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value PCs can make life 
hell for game developers.

DEAN MACRI, INTEL

B
ack in the mid-1990s, I worked for a company that 
developed multimedia kiosk demos. Our biggest 
client was Intel, and we often created demos that 
appeared in new PCs on the end-caps of major 

computer retailers such as CompUSA. At that time, per-
formance was in demand for all application classes from 
business to consumer. We created demos that showed, for 
example, how much faster a spreadsheet would recalcu-
late (you had to do that manually back then) on a new 
processor as compared with the previous year’s processor. 
The differences were immediately noticeable to even a 
casual observer—and it mattered. Having to wait only 10 
seconds for something that previously took 20 or more 
was a major improvement and led many consumers and 
businesses to upgrade their PCs. 

Things have changed considerably since then, aside 
from talking about processor speeds in gigahertz rather 
than megahertz. Not every stand-alone application 
requires the computing power that a top-of-the-line 
processor presents today. As a result, the PC market has 
diverged into a wide range of market segments. From $400 
“budget” PCs to $4,000 “hotrod” models, there’s some-
thing for everyone and one size certainly doesn’t fit all. 

For game developers, what was once a relatively easy 
game (pardon the pun) of “writing for the top-end and 
your game will sell” has become a daunting task of 
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creating games with scalability. A game must be able to 
run on a low-end system usually dictated by the publish-
er’s minimum system requirements, yet innovate in some 
way to garner the praises of reviewers and early buyers to 
spark sales. One way of innovating is to take advantage of 
new technologies and performance that enhance visuals 
and enable previously out-of-reach capabilities to create a 
better game-play experience for end users.

In this article I address a few aspects of this challenge 
facing game developers. I start out by defining scalabil-
ity more clearly, take a look at the components having 
the most influence on the problem, and then examine 
ways to address scalability in a game. I also discuss a few 
processor trends and investigate how they can be applied 
to the scalability challenge to improve PC games in the 
future. Since we’re a long way from photorealistic games, 
there’s plenty of opportunity for scalability, and we’ll 
need to take some intermediate steps to get there. Let’s 
take a look at what some of those steps might be.

WHAT IS SCALABILITY?
The term scalability is defined by dictionary.com as: “How 
well the solution to some problem will work when the 
size of the problem increases.”1 This definition fits game 

developers when applied to multiplayer networked games 
where the number of concurrent users indicates the size 
of the problem. In more common usage among game 
developers, however, scalability refers to the challenge 
of making a game that runs acceptably across system 
configurations that may vary in features, performance, 
or both. The challenge isn’t restricted to just the proces-
sor—or even a single computer in the case of multiplayer 
games. Whereas each component in the system—chipset, 
memory, hard-drive, networking, sound card, and so 
forth—plays a role, the two pieces of the scalability chal-
lenge that are often the most significant are the proces-
sor and the graphics subsystem. These two pieces of the 
puzzle are typically interconnected to a high degree.

Figures 1 and 2 show the two most common configu-
rations with some typical bandwidths for the various 
components in the system. Notice that in the configura-
tion with the add-in graphics card (figure 1), the card has 
its own memory for storing data necessary for rendering. 
In the integrated graphics configuration (figure 2), the 
main system memory is shared by applications running 
on the processor, as well as by the graphics rendering 
engine. 

To take advantage of features introduced with state-of-
the-art graphics hardware, a high-performance processor 
needs to be coupled with it to feed the data used to gen-
erate complex visual scenes. A high-end processor may be 
able to simulate complex physical systems at interactive 
frame rates, but not being able to render them with suffi-
cient visual fidelity quickly makes the graphics subsystem 
the weakest link in the chain. In addition, other com-
binations of processors and graphics hardware are quite 
common, and game developers have to devise solutions 
that can give each end user the best experience pos-

sible for that user’s system 
configuration. Trade-offs 
must be made. Choosing 
the right trade-offs without 
alienating large classes of 
gamers is the heart of the 
scalability challenge. Let’s 
take a look at how these 
trade-offs typically happen.

