
66 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 67 more queue: www.acmqueue.com

Sc
ala

bi
lit

yTheThe coexistence of
high-end systems and
value PCs can make life
hell for game developers.

DEAN MACRI, INTEL

B
ack in the mid-1990s, I worked for a company that
developed multimedia kiosk demos. Our biggest
client was Intel, and we often created demos that
appeared in new PCs on the end-caps of major

computer retailers such as CompUSA. At that time, per-
formance was in demand for all application classes from
business to consumer. We created demos that showed, for
example, how much faster a spreadsheet would recalcu-
late (you had to do that manually back then) on a new
processor as compared with the previous year’s processor.
The differences were immediately noticeable to even a
casual observer—and it mattered. Having to wait only 10
seconds for something that previously took 20 or more
was a major improvement and led many consumers and
businesses to upgrade their PCs.

Things have changed considerably since then, aside
from talking about processor speeds in gigahertz rather
than megahertz. Not every stand-alone application
requires the computing power that a top-of-the-line
processor presents today. As a result, the PC market has
diverged into a wide range of market segments. From $400
“budget” PCs to $4,000 “hotrod” models, there’s some-
thing for everyone and one size certainly doesn’t fit all.

For game developers, what was once a relatively easy
game (pardon the pun) of “writing for the top-end and
your game will sell” has become a daunting task of

http://crossmark.crossref.org/dialog/?doi=10.1145%2F971564.971594&domain=pdf&date_stamp=2004-02-01

66 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 67 more queue: www.acmqueue.com

Sc
ala

bi
lit

y

 Problem

Game
DevelopmentFO

CU
S

68 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 69 more queue: www.acmqueue.com

creating games with scalability. A game must be able to
run on a low-end system usually dictated by the publish-
er’s minimum system requirements, yet innovate in some
way to garner the praises of reviewers and early buyers to
spark sales. One way of innovating is to take advantage of
new technologies and performance that enhance visuals
and enable previously out-of-reach capabilities to create a
better game-play experience for end users.

In this article I address a few aspects of this challenge
facing game developers. I start out by defining scalabil-
ity more clearly, take a look at the components having
the most influence on the problem, and then examine
ways to address scalability in a game. I also discuss a few
processor trends and investigate how they can be applied
to the scalability challenge to improve PC games in the
future. Since we’re a long way from photorealistic games,
there’s plenty of opportunity for scalability, and we’ll
need to take some intermediate steps to get there. Let’s
take a look at what some of those steps might be.

WHAT IS SCALABILITY?
The term scalability is defined by dictionary.com as: “How
well the solution to some problem will work when the
size of the problem increases.”1 This definition fits game

developers when applied to multiplayer networked games
where the number of concurrent users indicates the size
of the problem. In more common usage among game
developers, however, scalability refers to the challenge
of making a game that runs acceptably across system
configurations that may vary in features, performance,
or both. The challenge isn’t restricted to just the proces-
sor—or even a single computer in the case of multiplayer
games. Whereas each component in the system—chipset,
memory, hard-drive, networking, sound card, and so
forth—plays a role, the two pieces of the scalability chal-
lenge that are often the most significant are the proces-
sor and the graphics subsystem. These two pieces of the
puzzle are typically interconnected to a high degree.

Figures 1 and 2 show the two most common configu-
rations with some typical bandwidths for the various
components in the system. Notice that in the configura-
tion with the add-in graphics card (figure 1), the card has
its own memory for storing data necessary for rendering.
In the integrated graphics configuration (figure 2), the
main system memory is shared by applications running
on the processor, as well as by the graphics rendering
engine.

To take advantage of features introduced with state-of-
the-art graphics hardware, a high-performance processor
needs to be coupled with it to feed the data used to gen-
erate complex visual scenes. A high-end processor may be
able to simulate complex physical systems at interactive
frame rates, but not being able to render them with suffi-
cient visual fidelity quickly makes the graphics subsystem
the weakest link in the chain. In addition, other com-
binations of processors and graphics hardware are quite
common, and game developers have to devise solutions
that can give each end user the best experience pos-

sible for that user’s system
configuration. Trade-offs
must be made. Choosing
the right trade-offs without
alienating large classes of
gamers is the heart of the
scalability challenge. Let’s
take a look at how these
trade-offs typically happen.

