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ABSTRACT

In this paper we present an access control framework that
provides flexible security granularity for XML documents.
RDF statements are used to represent security objects and
to express security policy. The concepts of simple secu-
rity object and association security object are defined. Our
model allows to express and enforce access control on XML
trees and their associations. Access control rules, corre-
sponding to (s, 0, +a) triples, are represented as RDF state-
ments with properties access type, user, and object. A his-
tory file is maintained for each user that allows decision-
making using temporal data.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion - security, integrity and protection; D.4.6 [Operating
Systems]: Security and Protection - Access controls

Keywords

Access control, association objects, flexible security granu-
larity, RDF metadata, RXACL, tree extension, XML secu-
rity

1. INTRODUCTION

Web-based applications increasingly rely on eXtensible
Markup Language (XML) [11]. Numerous domains, like
health care and electronic commerce, use semi-structured
and XML data to provide inter-operation among different
systems. Efforts, to view semi-structured and XML data
from the database perspective, have emerged recently [7,
8, 9]. It is necessary to develop access control models that
can efficiently represent application specific security require-
ments for XML data.

Several XML access control models have been developed
recently [4, 5, 6, 14, 16, 21, 26, 27]. They are based on tra-
ditional access control lists and provide extensions to XML

syntax. Existing models allow node-level security granular-
ity by assigning access restrictions to the nodes and links
of XML documents. However, none of these models provide
access control for data associations.

To illustrate the need of access control for data associa-
tions we present an example in the medical domain. Assume
that XML format is used for storing patient records. The
DTD for patients’ health records is shown in Figure 1. Alice,
who is an intern at the hospital, needs limited access to the
database. Her duties involve two main tasks. First, Alice
needs to contact the patients for collecting feedback about
their treatments, thus Alice is allowed to read <name> and
<PhoneNumber> elements. Second, Alice needs to prepare
statistical reports based on Age, Race and Diagnosis of the
patients. For this, Alice is needs to access both contact and
diagnosis information of all patients. However, Alice should
not be able to access data about the name and diagnosis
of the patients together. The functionality requirements of
Alice’s work and the security restrictions cannot be both
satisfied using traditional access control list-based methods.
It is possible to combine results from multiple queries to dis-
close disallowed data. For example, Alice may use unique
identifiers, like database keys, to associate data from differ-
ent queries and disclose patient diagnosis information.

Existing XML access control models do not consider data
associations. For example, XACML [28, 27] allows use of
conditions, obligations or provisions for accessing data. Al-
though, XACML could be extended with additional secu-
rity modules for keeping track of history and combining
answers to express association-based restrictions, this ap-
proach would be cumbersome. Access control models that
provide intuitive and efficient representation of data associ-
ations need to be developed.

In this paper we present an access control model that
provides flexible access control granularity by allowing se-
curity classification of XML nodes and subtrees (simple se-
curity objects), and associations among nodes (association
security objects). Intuitively, an association security object
is an XML subtree that is disallowed to be accessed by a
user, while all of its constituent elements are permitted sep-
arately. We assume that the answers to XML data requests
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We use Resource Description Framework (RDF) [10] state-
ments to express access control requirements. Use of RDF
adds semantic meaning to the statements, increasing the
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<IDOCTYPE patientrecords[
<IELEMENT patientrecords(patient*)>
<IELEMENT patient(ssn,name,phone,age,race,diagnosis*)>
<IELEMENT ssn(#PCDATA)>
<IELEMENT name(#PCDATA)>
<IELEMENT phone(#PCDATA)>
<IELEMENT birthdate(#PCDATA)>
<IELEMENT race(#PCDATA)>
<IELEMENT diagnosis(date,physician,comment* presecriptisn*)
<IELEMENT date(#PCDATA)>
<IELEMENT physician(#PCDATA)>
<IELEMENT comment(#PCDATA)>
<IELEMENT prescription(#PCDATA)>
<IELEMENT allergies(allergen*)>
<IELEMENT allergen(#PCDATA)>
>

(a)

(patientrecord;

2 patienty}———[ ssn

1lagnosis

date
physician

* prescription

i

allergies
* »[allergen

(b)

Figure 1: (a) An example of a DTD (b) Tree representation of DTD

flexibility and expressiveness of our model. In particular,
it provides an intuitive method to express association-based
constraints. Our ongoing work extends the current results
with conflict resolution and limited inference control.

