
A Case for Run-time Adaptation in Packet Processing Systems∗

Ravi Kokku‡ Taylor L. Riché‡ Aaron Kunze† Jayaram Mudigonda‡ Jamie Jason † Harrick M. Vin‡

‡University of Texas at Austin †Intel Corporation
{rkoku, riche, jram, vin}@cs.utexas.edu {aaron.kunze, jamie.jason}@intel.com

Abstract: Most packet processing applications receive and
process multiple types of packets. Today, the processors avail-
able within packet processing systems are allocated to packet
types at design time. In this paper, we explore the benefits
and challenges of adapting allocations of processors to packet
types in packet processing systems. We demonstrate that, for
all the applications and traces considered, run-time adaptation
can reduce energy consumption by 70-80% and processor pro-
visioning level by 40-50%. The adaptation benefits are max-
imized if processor allocations can be adapted at fine time-
scales and if the total available processing power can be allo-
cated to packet types in small granularities. We show that, of
these two factors, allocating processing power to packet types
in small granularity is more important—if the allocation gran-
ularity is large, then even a very fine adaptation time-scale
yields meager benefits.

1 Introduction
Packet processing systems (PPS) are designed to process net-
work packets efficiently. Over the past several years, the di-
versity and complexity of applications supported by PPS have
increased dramatically. Examples of applications supported
by PPS include Virtual Private Network (VPN), intrusion de-
tection, content-based load balancing, and protocol gateways.
Most of these packet processing applications involve multi-
ple types of packets; applications are specified as graphs of
functions and the specific sequence of functions invoked for
a packet depends on the packet’s type (determined based on
the packet header and/or payload) [12, 16]. For example, a
Secure Socket Layer (SSL) [10] application processes three
packet types—setup packets (that create per-flow state in the
PPS), outgoing packets (that involve encryption), and incom-
ing packets (that require decryption). Researchers are also
proposing to incorporate rich functions into network over-
lays [6, 14]. The emergence of such networks will further
increase the diversity of packet types processed by a packet
processing system.

Historically, packet processing systems were implemented
using either fixed-function hardware or general-purpose pro-
cessors. However, the increased demand for flexibility and
performance has led to the emergence of packet processing
system designs based on programmable, multi-core network
processors (NPs). Multiple processor cores enable NPs to ex-
ploit the packet-level parallelism inherent in applications, and
thereby achieve high packet processing throughput. Individ-
ual processor cores available in the NPs, however, are each
configured with a very limited size instruction store (e.g., 4K
instructions in Intel R©’s IXP2800 network processor); the lim-

∗This work is supported in part by Intel R© and NSF ITR grant ANI-
0326001.

ited instruction store is often sufficient to hold code for pro-
cessing individual packet types, but rarely enough to hold code
for all packet types. This leads to software designs in which
the responsibility for processing different packet types is parti-
tioned among the processor cores—with each core specialized
to perform one function [1].

Today, the allocation of processor cores to packet types is
done statically at design time1. Further, to guarantee robust-
ness to fluctuations in the arrival rate for different packet types,
packet processing systems often provision sufficient number
of processors to handle the expected maximum load for each
packet type. The observed load for each packet type at any
instant, however, is often substantially lower than the expected
maximum load; further, the observed load can fluctuate sig-
nificantly over time. In such settings, an adaptive run-time
environment—that can change the allocation of processors to
packet types at run-time—can conserve energy by reducing
the power consumption of idle processors (e.g., by turning off
processors or running them in low-power mode). Further, by
multiplexing processors among different types of packets, an
adaptive system can reduce the cumulative processor require-
ment (or provisioning level), and thereby reduce system cost.
In this paper, we ask the following fundamental question: how
significant are the benefits of dynamically adapting the pro-
cessors allocated to process different types of packets within a
packet processing system?

The problem of adapting processor allocations has received
considerable attention in server clusters (e.g., data centers) [4,
5, 8] and other domains [2, 9, 11, 19]. However, the problem
of adapting processor allocations in packet processing systems
has remained virtually unexplored.