APPLYING SCALABILITY
The development cycle
for a PC game can range
anywhere from several
months to four years or
more, depending on the
scope of the project, the

Game
DevelopmentFO

CU
S

Scalability
Problem

The

FIG 1

68 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 69 more queue: www.acmqueue.com

intended audience, and the budget. For four-year projects,
the high-end system at the start of development will
probably be the low-end system when the game ships, so
developers can often begin the project with that system
as their target. Of course, as new technologies surface,
the developers must take advantage of some of them or
be faced with a game that’s lackluster compared with one
that was on a two-year development timeline and could
take advantage of the leading-edge technologies.

Regardless of the development time frame, publish-
ers usually impose minimum system requirements that
encompass systems that were high-end anywhere from
three to five years prior. Taking into account just the
two key components—the processor and the graphics
hardware—game developers must consider a number of
configurations. On one end of the spectrum is the bare
minimum: an old processor and old graphics hardware.
In that case, everything is probably scaled back to the
basics necessary for the game to be functional, but there
likely won’t be any bells or whistles over what last year’s
titles could achieve. On the opposite end of the spectrum,
those who just bought brand new PCs with really fast
processors and high-end graphics hardware will want to
show their friends how awesome their games run on the
premium configuration.

Developers’ options for addressing scalability across
the gamut of configurations can be narrowed to three
techniques:

1. Create just one version of the game that runs with
mediocre performance on a system that meets the

minimum system requirements. Someone with a higher-
performance system will get better performance, but
only up to a certain level. At some point, the incremental

increase in performance
will not be measurable
(e.g., beyond a certain
frame rate). The feature set
will be the same regardless
of the system on which the
game is played.

2. Create two or more
bins of performance

that are either selected
dynamically by profiling
the performance of the
system or are configurable
menu items that end users
can choose. Typically,
the installation program
determines the level of

performance and configures in-game options accord-
ingly. Gamers can then choose to alter those choices at
the expense of performance or quality. Enhanced features
that don’t affect game-play are usually enabled for the top
bins and disabled for the bottom bins. Far and away, this
is the most commonly used mechanism for introducing
scalability into a game.

3. Use techniques that are more scalable, such as
dynamic elimination of triangles from meshes, or

infinitely scalable such as NURBS (nonuniform rational
B-splines) or implicit surfaces. The challenges associated
with making dynamic choices that affect performance
on a per-frame basis are so great that developers rarely
choose to do it.

Because of the indeterminism associated with tech-
nique 3 and the lack of high-end differentiation caused
by technique 1, most developers choose to create scal-
ability by creating bins of performance as described in
technique 2. Often, the bins are a factor of two elements:
the clock speed of the main processor and the API (appli-
cation programming interface) support of the graphics
subsystem. Unfortunately, these two factors don’t encom-
pass all possible system configurations equally well and
tend to create situations where a system capable of higher
performance, such as one with a high-end processor but
integrated graphics, may be placed in a lower-perfor-
mance bin. Conversely, a low-end processor coupled with
high-end graphics hardware may have features enabled
that the graphics hardware is capable of rendering, but to
which data can’t be supplied from the processor quickly
enough for acceptable game-play.

Going on the assumption that a game will use the
binning technique for scalability, let’s now take a look at

FIG 2

70 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 71 more queue: www.acmqueue.com

some processor trends that can help developers apply the
technique.

PROCESSOR TRENDS
Each successive generation of processors introduced to
the market adds enhancements that developers can lever-
age to improve their games. One recent example is the
introduction of Hyper-Threading (HT) technology, which
enables a single physical processor to appear to the oper-
ating system and applications as two processors. Pipeline
stalls limit how much instruction-level parallelism can
be extracted from a single instruction stream. The stalls
occur whenever a cache miss happens or a branch mispre-
diction takes place. HT technology enables two threads of
execution to make better use of the processor’s physical
execution resources. For example, each of two threads can
execute when the other is experiencing a pipeline stall,
or one thread can use integer execution units while the
other is using floating-point units.

HT technology is a stepping stone along the path
toward processors with multiple physical cores. Intro-
duced to desktop PCs in 2002, each successive generation
of processors will increase
the performance speed-up
possible for two or more
concurrent threads. For
games to continue to push
the envelope, they’ll have
to have multiple threads
of execution working on
various stages of the game
loop.