The organization of the paper is as follows. In Section 2
we discuss the proposed security architecture. Section 3
contains the specifications of the RDF based XML Access
Control Language(RXACL). This section also defines the
association security object. In Section 4 we describe the al-
gorithms for security check and tree extension (partial merg-
ing). In Section 5 we give a brief overview of related work.
Finally in section 6 we conclude and suggest future research
work.

2. RDF-BASED XML ACCESS CONTROL
ARCHITECTURE

Figure 2 shows the RXACL architecture for enforcing ac-
cess control for XML documents. The corresponding algo-
rithm is given in Figure 3. The architecture contains three
main components: 1. Query engine, 2. Access Control,
and 3. User history. The XML query engine is responsible
for generating responses to user’s requests. This component
uses an existing XML query engine, development of such
an engine is outside of the scope of this paper. The access
control component evaluates the authorization of the user’s
requests based on the security policy and data previously
released to the user. The history component keeps track of
data released to each user.

When a data request is submitted to an XML query en-
gine, the result and the query are sent to be checked for se-
curity violations. If the security policy is not violated then
the result is combined with data in the user’s history file.
The security check module then checks for violations in the
newly extended trees. If there are no violations detected,
the query answer is returned to the user and the history file
is updated. If a security violation is detected at any phase,
the query is rejected.

An efficient way to check security violations is to work at
schema-level, without considering the actual data. However,
schema-level detection, when considering associations, may
result in incorrect denial of data requests. Data-level access
control will allow higher data availability than schema-level
but increases computational cost. Here, we focus on data-
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level detection.

1.Query
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8 Policy
Security
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History "
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Figure 2: RXACL architecture for enforcing XML
access control

3. DEFINITIONS

This section describes definitions and specification of RX-
ACL. We start with a formal description of node-labeled
trees that we use to represent XML instances, DTDs, and
security objects. To define XML trees, path, and key con-
straints, we use formalism similar to the one described in
Buneman et al. [7, 8, 9].

DEFINITION 3.1. (Labeled tree)
A labeled tree, or a tree, is defined recursively as follows:

1. The empty set {} is a tree, called the empty tree.
2. A single node {n} is a tree.

3. If t1,t2,...,t; are trees, then {n — {t1,t2,...,tx}} is
a tree. In this case we say that {n — {t1,t2,...,tr}}
represents a tree with root node n that has outgoing
edges to subtrees 1,12, ..., k.

The nodes of the trees are labeled. Labels may be actual
facts, node variables (corresponding to any node value), or
path variables (corresponding to any path). Constants cor-
respond to element, attribute and text nodes.



Algorithm 1: RXACL Security Architecture

to the user

and quit
else

and the user’s history file)
using Algorithm 2

and quit

INPUT 1. User’s query @

2. XML document

3. User’s id u

4. Security policy POL

5. User’s history-file Hist (Forest of XML trees received by the user)

6. IC, set of candidate keys that hold on the original document
OouTpPUT Answer to () and update of the user’s history-file or refusal of @
METHOD 1. Generate answer to the user query, call it Answ

2. Use Algorithm 2 to verify that Answ does not contain any subtrees not permitted

3. if disallowed subtree is detected (i.e., Algorithm 2 returns True) then reject Q

(a) Use key constraints to extend (Ug) Hist with Answ (partially merge new answer
(b) For each modified tree in Answ Ug Hist check for existence of disallowed subtree

(c) if disallowed subtree is detected (i.e., Algorithm 2 returns True) then reject @

4. Answer () and update Hist as Hist = Answ Ug Hist

Figure 3: RXACL Security Architecture

A labeled tree is called a ground tree if all of its nodes are
constants.

XML instances and DTDs are ground trees. Node and
path variables are important for defining security objects
and expressing general queries over an XML database.

DEFINITION 3.2. (Path-expression)

A path-ezpression P = {e1 — {e2 = {... = {ex}}}} isa
path, where e; is a node with label that is either a constant,
a node variable, or a path variable.