APPLYING SCALABILITY
The development cycle 
for a PC game can range 
anywhere from several 
months to four years or 
more, depending on the 
scope of the project, the 
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intended audience, and the budget. For four-year projects, 
the high-end system at the start of development will 
probably be the low-end system when the game ships, so 
developers can often begin the project with that system 
as their target. Of course, as new technologies surface, 
the developers must take advantage of some of them or 
be faced with a game that’s lackluster compared with one 
that was on a two-year development timeline and could 
take advantage of the leading-edge technologies.

Regardless of the development time frame, publish-
ers usually impose minimum system requirements that 
encompass systems that were high-end anywhere from 
three to five years prior. Taking into account just the 
two key components—the processor and the graphics 
hardware—game developers must consider a number of 
configurations. On one end of the spectrum is the bare 
minimum: an old processor and old graphics hardware. 
In that case, everything is probably scaled back to the 
basics necessary for the game to be functional, but there 
likely won’t be any bells or whistles over what last year’s 
titles could achieve. On the opposite end of the spectrum, 
those who just bought brand new PCs with really fast 
processors and high-end graphics hardware will want to 
show their friends how awesome their games run on the 
premium configuration. 

Developers’ options for addressing scalability across 
the gamut of configurations can be narrowed to three 
techniques:

1. Create just one version of the game that runs with 
mediocre performance on a system that meets the 

minimum system requirements. Someone with a higher-
performance system will get better performance, but 
only up to a certain level. At some point, the incremental 

increase in performance 
will not be measurable 
(e.g., beyond a certain 
frame rate). The feature set 
will be the same regardless 
of the system on which the 
game is played.

2. Create two or more 
bins of performance 

that are either selected 
dynamically by profiling 
the performance of the 
system or are configurable 
menu items that end users 
can choose. Typically, 
the installation program 
determines the level of 

performance and configures in-game options accord-
ingly. Gamers can then choose to alter those choices at 
the expense of performance or quality. Enhanced features 
that don’t affect game-play are usually enabled for the top 
bins and disabled for the bottom bins. Far and away, this 
is the most commonly used mechanism for introducing 
scalability into a game. 

3. Use techniques that are more scalable, such as 
dynamic elimination of triangles from meshes, or 

infinitely scalable such as NURBS (nonuniform rational 
B-splines) or implicit surfaces. The challenges associated 
with making dynamic choices that affect performance 
on a per-frame basis are so great that developers rarely 
choose to do it.

Because of the indeterminism associated with tech-
nique 3 and the lack of high-end differentiation caused 
by technique 1, most developers choose to create scal-
ability by creating bins of performance as described in 
technique 2. Often, the bins are a factor of two elements: 
the clock speed of the main processor and the API (appli-
cation programming interface) support of the graphics 
subsystem. Unfortunately, these two factors don’t encom-
pass all possible system configurations equally well and 
tend to create situations where a system capable of higher 
performance, such as one with a high-end processor but 
integrated graphics, may be placed in a lower-perfor-
mance bin. Conversely, a low-end processor coupled with 
high-end graphics hardware may have features enabled 
that the graphics hardware is capable of rendering, but to 
which data can’t be supplied from the processor quickly 
enough for acceptable game-play.

Going on the assumption that a game will use the 
binning technique for scalability, let’s now take a look at 

FIG 2 
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some processor trends that can help developers apply the 
technique. 

PROCESSOR TRENDS
Each successive generation of processors introduced to 
the market adds enhancements that developers can lever-
age to improve their games. One recent example is the 
introduction of Hyper-Threading (HT) technology, which 
enables a single physical processor to appear to the oper-
ating system and applications as two processors. Pipeline 
stalls limit how much instruction-level parallelism can 
be extracted from a single instruction stream. The stalls 
occur whenever a cache miss happens or a branch mispre-
diction takes place. HT technology enables two threads of 
execution to make better use of the processor’s physical 
execution resources. For example, each of two threads can 
execute when the other is experiencing a pipeline stall, 
or one thread can use integer execution units while the 
other is using floating-point units.