Another way that
processors are extended to
enable higher performance
in applications is through
new instruction sets.
Examples include MMX
(Multimedia Extensions)
technology, SSE (Stream-
ing SIMD Extensions), and

SSE2. These particular instructions provide SIMD (single-
instruction, multiple data) operations that can work on
integer and floating-point data types of various sizes.
Using such instructions and arranging data appropriately
to work with the instructions, games can do more with
each clock cycle. Some of the scalability techniques I’ll
discuss here can be enabled more readily by taking advan-
tage of new instruction sets. Future processors will con-
tinue to introduce instruction set extensions that can be
used to enhance the performance of certain algorithms.
For example, the Intel processor code-named Prescott,
which will be introduced shortly, has a handful of SIMD
instructions that can help game developers optimize tech-
niques such as quaternion calculations.

A third trend that has recently emerged is the drive
toward processors and accompanying components
that consume less power to enhance mobile platforms.
Although I won’t investigate this any further in this
article, developers working on multiplayer games will
need to consider the impact that low-power-consump-
tion platforms will have on their games. In particular,
there are code optimizations that will reduce the power
consumption of an application. It’s not something that
game developers currently think about, but it may be in
the not-so-distant future.

With these trends in mind, let’s look at a typical game
loop and then examine some areas for applying scalabil-
ity in games today.

TYPICAL GAME LOOP
Figure 3 shows some key elements of a simplified, typical

Game
DevelopmentFO

CU
S

FIG 3

Scalability
Problem

The

70 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 71 more queue: www.acmqueue.com

game loop. This example shows the operations happen-
ing in sequence, but some of the tasks could be performed
in parallel. Some aspects of a game loop, such as scoring
or handling sound, aren’t shown here.

As games continue to evolve and improve in realism,
all stages of the game loop shown here must be enhanced
collectively. The weakest stage is always the one that
stands out to a gamer. If the visuals are exceptional but
the AI (artificial intelligence) doesn’t have much “I,” then
the game won’t really be fun to play. Or if the physics
simulation is leaps above what’s been done previously,
but it’s nearly impossible to manipulate with the key-
board and mouse, then gamers will quickly tire of it and
move on to something more fun.

Applying scalability to the different stages of the
game loop requires different techniques. For the graph-
ics subsystem, which deals almost exclusively with the
DrawScene stage, scalability can be addressed by enabling
different rendering techniques based on the graphics
features available. For the physics simulation, different
techniques can be applied for solving different types of
problems. Let’s look at a few of these problems and how
to address them with scalability.

TREES
The first 3D games were based almost exclusively in
indoor settings because the amount of 3D geometry
required to display a hallway is considerably less than
what’s required to display a forest scene, for example. As
3D accelerators improved, outdoor scenes appeared, and,
now, massively multiplayer games are almost all based
outdoors. Unfortunately, because the geometry for a tree
is so complex (and large), games typically recycle a few
of each variety. If you’re running through a forest, you
will often see the same exact tree over and over again in
different locations. Additionally, trees in a game typically
have several levels-of-detail (LOD)—one for trees in the
distance, one for trees at an intermediate range, and one
for close-up trees. A technique to increase the variety
of trees will have to apply appropriately to the different
LODs.

Generating a complete tree is possible procedurally
using some parameters to indicate the type of tree to
make. The algorithm described by Weber and Penn2 has
enough flexibility to create forests of trees. But the trees
generated contain a lot of geometry and cannot currently
be generated quickly enough to do so at runtime. What
could be done, though, is to generate pieces of trees (e.g.,
trunks and branches) and then use a new algorithm to
assemble them in different ways at runtime. The routine

for doing the assembly could be put in another thread
and its output could specify which trunk and branch
pieces to use and transformation matrices to put them
together.

Scalability for this technique could be introduced in
several ways. First, the number of triangles used to create
the trunks and branches could vary based on the available
processor and graphics hardware performance. Second,
the tree assembly routine could be placed in a low-prior-
ity thread. When the main thread needs a tree, it would
pull one off the top of a queue that’s getting filled by the
low-priority thread. If there isn’t one on the queue, then
the main thread would just use the previous one again. In
this way, a system with cycles to spare could create more
tree variations.

In conjunction with creating varieties of trees, more
realism could be incrementally added to games by ani-
mating the leaves and branches of the trees. Some games
already do this to a degree. Usually, though, the motion
is precalculated by an artist. Using the procedurally
generated trees just described, developers could animate
the parts, again based on available processor cycles. On
low-end systems, the trees would be stationary. On mid-
level systems, the main trunk could be animated to sway
(using the technique described by Weber and Penn2). On
high-end systems, even the branches and leaves could be
animated using the techniques described by Peterson.3

Implementing the ideas that were just described
should be straightforward, but we need to consider
the following:
• First, procedurally creating content in a game is likely

to raise the game designers’ eyebrows. They want to
make sure that their vision for how the game should
look is not broken by some code randomly putting
geometry together. To ensure that doesn’t happen, it
may be necessary to put extra constraints on how much
variation the procedural generation can introduce, and
some parts of the trees might still need to be created by
the artists.