An absolute path-expression with respect to a tree T', de-
noted as P?, is a path-expression {e; — {ex — {... —
{er}}}}, where e; corresponds to the root node of T

A relative path-erpression originating from a node n;, de-
noted as P7, is a path-expression {ex — {ex — {... —
{er}}}}, where e1 corresponds to n;.

A ground path-ezpression (or ground path) is a path expres-
sion where all e;’s are constants.

We assume that a path traverses only downward in an
XML tree. Path-expressions are used to identify nodes and
subtrees within a tree. For this, we need the notion of path
containment within a tree.

DEFINITION 3.3. (Path Containment)
Let P ={e1 — {e2 = {... = {ex}}}} be a path-expression
and T a ground tree. We say that P is contained in T iff
there exists a mapping v from the symbols of P to the con-
stants and ground paths of T, such that v(P) = {v(e1) —
{v(ez2) — {... = {v(ex)}}}} is a ground path in T. We
require that ¥ maps

1. Every constant e; € P to the same constant,

2. Every node variable e; € P to a single constant in T,
and

3. Every path variable e; € P to a ground path {e}, —

{..={ef,}}}inT.
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Path-expressions are used to express general queries and
protection objects. For security considerations, it is often
required to decide whether a path-expression is contained
at least once in the database or in the query answer. For
this, we say that a ground-tree satisfies a path-expression if
there exists at least one v from the path-expression to the
ground tree.

DEFINITION 3.4. (Satisfaction of Path-Expression)

Let T' denote a ground tree, and P denote a path-expression.
We say that T satisfies a path expression P iff P is con-
tained in 7. The set of mappings vi,vs,...,Vy that maps
P to ground paths P, P;,..., P, in T are called satisfying
mappings. A ground tree T satisfies a set P = {Py,..., Py}
of path expressions, iff T satisfies all path-expressions P;
(i=1,...,k)in P.

Answers for separate queries on XML documents form a
forest of trees. We assume, that these trees can be eztended
(partially merged) only if there are key constraints that al-
low such an extension. The tree extension operation is de-
fined later in Section 4. Intuitively, an XML key means that
there are no two paths in the XML documents that coincide
on the same values and positions. For the combination of
history information and result set, keys are especially impor-
tant, because if two distinct paths agree on all values over a
key, then their subtrees can be extended. XML constraints
and keys have been studied recently by the research group
of Buneman and Fan in [20, 18, 17, 9, 8, 19].

DEFINITION 3.5. (XML Key)
Let T' denote an XML tree. We say that K = (P¢,{p],
..,pr}) is a key of T iff

1. T satisfies the absolute path P“, and



<?xml version="1.0">
<IDOCTYPE patientrecords SYSTEM "patient.dtd">
<patient>
<ssn>123123123</ssn>
<name>Bob</name>
<phone>803-777-4567</phone>
<birthdate>02/03/1965</birthdate>
<race>caucasian</race>
<diagnosis>
<date>01/01/1999</date>
<physician>John</physician>
<comment>Arithritis</comment>
<prescription>Halfprin</prescription>
</diagnosis>
<diagnosis>
<date>03/15/2000</date>
<physician>Joe</physician>
<comment>rheumaoid arithritis</comment>
<prescription>Anakinra</prescription>
</diagnosis>
<allergies>
<allergen>eggs</allergen>
</allergies
</patient>

(a)

patientrecord:

patient »| SSN

123123123

L fRame ] 8o

7 803-777-4567
birthdate |— 02/03/1965
,_7 caucasian

—_ 01/01/1999
— John
Atrithritis

03/15.2000
Joe

rheumatoid arithti

prescription | Anakinra
—>(allergies

[allergen | — ©99°
(b)

Figure 4: (a) Example XML document (b) Tree representation of XML document

2. There are no two distinct nodes e and e, no mappings
v and v where v(P%) ... > e} and V' (P*) =
{...—> €'}, suchthat foralli € 1,...,l {e = {v(p})}}
satisfies {e' — {v'(p})}} (i=1,...,1) and vice versa.

3.1 RXACL Specifications

We recommend a security model that uses RDF state-
ments to express security access control rules. An RDF
statement is a statement describing a resource that can be
identified by Universal Resource Identifier (URI). An RDF
statement comprises of three parts, subject (resource), pred-
icate (property), and object (value). The object of a state-
ment is the value of the predicate. The object may be a
literal or another resource.