HT technology is a stepping stone along the path 
toward processors with multiple physical cores. Intro-
duced to desktop PCs in 2002, each successive generation 
of processors will increase 
the performance speed-up 
possible for two or more 
concurrent threads. For 
games to continue to push 
the envelope, they’ll have 
to have multiple threads 
of execution working on 
various stages of the game 
loop. 

Another way that 
processors are extended to 
enable higher performance 
in applications is through 
new instruction sets. 
Examples include MMX 
(Multimedia Extensions) 
technology, SSE (Stream-
ing SIMD Extensions), and 

SSE2. These particular instructions provide SIMD (single-
instruction, multiple data) operations that can work on 
integer and floating-point data types of various sizes. 
Using such instructions and arranging data appropriately 
to work with the instructions, games can do more with 
each clock cycle. Some of the scalability techniques I’ll 
discuss here can be enabled more readily by taking advan-
tage of new instruction sets. Future processors will con-
tinue to introduce instruction set extensions that can be 
used to enhance the performance of certain algorithms. 
For example, the Intel processor code-named Prescott, 
which will be introduced shortly, has a handful of SIMD 
instructions that can help game developers optimize tech-
niques such as quaternion calculations.

A third trend that has recently emerged is the drive 
toward processors and accompanying components 
that consume less power to enhance mobile platforms. 
Although I won’t investigate this any further in this 
article, developers working on multiplayer games will 
need to consider the impact that low-power-consump-
tion platforms will have on their games. In particular, 
there are code optimizations that will reduce the power 
consumption of an application. It’s not something that 
game developers currently think about, but it may be in 
the not-so-distant future.

With these trends in mind, let’s look at a typical game 
loop and then examine some areas for applying scalabil-
ity in games today.

TYPICAL GAME LOOP
Figure 3 shows some key elements of a simplified, typical 
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game loop. This example shows the operations happen-
ing in sequence, but some of the tasks could be performed 
in parallel. Some aspects of a game loop, such as scoring 
or handling sound, aren’t shown here.

As games continue to evolve and improve in realism, 
all stages of the game loop shown here must be enhanced 
collectively. The weakest stage is always the one that 
stands out to a gamer. If the visuals are exceptional but 
the AI (artificial intelligence) doesn’t have much “I,” then 
the game won’t really be fun to play. Or if the physics 
simulation is leaps above what’s been done previously, 
but it’s nearly impossible to manipulate with the key-
board and mouse, then gamers will quickly tire of it and 
move on to something more fun.

Applying scalability to the different stages of the 
game loop requires different techniques. For the graph-
ics subsystem, which deals almost exclusively with the 
DrawScene stage, scalability can be addressed by enabling 
different rendering techniques based on the graphics 
features available. For the physics simulation, different 
techniques can be applied for solving different types of 
problems. Let’s look at a few of these problems and how 
to address them with scalability.

TREES
The first 3D games were based almost exclusively in 
indoor settings because the amount of 3D geometry 
required to display a hallway is considerably less than 
what’s required to display a forest scene, for example. As 
3D accelerators improved, outdoor scenes appeared, and, 
now, massively multiplayer games are almost all based 
outdoors. Unfortunately, because the geometry for a tree 
is so complex (and large), games typically recycle a few 
of each variety. If you’re running through a forest, you 
will often see the same exact tree over and over again in 
different locations. Additionally, trees in a game typically 
have several levels-of-detail (LOD)—one for trees in the 
distance, one for trees at an intermediate range, and one 
for close-up trees. A technique to increase the variety 
of trees will have to apply appropriately to the different 
LODs.

Generating a complete tree is possible procedurally 
using some parameters to indicate the type of tree to 
make. The algorithm described by Weber and Penn2 has 
enough flexibility to create forests of trees. But the trees 
generated contain a lot of geometry and cannot currently 
be generated quickly enough to do so at runtime. What 
could be done, though, is to generate pieces of trees (e.g., 
trunks and branches) and then use a new algorithm to 
assemble them in different ways at runtime. The routine 

for doing the assembly could be put in another thread 
and its output could specify which trunk and branch 
pieces to use and transformation matrices to put them 
together.