• Second, if the main game loop is designed to run as
fast as possible, the low-priority thread creating the
trees might not get enough CPU cycles to be of use.
Providing a way to guarantee significant progress by
the tree-creation thread and at the same time maintain-
ing sufficient performance of the primary thread will
require some tweaking.

• Finally, maintaining visual consistency between the pro-
cedurally generated trees at different LODs will require
some experimentation; otherwise, visual “popping”
artifacts between LODs could be severe.

72 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 73 more queue: www.acmqueue.com

CLOTH
Another area of games that stands out as departing from
reality is the characters’ clothing. A few games, such
as Hitman: Code Name 47 (IO Interactive, 2000), have
implemented some simple techniques for trench coats
and capes. But most characters in games still look as if
their clothing is a permanent plastic attachment. Going
from what we have today to full-scale simulation of cloth-
ing isn’t going to happen overnight. It may be possible,
however, to use some of the techniques in the research
and motion-picture fields to get there incrementally.

Cloth simulation is the subject of lots of recent
research. Baraff and Witkin4 set the stage for using
implicit integration to achieve more stable cloth simula-
tion. More recently, Choi and Ko5 solved an additional
part of the instability problem, and Baraff, Witkin, and
Kass6 addressed the problem with cloth-cloth collisions
introducing tangles. Applying this research to cloth simu-

lation in games, though, is very difficult.
One solution that could be applied through scalability

would be first to replace the clothing on characters in
a game with actual geometry that separates the clothes
from the underlying character model. A duplicate set of
“invisible” geometry would then be used to simulate the
movement of the clothing. The duplicate set would be
tessellated to different degrees based on the performance
of the system on which the game is running, and the
actual geometry would be moved according to corre-
sponding movement in the duplicated version. Low-end
systems may not be able to achieve any movement of

the actual clothing. High-end systems may tessellate to
a significant degree and then simulate the cloth, treat-
ing certain vertices as “fixed” so that full cloth-cloth
and cloth-object collisions wouldn’t have to be handled
initially. As processor performance increases over time,
the simulation could become more detailed. Regardless of
the degree of simulation, putting these calculations into
a second thread will help on today’s processors, as well as
tomorrow’s.

For nonclothing usages of cloth, processor perfor-
mance has already reached a point that allows more
physical simulation. Sails on ships, store awnings, or
flags blowing in the wind are simple examples of ambient
effects that can increase the realism of games, not affect
game-play, and where the number of triangles simulated
can be increased or decreased to address scalability.

Implementing cloth simulation is difficult—and
none of the research mentioned here is a panacea. Any
time physical simulation has control of portions of the
game, the possibility exists that a configuration will
arise that didn’t come up in testing—and something will
look horribly wrong. To prevent that, a simulation with
cloth should make sure that the time step never exceeds
a maximum value determined as certainly as possible
through experimentation. The impact of this, however,
is that excessive time spent in the cloth simulation could
bog down the main game engine. As with any scalable

solution, the implementa-
tion should try to detect
and prevent or correct
this situation as quickly as
possible.

FLUIDS
Fluid dynamics is a broad
field that will most readily
be applied to games in
the areas of smoke, fire,

and water. Because of the complexity involved in solving
the Navier-Stokes equations that describe the motion
of fluids, most games haven’t even attempted realistic
fluid simulation. Recent research by Stam,7,8 however,
has introduced the possibility of solving simple fluid
problems with visually believable results. The techniques
can be applied in a scalable fashion (assuming the results
are just ambient effects) by varying the grid size of the
simulation. It’s a matter of selecting the appropriate grid
size based on available processor performance. Of course,
some grid sizes may be too small to be useful, so a fall-
back to a different technique will be required.

Game designers want
to make sure their

vision is not broken
by some code randomly

putting geometry together.

Game
DevelopmentFO

CU
S

Scalability
Problem

The

72 February 2004 QUEUE rants: feedback@acmqueue.com QUEUE February 2004 73 more queue: www.acmqueue.com

For games that have action occurring on a boat, the
water of the surrounding lake or ocean typically needs
a form of animation to appear realistic. In the simplest
form, sine waves are used to move the vertices of the
water up and down. Combining several waves of different
amplitudes and frequencies can introduce more variation.
The repeating patterns are usually still evident, however.