There are current efforts [26, 27, 28] to use XML itself
to express access control requirements on XML documents.
While XML provides syntactic constructs to represent data,
RDF provides additional capability for describing data se-
mantics [2]. This means that the properties of the RDF re-
sources can be clearly expressed and relationships defined.
However, using XML only, it is not possible to infer relations
between different elements and attributes without help from
external mechanisms. Also, RDF provides syntax indepen-
dent representation of data semantics.

In our model, access control policy is specified by a set
of RDF statements. The use of RDF allows development
of semantic aware security policies. For example, a security
policy with semantics may be used to detect inconsistent
policies as described by Koch et al. [25]. Also, RDF seems
promising to support syntax-independent policy representa-
tion, as well as express privacy and trust requirements [24].
To the author’s best knowledge, our work is the first, to
attempt to develop a formal access control language using
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RDF. Such a language seems promising to develop security
policies at a higher abstraction level.

In this paper we show how RXACL can be used to repre-
sent the Discretionary Access Control model [1] with flexible
security granularity. We plan to extend our framework to in-
corporate role-based and multilevel access control modules.

We define access control rules as a triple (s, 0, £a), where,
s is the subject, o is a security object, and a is signed access
type. The rule means that subject s is given access %a to
object o.

We use a closed security policy, where all permitted ac-
cesses must be defined. We assume that non-existence of a
positive authorization on an object implies that the user is
disallowed to access the object, resulting in a negative au-
thorization. Explicit denial of access can also be stated in
the form (s,0,—a). The domain of all objects comprises of
all XML nodes and declared associations; i.e., association
objects explicitly defined for the subjects.

Before defining the RDF representation of the security
objects, we need to discuss the granularity of these objects.
Intuitively, we want to ensure that a user is able to access
all authorized information, but nothing more. In the Intro-
duction, we presented an example, showing that assigning
security labels to each XML node may limit data availability.
We propose a model, where protection objects correspond
to simple XML nodes or the association among XML nodes.
More specifically, we define the security objects as follows:

DEFINITION 3.6. (Protection Object)
Protection objects are node-labeled trees.
A simple security object o is a tree, where all distinct subtrees
t1,t2,...,tr of o have the same access permission as 0. That
is, for every subtree t; € o, (s,t;,a) = (s,tiltj,a), 4,j =
1,...,k and t; # t;, where t;|t; represents the case when ¢;
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Figure 5: Two-layered access control model.

and ¢; are together in the same tree. Simple security objects
are equivalent to node-level security classification.

An association security object o is a tree, where at least one
subject s does not have the permission to access o, while
he/she is allowed to access all proper subtrees of o. That is,
for a subject s and every proper subtreet; € o (i = 1,...,k),
access permission (s, t;, +a) can be derived, while s is denied
access a to o, that is (s,0, —a).

Association objects cannot be expressed at node-level, and
represent a new layer (association-level) for defining access
control. Note that the nodes contained in an explicitly de-
fined association have two classifications assigned to them.
First, they are classified as simple security object, result-
ing in a node-level assignment. Second, they are classified
as part of an association, resulting in an association-level
assignment. See Figure 5 for an illustration.

Consider again our initial example. We want to ensure
that a patient’s name, phone number and birth date are
public, while his/her diagnosis is confidential when released
together with the patient’s name. These requirements can
be represented by giving permission to access the nodes
<patient>, <name>, <phone>, <birthdate>, and < di-
agnosis >. Paths originating from <patient> node to the
above nodes are also public when released individually. Sub-
trees, formed by paths ({ patient — {phone}}, {patient
— {birthdate}}, [{patient — {name}} OR { patient —
{diagnosis}}]) are not confidential and correspond to sim-
ple security objects. Of course, we do not need to declare
access permissions for all possible subtrees. It is sufficient
and desired to generate access rules for each exclusive max-
imal subtree. All subtrees of a simple security object have
same permission as the object itself (c.f. Definition 3.6).
Declaration of access permissions for these subtrees will be
redundant.