In this paper, we take the first step in exploring the ben-
efits and challenges of adapting allocations of processors to
packet types in packet processing systems. We consider six
canonical packet processing applications and traces collected
from multiple network points. We demonstrate that, for all
the applications and traces considered, run-time adaptation can
reduce energy consumption by 70-80% and processor provi-
sioning level by 40-50%. The adaptation benefits are maxi-
mized if processor allocations—the mapping of packet types
to processors—can be adapted at fine time-scales and if the to-
tal available processing power can be allocated to packet types

1Today, most NPs support processor cores with instruction stores and not
instruction caches (as provided in general-purpose processors). Hence, the
specialization of processor cores is performed at system design/initialization.
Introducing support for instruction caches in NP cores does allow on-demand
loading of instructions into the caches. However, provisioning such instruc-
tion caches does not eliminate the need to specialize processor cores. This is
because, each packet processing application can be thought of as a large loop
that repeats for every packet; to ensure high packet processing throughput, the
entire loop body must fit into the instruction cache.

1



Packet type Cycles

Setup 20.913 million
Outgoing data (encryption) 325 * x
Incoming data (decryption) 325 * x

Table 1: Work-model for SSL. x is the packet size in bytes

in small granularities (or units). We show that, of these two
factors, allocating processing power to packet types in small
granularity is more important—if the allocation granularity is
large, then even a very fine adaptation time-scale yields mea-
ger benefits.

Our results expose a challenging and rich area for future
research. In particular, we argue that realizing the adaptation
benefits requires the design of a low-overhead, adaptive run-
time environment for packet processing systems.

The rest of the paper is organized as follows. We discuss
our experimental methodology for measuring adaptation ben-
efits in Section 2. Section 3 describes the results of our ex-
periments. In Section 4, we discuss the implications of our
findings; and finally, Section 5 summarizes our contributions.

2 Experimental Methodology
Our objective is to derive the benefits of adapting the allocation
of processors to packet types at run-time in packet processing
systems. To derive these benefits, we need to characterize the
fluctuations in the processing requirements for different packet
types in applications. We achieve this in three steps. First, we
profile a set of canonical packet processing applications; we
identify the different packet types involved in these applica-
tions and derive the computational requirements for processing
a packet of each type. Second, we analyze packet traces col-
lected from several sites in the Internet and derive the fluctua-
tions in the rate of packet arrival for each packet type. Third,
we combine computational profiles derived for each packet
type with its arrival rate fluctuations to compute the fluctua-
tions in the processing requirements. We utilize this informa-
tion to derive adaptation benefits. In what follows, we describe
each of these steps in detail.

2.1 Applications and Work Models
We consider six canonical packet processing applications: Se-
cure Sockets Layer [10], Network Address Translation [7],
IPv4/IPv6 Interoperability [21], TCP/IP header compression
and decompression [15], IPv4 forwarding [13], and a 3G-
wireless router (that supports IPv4/v6 interop along with
header compression functionality).

For each application in this set, we identify its important
packet types and profile the instruction cycles taken—referred
to as the work model—to process a packet of each type us-
ing the Performance Counters Library [3] on a 930MHz,
Intel R© Pentium R© III system. Our set of applications cover a
spectrum of possibilities; it includes applications with a small
to a large number of packet types, as well as applications with
highly skewed to roughly uniform distributions for the time
required to process packets of different types. For brevity, we
discuss the work models for the two applications: SSL and the

Pkt. type Cycles Pkt. type Cycles

IPv4 ICMP 4317 IPv6 ICMP 1656
IPv4 TCP FTP 16950 IPv6 TCP FTP 9387
IPv4 TCP Rest 12541 IPv6 TCP Rest 2949
IPv4 UDP DNS 20430 IPv6 UDP DNS 9042
IPv4 UDP Rest 12346 IPv6 UDP Rest 2837