Scalability for this technique could be introduced in 
several ways. First, the number of triangles used to create 
the trunks and branches could vary based on the available 
processor and graphics hardware performance. Second, 
the tree assembly routine could be placed in a low-prior-
ity thread. When the main thread needs a tree, it would 
pull one off the top of a queue that’s getting filled by the 
low-priority thread. If there isn’t one on the queue, then 
the main thread would just use the previous one again. In 
this way, a system with cycles to spare could create more 
tree variations.

In conjunction with creating varieties of trees, more 
realism could be incrementally added to games by ani-
mating the leaves and branches of the trees. Some games 
already do this to a degree. Usually, though, the motion 
is precalculated by an artist. Using the procedurally 
generated trees just described, developers could animate 
the parts, again based on available processor cycles. On 
low-end systems, the trees would be stationary. On mid-
level systems, the main trunk could be animated to sway 
(using the technique described by Weber and Penn2). On 
high-end systems, even the branches and leaves could be 
animated using the techniques described by Peterson.3

Implementing the ideas that were just described 
should be straightforward, but we need to consider 
the following: 
•  First, procedurally creating content in a game is likely 

to raise the game designers’ eyebrows. They want to 
make sure that their vision for how the game should 
look is not broken by some code randomly putting 
geometry together. To ensure that doesn’t happen, it 
may be necessary to put extra constraints on how much 
variation the procedural generation can introduce, and 
some parts of the trees might still need to be created by 
the artists. 

•  Second, if the main game loop is designed to run as 
fast as possible, the low-priority thread creating the 
trees might not get enough CPU cycles to be of use. 
Providing a way to guarantee significant progress by 
the tree-creation thread and at the same time maintain-
ing sufficient performance of the primary thread will 
require some tweaking. 

•  Finally, maintaining visual consistency between the pro-
cedurally generated trees at different LODs will require 
some experimentation; otherwise, visual “popping” 
artifacts between LODs could be severe.



72  February 2004  QUEUE rants: feedback@acmqueue.com  QUEUE  February 2004  73  more queue: www.acmqueue.com

CLOTH
Another area of games that stands out as departing from 
reality is the characters’ clothing. A few games, such 
as Hitman: Code Name 47 (IO Interactive, 2000), have 
implemented some simple techniques for trench coats 
and capes. But most characters in games still look as if 
their clothing is a permanent plastic attachment. Going 
from what we have today to full-scale simulation of cloth-
ing isn’t going to happen overnight. It may be possible, 
however, to use some of the techniques in the research 
and motion-picture fields to get there incrementally.

Cloth simulation is the subject of lots of recent 
research. Baraff and Witkin4 set the stage for using 
implicit integration to achieve more stable cloth simula-
tion. More recently, Choi and Ko5 solved an additional 
part of the instability problem, and Baraff, Witkin, and 
Kass6 addressed the problem with cloth-cloth collisions 
introducing tangles. Applying this research to cloth simu-

lation in games, though, is very difficult.
One solution that could be applied through scalability 

would be first to replace the clothing on characters in 
a game with actual geometry that separates the clothes 
from the underlying character model. A duplicate set of 
“invisible” geometry would then be used to simulate the 
movement of the clothing. The duplicate set would be 
tessellated to different degrees based on the performance 
of the system on which the game is running, and the 
actual geometry would be moved according to corre-
sponding movement in the duplicated version. Low-end 
systems may not be able to achieve any movement of 

the actual clothing. High-end systems may tessellate to 
a significant degree and then simulate the cloth, treat-
ing certain vertices as “fixed” so that full cloth-cloth 
and cloth-object collisions wouldn’t have to be handled 
initially. As processor performance increases over time, 
the simulation could become more detailed. Regardless of 
the degree of simulation, putting these calculations into 
a second thread will help on today’s processors, as well as 
tomorrow’s.

For nonclothing usages of cloth, processor perfor-
mance has already reached a point that allows more 
physical simulation. Sails on ships, store awnings, or 
flags blowing in the wind are simple examples of ambient 
effects that can increase the realism of games, not affect 
game-play, and where the number of triangles simulated 
can be increased or decreased to address scalability. 