To represent an association object, consider the paths
{patient — {name}} and {patient — {diagnosis}}. Ac-
cess to these paths is permitted when they are accessed sep-
arately but the subtree {patient — {name,diagnosis}} is
confidential, therefore it is an association object. Moreover,
our definition describes a minimal association object.

Simple security objects have a RDF property location.
The value of the location is a path expression identifying
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a node or subtree of the XML tree. Figure 6 shows an ex-
ample of simple security object represented in RXACL.

An association security object is represented by an abso-
lute path expression and a set of relative path-expressions.
The absolute path expression identifies the association root.
Each relative path-expression originating from the associ-
ation root identifies a simple security object. These sim-
ple security objects together form the association object.
Figure 7 shows an example of association represented using
RXACL. Separately, the data contained in the name and di-
agnosis tags are not sensitive. However, if they are released
together or they can be combined, the sensitive association
is disclosed.

DEFINITION 3.7. (Association object containment)
Let Oy = (P{', {p1,...,pp}) and Oz = (P53, {pY,...,P0})
be association objects. We say that O, is contained in O,
iff P = P and for all paths p} (i = 1,...,m) there is a
path pj” (j =1,...,n) such that p} is contained in pj .

In the RXACL model, an access control rule is expressed
as a RDF resource with three properties: accesstype, user
and object. The RDF Graph for an access control rule is
shown in Figure 8. The rule is identified by a URI rx-
aclRULE R0, and has rdf:type rxacl:RULE. It states that
user Alice is not allowed to read security object described by
property rxacl:object with URI rxacl: ASSOCIATION-AQ.

Each access request of a subject is evaluated against the
predefined access control rules. The following section de-
scribes in detail the functionality of the access control mod-
ule.

4. ACCESSCONTROL MODULE

In this section we present algorithms using RXACL for
controlling access to XML documents. We assume that an-
swers to user’s queries form a forest of trees. Trees can be
partially merged only if there exists supporting meta-data
that ensures that only those paths are united that corre-
spond to unique paths in the original document. In this
work we use XML keys as the basis of combining trees. Of-
course, other meta-data, like integrity constraints and statis-
tical correlations, may also allow tree unions. However these
problems are outside the scope of this document. Partially
merging XML trees 71 and 715, over a key corresponds to
7extending” both T and T> over the key paths. We define
the tree-extension of two XML trees as follows:

DEFINITION 4.1. (Tree-extension)
Let T1,T> be two labeled trees that may contain variables.
The tree-estension at the presence of keys K = {k1,...,kn},
denoted by Ug, is defined recursively as follows:

L JueT=Tus{}<T

2. Let k; = (P, pY,...,p]) (i =1,...,n) be an XML key
in K. Then if there exists satisfying mappings v1 and
v from the absolute and relative paths of k; to T1 and
T, such that v1(P%) = v2(P%) and vi(pj) = v2(pj),
J = 1,...,1 then let ¢t; and ¢» denote the subtrees
rooted at the end nodes of v1 (P*) and v2(P®), respec-
tively. We extend 1 and ¢» as follows: Let (pi,... ,pm)
be the paths of t2 not satisfied by ¢;. Then t; =
t1Ug (pi,...,p%). Subtree ts is extended similarly.



<?xml version="1.0"?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#’
xmins:rxacl="http://www.cse.sc.edu/research/isl/rxacl#'
>
<rdf:Description rdf:about="http://health.org/policy#OBJECT=S0
<rxacl:LOCATION>/medicaldb/patient/ssn</rxacl:LOCATION
<rdf:type rdf:resource="rxacl:SIMPLEOBJECT'/>
</rdf:Description>
</rdf:RDF>

(a)

/medicaldb/patient/ssn

rxacl:LOCATIO

http://health.org/policy#OBJECT-5Q
rdf:type
rxacl:SIMPLEOBJECT

(b)

Figure 6: (a) An example of Simple security object (b) RDF Graph representation of simple object

<?xml version="1.0'?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#’
xmins:rxacl="http://www.cse.sc.edu/research/isl/rxacl#
>
<rdf:Description rdf:about="rxacl:ASSOCIATION-A0">
<rxacl:ASSCROOT>/medicaldb/patient</rxacl:ASSCRIOO
<rdf:type rdf:resource="rxacl:ASSOCIATION'/>
<rxacl:INCLUDES rdf:nodelD="A0"/>
</rdf:Description>
<rdf:Description rdf:nodelD="A0">
<rdf:type rdf:resource="rdf:Bag’/>
<rxacl:RELPATH>diagnosis</rxacl:RELPATH>
<rxacl:RELPATH>name</rxacl:RELPATH>
</rdf:Description>
</rdf:RDF>