Table 2: Work-model for IPv4/IPv6 interoperability

IPv4/v6 interop application. SSL involves only three packet
types—setup (that create per-flow state in the PPS), outgoing
data (that involve encryption), and incoming data (that require
decryption). Setup takes orders of magnitude greater time to
process than outgoing or incoming data (see Table 1). In the
IPv4/v6 interop case, an input packet can either be an IPv4
or an IPv6 packet; further, the processing requirements varies
depending on whether the packet is an ICMP, TCP, or a UDP
packet. The processing time required for these paths are de-
scribed in Table 2. Work models for the remaining applica-
tions are described in [17].

2.2 Packet Traces

We analyze traces collected from various points in the Inter-
net. For brevity, we only discuss two sets of traces—NLANR
traces collected over 24 hours from a link connecting New
Zealand to US [18], and one hour long traces collected from
the high-speed link connecting University of North Carolina at
Chapel Hill (UNC) to its network service provider [20]. These
traces contain 60–100 million packets. We use these traces to
estimate the fluctuations in the arrival rate for each packet type
for the applications under consideration as follows.

Each of these raw traces consists of two packet sequences—
incoming and outgoing. These two sequences represent packet
arrivals of two different types. For instance, for the IPv4/IPv6
Interoperability application, all incoming packets are con-
sidered IPv4 packets and all outgoing are considered IPv6
packets. Similarly, for SSL, all packets that contain a TCP-
SYN/SYN-ACK in either direction are marked as setup pack-
ets. All other incoming TCP packets are decrypted, and all
other outgoing TCP packets are encrypted. Non-TCP packets
are ignored. For the 3G-wireless router, all incoming pack-
ets are considered IPv4 packets, while all outgoing packets are
considered IPv6 packets. Further, we assume that, with equal
probability, each arriving packet has a compressed or an un-
compressed header, each departing packet has a compressed
or an uncompressed header, and each departing packet leaves
as is or is translated to the other version of the protocol.

For each application, once the trace of packet arrivals is de-
rived, the fluctuations in the processing requirement (or work-
load) for each packet type can be computed by scaling the
fluctuations in the arrival rates for each packet types by the
corresponding work model information. Figure 1(a) illustrates
the variation in the processing requirements observed in the
first 250 intervals (of length 5ms) of a UNC trace for different
packet types of the TCP/IP header compression application.
Figure 1(b) plots the cumulative distribution function (CDF)
for the normalized workload (normalized with respect to the
maximum observed workload during the entire trace) for each

2



 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250

W
or

k 
re

qu
ire

d 
in

 th
e 

in
te

rv
al

Time interval

ALL
COMPRESS

NO COMPRESS
DECOMPRESS

NO DECOMPRESS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

F
ra

ct
io

n 
of

 In
te

rv
al

s

Normalized work per time interval

ALL
COMPRESS

NO COMPRESS
DECOMPRESS

NO DECOMPRESS

(a) Variation of work with time (b) CDF of work normalized to the respective peaks

Figure 1: Analysis of the header compression application

packet type. These graphs show that the typical processing re-
quirements can be significantly lower than the peak usage for
all packet types, indicating that the benefits of run-time adap-
tation can be substantial.

2.3 Metrics of evaluation
We derive an estimate for the ideal benefits of adapting pro-
cessor allocation at run-time in packet processing systems as
follows.

We define τ as the smallest time interval for which the work-
load for each packet type is measured. Further, we define τ∗ I,
where I is an integer, as the length of the adaptation interval.
In accordance with today’s common practice (as discussed in
Section 1), we assume that within any adaptation interval, pro-
cessors allocated to a packet type can only process packets of
that type; and the allocation of processors to packet types can
only be changed at the boundaries of the intervals. Thus, the
time duration τ∗ I defines the adaptation time-scale.

