architecture Design of Reconfigurable
Pipelined Datapaths. In Proceedings of the Twentieth

Anniversary Conference on Advanced Research in

VLSI, pages 23–40, 1999.

[5] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu,
S. Cadambi, R. R. Taylor, and R. Laufer. PipeRench:
A Coprocessor for Streaming Multimedia Acceleration.
In Proceedings of the International Symposium on

Computer Architecture, pages 28–38, 1999.

[6] D. B. Gottlieb, J. J. Cook, J. D. Walstrom, S. Ferrera,
C.-W. Wang, and N. P. Carter. Clustered
Programmable-Reconfigurable Processors. In
Proceedings of the IEEE International Conference on

Field-Programmable Technology, pages 134–141. IEEE,
Dec. 2002.

[7] S. Gupta, S. W. Keckler, and D. Burger. Technology
Independent Area and Delay Estimates for
Microprocessor Building Blocks. Technical Report
2000-05, Department of Computer Sciences, The
University of Texas at Austin, 2000.

[8] S. Hauck, M. M. Hosler, and T. W. Fry.
High-Performance Carry Chains for FPGA’s. IEEE

Transactions on VLSI Systems, 8(2):138–147, Apr.
2000.

[9] J. R. Hauser and J. Wawrzynek. Garp: A MIPS
Processor with a Reconfigurable Coprocessor. In K. L.
Pocek and J. Arnold, editors, IEEE Symposium on

FPGAs for Custom Computing Machines, pages
12–21, Los Alamitos, CA, 1997. IEEE Computer
Society Press.

[10] R. Ho, K. W. Mai, and M. A. Horowitz. The Future of
Wires. Proceedings of the IEEE, 89(4):490–504, Apr.
2001.

[11] M. Hrishikesh, N. P. Jouppi, K. I. Farkas, D. Burger,
S. W. Keckler, and P. Shivakumar. The Optimal Logic
Depth Per Pipeline Stage is 6 to 8 FO4 Delays. In
Proceedings of the 29th Annual International

Symposium on Computer Architecture, pages 14–24.
IEEE, May 2002.

[12] The International Technology Roadmap for

Semiconductors 2001. Semiconductor Industry
Association, 2001.

[13] The International Technology Roadmap for

Semiconductors 2002 Update. Semiconductor Industry
Association, 2002.

[14] J. Rose, R. J. Francis, D. Lewis, and P. Chow.
Architecture of Field-Programmable Gate Arrays:
The Effect of Logic Block Functionality on Area
Efficiency. IEEE Journal of Solid-State Circuits,
25(5):1217–1225, Oct. 1990.

[15] I. Sutherland, B. Sproull, and D. Harris. Logical

Effort: Designing Fast Cmos Circuits. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

[16] J. D. Walstrom. The Design of the Amalgam
Reconfigurable Cluster. Master’s thesis, University of
Illinois at Urbana-Champaign, 2002.

[17] S.-C. Wong, G.-Y. Lee, and D.-J. Ma. Modeling of
Interconnect Capacitance, Delay, and Crosstalk in
VLSI. IEEE Transactions on Semiconductor

Manufacturing, 13(1):108–111, February 2000.

[18] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee.
CHIMAERA: A High-Performance Architecture with
a Tightly-Coupled Reconfigurable Functional Unit. In
Proceedings of the International Symposium on

Computer Architecture, pages 225–235, 2000.

209

	Main Page
	FPGA04
	Front Matter
	Table of Contents
	Author Index