(a)

Imedicaldb/patient

rdf:type

rxacl:ASSCROOT

rxacl:INCLUDES rxacl:RELPATH

rxacl:ASSOCIATION-AQ

rdf:type

rxacl: ASSOCIATION

(b)

Figure 7: (a) An example of association object (b) RDF Graph representation of association object

We use tree extension to partially merge a new query an-
swer with the user’s history file. An example of a tree-
extension is shown in Figure 9. In this example, the pa-
tient’s SSN is the key constraint that holds over the path to
the patient node. Since trees 71 and 7> coincide on the same
SSN values we can conclude that they contain information
about the same patient. This information is used to extend
the two trees.

patientrecords

L 111223333
(ssn )— 11122333
3
John Athlete’s fod

(a) (b)

|—>( ﬁatient

atient

patientrecords
Cpatient )

atient
L»* 111223333 L»* 111223333
(Ramd— Jon @@ John

diagnosig diagnosig

(commenis— Athlete’s foot (commenjs— Athlete’s foot

(c) (d)

Figure 9: (a) T (b) T» (c) T: after extension (d) 1>
after extension

4.1 Access Control Policy

Since we use closed security policy, we assume that all al-
lowed accesses are explicitly defined in security policy. This
model is straightforward to check disclosure of simple secu-
rity objects. Since any two or more XML nodes may form
an association object there are exponentially large number
of possible association objects. Therefore, we need to limit
the domain of all association objects. We assume that the
domain of association objects is formed by all declared asso-
ciations in the security policy. If a subject s is not explicitly
permitted access a to a declared association object o, we
assume that the subject is disallowed to access o, that is
(s,0,—a) is generated. This limited domain of association
objects allows our model to operate with complexity depen-
dent on the number of declared associations and not by all
possible associations. For a given subject s, we extend the
security policy as shown in Figure 10.

The security check module uses the algorithm shown in
Figure 12 to detect violations of security policy. The input
information for this algorithm includes security policy, an
XML tree (query answer), subject s, and user’s history in-
formation. If the security policy is violated the algorithm
returns true otherwise false.

To demonstrate working of Algorithm 2, we will use a se-
curity policy that contains the single rule shown in Figure 8.
That is the name and the diagnosis of a patient cannot be
read by Alice. The input XML tree representing the data
requested by user Alice is shown in Figure 11. In the follow-
ing example we will demonstrate detection of direct security
violation.



<?xml version="1.0"?>
<rdf:RDF
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax—ns#
xmins:rxacl="http://www.cse.sc.edulisl/rxacl#
>
<rdf:Description rdf:about="rxacl:RULE-RO">
<rxacl:USER>Alice</rxacl:USER>
<rxacl:ACCESSTYPE>-read</rxacl:ACCESSTYPE>
<rxacl:OBJECT rdf:resource="rxacl:ASSOCIATION-A®"/
<rdf:type rdf:resource="rxacl:RULE’/>
</rdf:Description>
</rdf:RDF>

()

-read

rxacl:accesstyp

rxacl:use Alice

rxacl:RULE-RQ

rxacl:object

rxacl:ASSOCIATION-AQ

(b)

Figure 8: (a) An example of RXACL rule definition (b) RDF Graph representation of RXACL rule

Procedure 1:  Objects disallowed to subject s

(a)

Os =03 — 04 — Os.

sociation for s:
i. Let O = O5

INPUT 1. Security policy POL
2. Subject s
OUTPUT Set of all disallowed objects O
METHOD 1. Compute O1, the set of all simple objects denied to subject s:

(a) Assume all nodes in DTD tree T are denied access.

(b) For all permitted simple objects, mark nodes of simple objects in 7.

(c) For set of all permitted associations, mark nodes of the associations in T'.
(d) O is the set of all unmarked nodes in T'.

2. Compute O3, the set of all associations denied to subject s:

Let O3 be set of all associations defined in the security policy.