Let P be the set of packet types for an application, and let W j
p

denote the workload for some packet type p ∈ P during the jth
adaptation interval, among n adaptation intervals of size τ ∗ I.
Note that W j

p is equal to the number of packet arrivals of type p
in interval j times the work model information for that packet
type. The maximum workload for packet type p observed dur-

ing any interval of size τ is given by: max
j∈[1...n]

(

W j
p /I
)

.

We define processor allocation granularity (or the unit of
processor allocation) G in terms of the amount of workload
a processor can process in time interval τ. In particular, we
consider a range of values for G given by: G = g ∗Wmax(τ),
where 0 < g ≤ 1 and Wmax(τ) = ∑

p∈P
max

j∈[1...n]

(

W j
p /I
)

. Thus,

in a system provisioned with sufficient processors to meet the
maximum processing demands (given by Wmax(τ)), by select-
ing different values of g, we explore the spectrum where the
total processing requirements are met by using a small num-
ber of large processors (i.e., with large values of G ) or a large
number of small processors (i.e., small values of G ).

Given G , the grunularity for processor allocations, the num-
ber of processors allocated to process packet type p in the jth

adaptation interval (of length τ∗ I) is given by

⌈

(W j
p /I)
G

⌉

.

To guarantee robustness to fluctuations in the arrival rate
for different packet types, a non-adaptive system must pro-
vision sufficient processors to handle the maximum load for
each packet type. Thus, the processor provisioning (denoted
by sum max) for a non-adaptive system is given by:

sum max = ∑
p∈P

max
j∈[1...n]

(⌈

(W j
p /I)
G

⌉)

(1)

The average number of processors (denoted by sum avg)
utilized in an adaptation interval is given by:

sum avg =
1
n ∑

p∈P

n

∑
j=1

(⌈

(W j
p /I)
G

⌉)

(2)

An adaptive packet processing system can conserve energy
by reducing the power consumption of idle processors within
each adaptation interval. Thus, the adaptation benefits (de-
noted by Btotal) is equal to the average of the percentage of
processors that are idle across all adaptation intervals, and is
given by:

Btotal = 1−
sum avg

sum max
(3)

The maximum number of processors (denoted by max sum)
active during any adaptation intervals is given by:

max sum = max
j∈[1...n]

(

∑
p∈P

⌈

(W j
p /I)
G

⌉)

(4)

A system that can multiplex processors among different
packet types would never utilize (sum max−max sum) pro-
cessors. Thus, an adaptive system can help reduce the provi-
sioning level of the system to max sum; in doing so, it helps
reduce the system cost. We denote this multiplexing benefit as
Bmux and quantify it as follows:

Bmux = 1−
max sum

sum max
(5)

3



V4-V6-INTEROP VJ-COMP IPFWD NAT SSL 3G
0

20

40

60

80

100

To
tal

 B
en

efi
t %

UN
C1

UN
C2

NL
AN

R1

NL
AN

R2

UN
C1

UN
C2

NL
AN

R1

NL
AN

R2

UN
C1

UN
C2 NL

AN
R1

NL
AN

R2

UN
C1

UN
C2

NL
AN

R1

NL
AN

R2 UN
C1

UN
C2

NL
AN

R1

NL
AN

R2

UN
C1

UN
C2

NL
AN

R1

NL
AN

R2

Figure 2: Benefits of adaptation for different applications and workloads. The dark grey bars represent Bmux.

V4-V6-INTEROP VJ-COMP IPFWD NAT SSL 3G
0

20

40

60

80

100

To
tal

 B
en

efi
t %

0% .00
1%

.01
%

.1%

0%

.00
1%

.01
%

.1%

0% .00
1%

.01
%

.1%

0%

.00
1%

.01
%

.1%

0% .00
1%

.01
%

.1%

0% .00
1%

.01
%

.1%

Figure 3: Benefits of adaptation for different applications with the UNC1 trace at processor provisioning levels.