One game in development is using a more advanced
statistical method, described by Tessendorf,9 to simulate
realistic-looking ocean water. Low-end systems use the
sine wave technique, and high-end systems use the Tes-
sendorf technique. By combining the better simulation
with fancier rendering on high-end graphics hardware,
the in-game results are quite impressive.

The application of scalability to fluid simulation has
its share of challenges as well. Like any physical simu-
lation, if the problem size changes (e.g., different grid
sizes) or if the step size between simulation times varies,
the end results will be different. So the initial uses of
fluid simulation will have to be either devoted entirely
to ambient game effects or simple enough to run on the
minimum system specs without any scalability to higher
systems. Most likely, the introduction of fluid simulation
to actual game-play, not just ambient effects, will require
the combination of both, so the visual quality may be
scalable but the simulation quality will be fixed.

THE SCALABILITY CHALLENGE
Scalability is a challenge facing game developers that they
can’t just ignore. It’s not the only challenge they’ll face,
but it’s one that can significantly impact the quality of
their games and the differentiation of one game over the
competition. Fortunately, scalability can be addressed by
taking advantage of new processor features and leveraging
work being done in the research community.

We’ve examined the evolution of consumer PC proces-
sors and seen that threading will be essential to get the
best performance possible from future platforms. Several
stages of the game loop will need to be executed in their
own threads to benefit from the performance available. In
addition, other processor extensions such as new instruc-
tion sets will provide a means for developers to intro-
duce new techniques in a scalable fashion. Using these
processor enhancements, games will continue to mature
and come closer to the photorealistic worlds we see in
computer graphics-generated motion pictures.

As one step to getting there, we’ve taken a look at a
few areas in games that developers can improve by using
scalable techniques based on processor features and
extensions. All three of the areas examined—trees, cloth,

and fluids—can benefit from both threading and SIMD
instructions. These three are only a few aspects of games
that can scale using the processor. Other areas can be
explored that apply scalability to the graphics hardware
in conjunction with the processor. By applying scalability
to elements of the game loop, developers can have the
freedom to innovate while creating games accessible to
the huge installed base of consumer PCs. Q

REFERENCES
1. Dictionary.com: see http://dictionary.reference.com.
2. Weber, J., and Penn, J. Creation and rendering of

realistic trees. Proceedings of the ACM SIGGRAPH (1995),
119–128.

3. Peterson, S. Animating trees. Silicon Valley ACM
SIGGRAPH (2001); http://silicon-valley.siggraph.org/
MeetingNotes/shrek/trees.pdf.

4. Baraff, D., and Witkin, A. Large steps in cloth simula-
tion. Proceedings of the ACM SIGGRAPH (July 1998),
43–54.

5. Choi, K.-J., and Ko, H.-S. Stable but responsive cloth.
Proceedings of the ACM SIGGRAPH (July 2002), 604–611.

6. Baraff, D., Witkin, A., and Kass, M. Untangling cloth.
Proceedings of the ACM SIGGRAPH 22, 3 (July 2003),
862–870.

7. Stam, J. Stable fluids. Proceedings of the ACM SIGGRAPH
(1999), 121–128.

8. Stam, J. Real-time fluid dynamics for games. Proceedings
of the Game Developers Conference (March 2003).

9. Tessendorf, J. Simulating ocean water. ACM SIGGRAPH
Course Notes (2001).

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

DEAN MACRI is a staff technical marketing engineer in
the Software and Solutions Group at Intel. He works pri-
marily with game developers to help them optimize their
games for present and future processor architectures
and take advantage of the processing power available
to enable new features. He has a B.A. in mathematics
and computer science with a minor in physics from St.
Vincent College, Pennsylvania, and an M.S. in com-
puter science from the University of Pennsylvania. After
completing his master’s degree in 1992, he spent five
years developing highly optimized C, C++, and assembly
language routines for a 2D graphics animation company.
He joined Intel in 1998 to pursue his interests in 3D com-
puter graphics.
© 2004 ACM 1542-7730/04/0200 $5.00

http://dictionary.reference.com
http://silicon-valley.siggraph.org/MeetingNotes/shrek/trees.pdf
http://silicon-valley.siggraph.org/MeetingNotes/shrek/trees.pdf