Let O4 be set of all associations that are explicitly allowed to subject s.
Let Os be set of all associations that are explicitly denied to subject s.
Set of associations for which there are no rules defined for subject s is

Compute all denied associations by including the undefined associations
that are not contained (c.f. Definition 3.7) in an explicitly permitted as-

ii. For all associations o in Qg if o is not contained in an association in
O4 then add o to O2, i.e,, O2 = 02 U {0}

3. All disallowed objects of s are O = 01 U O

Figure 10: Objects disallowed to subject s

In Step 1, the rule set is evaluated to obtain the list £ of
all objects for which Alice does not have clearance. £ con-
sists of the Association shown in Figure 7. Now containment
the of association root in the input XML tree ¢ is checked.
Path expression /patientrecords/patient is satisfied by tree
t. Set T consisting of all patient elements is obtained on sat-
isfaction of this path expression. We begin security check
for association object assuming that it is contained in tree
and security is violated. Now, existence of elements satis-
fying all relative path expressions is checked. Relative path
expressions name and diagnosis are satisfied by patient sub-
tree in t. These elements map to Bob’s medical information.
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After the evaluations, we find that all the relative paths in
association-A(Q are contained in T'. Security violation is re-
ported. If any of the relative paths in an association security
object is not contained in tree 7', we know that our assump-
tion about security violation was incorrect and we can start
security check for next object. If no security violations are
detected by this algorithm, the user’s request is permitted,
and the history file is updated.

THEOREM 4.1. (Detection of security violations)
A security violation is detected by Algorithm 2, iff the XML
tree ¢ contains security object o that is not permitted for the
user, i.e., either the original security policy does not contain



Algorithm 2: XML Security Check

3. For each object o in £

int

(a) Let {t1,..
(b) For each subtree in {t1,..

endif

else

endif
end

end

INPUT 1. XML tree ¢t

2. Security policy POL

3. Subject s

4. History H
ouTPUT TRUE of FALSE (If security policy is violated, return True, otherwise return False )
METHOD begin

1. From POL, retrieve all objects o such that s does not have a clearance for.
2. Let £ denote the list of these objects.

begin (Check existence of object in t)
if the object o is simple security object then

(a) Check if it is contained in tree t by checking if its path expression is contained

(b) if path is found, then return TRUE (security is violated)

else (the object is an association security object)
if association key expression is contained in tree ¢ then

., t1} be set of subtrees satisfying association key expression

'7tl}

i. For each relative paths pi,...
if p; is not contained in the tree then
Check next object (continue step 3)

ii. return:TRUE (security is violated)

Check next object (continue step 3)

4. return:FALSE (security is not violated)

, i of association object

Figure 12: XML Tree Security Check

patientrecords

patient

“name | Jonn

v

(diagnosis)
Athlete’s foot

Figure 11: Input XML: Working example for algo-
rithm 2

a rule or a set of rules that yield (s,o0,4a), or (s,0,—a) is
derivable from the security policy.

Note, we assume the simple conflict resolution strategy
that negation takes precedence. That is, if there are two
conflicting permissions on an object o at the same abstrac-
tion level (i.e., node-level, association level), such that both
(s,0,4a) and (s,0,—a) can be derived, we interpret it as s
is denied the access a to object o.

Proof Sketch: The proof of theorem 4.1 follows naturally
from Procedure 1 to compute the set of disallowed objects
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for a subject, the definitions of simple and association ob-
jects, and Algorithm 2. We assume that the original policy is
consistent at each level (node and association levels). First,
we show that our procedure to compute the set of disal-
lowed objects will generate rule (s,o0,—a), for an object in
O1 or O3 only if there are no rules in the security policy that
would yield (s, o0, +a). If the security policy contains a rule
that would yield positive authorization for a simple security
object, nodes of the simple security object are marked in
step 1(b) of the Procedure 1. If the protection object is an
association, the nodes the association object in ¢ are marked
as permitted in step 1(c) of the Procedure 1.