Implementing cloth simulation is difficult—and 
none of the research mentioned here is a panacea. Any 
time physical simulation has control of portions of the 
game, the possibility exists that a configuration will 
arise that didn’t come up in testing—and something will 
look horribly wrong. To prevent that, a simulation with 
cloth should make sure that the time step never exceeds 
a maximum value determined as certainly as possible 
through experimentation. The impact of this, however, 
is that excessive time spent in the cloth simulation could 
bog down the main game engine. As with any scalable 

solution, the implementa-
tion should try to detect 
and prevent or correct 
this situation as quickly as 
possible.

FLUIDS
Fluid dynamics is a broad 
field that will most readily 
be applied to games in 
the areas of smoke, fire, 

and water. Because of the complexity involved in solving 
the Navier-Stokes equations that describe the motion 
of fluids, most games haven’t even attempted realistic 
fluid simulation. Recent research by Stam,7,8 however, 
has introduced the possibility of solving simple fluid 
problems with visually believable results. The techniques 
can be applied in a scalable fashion (assuming the results 
are just ambient effects) by varying the grid size of the 
simulation. It’s a matter of selecting the appropriate grid 
size based on available processor performance. Of course, 
some grid sizes may be too small to be useful, so a fall-
back to a different technique will be required.

Game designers want 
to make sure their 

vision is not broken 
by some code randomly 

putting geometry together.
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For games that have action occurring on a boat, the 
water of the surrounding lake or ocean typically needs 
a form of animation to appear realistic. In the simplest 
form, sine waves are used to move the vertices of the 
water up and down. Combining several waves of different 
amplitudes and frequencies can introduce more variation. 
The repeating patterns are usually still evident, however. 

One game in development is using a more advanced 
statistical method, described by Tessendorf,9 to simulate 
realistic-looking ocean water. Low-end systems use the 
sine wave technique, and high-end systems use the Tes-
sendorf technique. By combining the better simulation 
with fancier rendering on high-end graphics hardware, 
the in-game results are quite impressive.

The application of scalability to fluid simulation has 
its share of challenges as well. Like any physical simu-
lation, if the problem size changes (e.g., different grid 
sizes) or if the step size between simulation times varies, 
the end results will be different. So the initial uses of 
fluid simulation will have to be either devoted entirely 
to ambient game effects or simple enough to run on the 
minimum system specs without any scalability to higher 
systems. Most likely, the introduction of fluid simulation 
to actual game-play, not just ambient effects, will require 
the combination of both, so the visual quality may be 
scalable but the simulation quality will be fixed.

THE SCALABILITY CHALLENGE
Scalability is a challenge facing game developers that they 
can’t just ignore. It’s not the only challenge they’ll face, 
but it’s one that can significantly impact the quality of 
their games and the differentiation of one game over the 
competition. Fortunately, scalability can be addressed by 
taking advantage of new processor features and leveraging 
work being done in the research community. 

We’ve examined the evolution of consumer PC proces-
sors and seen that threading will be essential to get the 
best performance possible from future platforms. Several 
stages of the game loop will need to be executed in their 
own threads to benefit from the performance available. In 
addition, other processor extensions such as new instruc-
tion sets will provide a means for developers to intro-
duce new techniques in a scalable fashion. Using these 
processor enhancements, games will continue to mature 
and come closer to the photorealistic worlds we see in 
computer graphics-generated motion pictures.

As one step to getting there, we’ve taken a look at a 
few areas in games that developers can improve by using 
scalable techniques based on processor features and 
extensions. All three of the areas examined—trees, cloth, 

and fluids—can benefit from both threading and SIMD 
instructions. These three are only a few aspects of games 
that can scale using the processor. Other areas can be 
explored that apply scalability to the graphics hardware 
in conjunction with the processor. By applying scalability 
to elements of the game loop, developers can have the 
freedom to innovate while creating games accessible to 
the huge installed base of consumer PCs. Q
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