Next, we show how the XML security check algorithm
detects security violations. For this, we use proof by con-
tradiction. Assume, that there is a disallowed object o in
the XML tree t that is not detected by Algorithm 2. If the
disallowed object is a simple security object, then 7" must
contain path-expression of the simple security object. If o
is an association object, then ¢ must satisfy the absolute
path expression of the association root and must contain
mappings of all relative path expressions in the association
to the ground paths of ¢. Algorithm 2 must have detected
these paths and consequently o in step 3(a) or 3(b), this is
a contradiction. O



5. RELATED WORK

Several XML access control models have been developed
recently [4, 5, 6, 14, 16, 21, 26, 27]. These access models
adapt traditional access control lists and provide extensions
to XML syntax. Existing models allow node-level security
granularity by assigning access restrictions to the nodes and
links of XML documents. However, none of these models
focus on providing access control for data associations.

The XML Access control model developed by Bertino et
al. [5, 6, 3] provides varying protection granularity levels and
considers the case when XML documents do not conform to
a predefined document type definition (DTD). The access
control model proposed can be used for DTD-based and
document-based policies. The access control policy is repre-
sented using a 5-tuple of subject, object specification, priv-
ilege, propagation option and signed access decision. The
object specification is a path expression identifying one or
more nodes in the XML document and provides granularity
at schema level, document level and element level.

The access control model proposed by Damiani et al. [14,
13, 12, 15] defines and enforces access restrictions directly on
the XML document structure and content. The authors de-
fine a set of security elements used to provide instance level
as well as schema level authorizations with the granularity
reaching the lower level XML components. The system re-
turns to the requester a partial view of the documents that
conforms to data protection requirements. Access control
policy stored at each server contains a set of access autho-
rizations (subject, object, action, sign, type). Objects in the
XML documents are represented by XPath expressions for
the element or attribute.

Gabillon et al. [21] present a similar access control system
derived from the same access control list framework. The
server stores a set of authorizations in the form (object,
subject, access, priority). The priority is used in the conflict
resolution procedures.

The above XML access control models specify security
constraints as binary decisions for granting or denying access
to nodes identified by their object path expression. These
models do not provide any mechanism for expressing and en-
forcing security constraints on associations among elements
in the document.

Kudo et al. [26, 27] proposed an access control model that
provides provisional authorization [22], security transcoding,
and integrated audit trails. The security transcoding is a
transformational operation that retrieves secure data from
the repository and modifies data in the repository. Their
work does not discuss enforcement of security constraints
on associations.

Context-based access control has been studied in rela-
tional databases by Keefe et al. [23]. They introduced three
techniques for enforcing context-based security constraints
by performing query modifications. The first technique uses
a relational model to represent metadata. This technique
has the drawback of difficulty in expressing complex secu-
rity classifications. The second technique uses logic-based
rules for expressing computations and methods of execution.
The number of rules required to represent a context-based
constraint is exponential in the number of objects classi-
fied by the constraint. This technique was inefficient be-
cause the number of rules to be processed was very large.
The third technique is based on using graphs to index secu-
rity constraints and make access more efficient. Complexity
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of access control algorithms that use graphs representing
context-based access constraints with groups of n members
have complexity of O(n?). These query modification tech-
niques are not applicable in XML databases due to the semi-
structured nature of data. Use of these techniques will result
in over-classification.

6. CONCLUSIONS

In this paper we presented an RDF-based access control
framework. RDF provides powerful and intuitive represen-
tation of meta-data, including security objects and policies.
Our goals were to provide flexible security granularity and
expressive access control model based on current web tech-
nologies.

This paper is our initial attempt to define RXACL, an
RDF-based Access Control Language, for expressing and en-
forcing access control policies for XML documents. In this
work we presented methods and algorithms to extend upon
the existing XML access control models by allowing to define
not only XML nodes and links as security objects, but their
associations. We believe, that such flexibility is necessary
to ensure increased information availability while providing
security. Currently our framework supports discretionary
access control under closed policy. The general form of ac-
cess rules follow the (s,0,+a) form, where s is a subject, o
is a protection object, and *a is a signed access mode. User
requests are evaluated against the access control policy and
the user’s history file.

We are also planning to extend our framework to incor-
porate Role-Based and Mandatory Access Control models,
as well as to extend the access control paradigm to inference
protection, using the semantic constructs of RDF and on-
tologies. We will also incorporate schema-level analysis and
protection against collaborating users.
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