To derive our estimate of the ideal adaptation benefits, we
make several simplifying assumptions. First, we assume that
processor allocation can be adapted instantaneously; the adap-
tation process itself imposes no overhead and consumes no
processors. Second, we assume that an adaptive system allo-
cates precisely the right amount of processors needed to pro-
cess each packet type within each adaptation interval. Third,
we assume that the processor requirements grow linearly with
workload. Finally, we assume that the set of packets arriving
within an interval are serviced by the end of the interval; and
that the system contains sufficient memory to buffer packets
for the duration of the adaptation interval. In reality, realiz-
able benefits get influenced by many practical considerations,
which we discuss in Section 4.

3 A Case for Run-time Adaptation
In this section, we analyze the benefits of adapting proces-
sor allocations to packet types as a function of three param-
eters: the processor provisioning level for a non-adaptive sys-
tem (sum max), the time-scale of adaptation (I), and processor
allocation granularity (G ). For our analysis, we assume that τ,
the minimum time-scale for measuring packet arrivals, is set
to 100 times the average inter-packet arrival time in the trace
(this translates to 4.7ms for the UNC trace).

Best-case Analysis: Because the workload for packet types
fluctuate significantly at very small time-scales, adaptation
benefits are maximized if processor allocations can be adapted
at fine time-scales and if the processor allocation granularity
can be small. To estimate this best-case benefits, we con-
sider a system where processor allocation is adapted every τ
time units (i.e., I = 1), the granularity of processor alloca-
tions is small (g = 0.0001), and the system is provisioned with
sum max processors. Figure 2 shows the total adaptation ben-
efits Btotal and the multiplexing benefits Bmux for all the appli-
cations and several traces. It illustrates that run-time adapta-

tion can reduce energy consumption by 70-80% and processor
requirements by up to 40-50% for all applications under all
traces.

Figure 2 also illustrates that the contribution of Bmux to
Btotal varies across applications. This is because the work-
loads for the applications differ from each other along three
dimensions: (1) number of packet types, (2) work model for
the packet types, and (3) the correlation between the arrivals of
different packet types. For example, in SSL, multiplexing ben-
efits are significantly smaller than in other applications. This
is because, SSL supports only three packet types and the work
required to process setup packets is two orders of magnitude
larger than that needed for other packet types (see Table 1). In
this case, the workload within any interval is dominated by one
packet type, thus reducing the opportunity for processor mul-
tiplexing. For the 3G-wireless application, on the other hand,
multiplexing benefits are higher because of two reasons: (1)
the application contains a large number of packet types and
with similar computational requirements, and (2) the arrival
rate of a particular packet type is not correlated to that of other
types. This observation also indicates that a system that sup-
ports multiple independent packet processing applications will
exhibit significant processor multiplexing benefits.

Variation with Processor Provisioning Levels: In this exper-
iment, we evaluate the impact on the adaptation benefits of
changing the processor provisioning level. In particular, we
experiment with different provisioning levels such that in a
non-adaptive system, at most L% (for different values of L)
of the packets received within an adaptation interval cannot be
serviced prior to the end of the interval (and hence experience
significant queuing delays). Figure 3 illustrates that although
the multiplexing benefits reduce with increase in L, the total
adaptation benefits remain significant (50-70%) even for sig-
nificant values of L (0.1%).

4



 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000  100000

T
ot

al
 B

en
ef

it 
%

Adaptation Time-scale (in ms)

V4-V6-INTEROP
VJ-COMP

IPFWD
NAT
SSL
3G

Figure 4: Variation of benefits with τ ∗ I for various applica-
tions with the UNC1 trace.

 0

 20

 40

 60

 80

 100

 0.001  0.01  0.1  1  10

T
ot

al
 B

en
ef

it 
%

Resource Granularity (in terms of g)

V4-V6-INTEROP
VJ-COMP

IPFWD
NAT
SSL
3G

Figure 5: Variation of benefits with g for various applications
with the UNC1 trace.

Variation with I and G : We now evaluate the impact on adap-
tation benefits of varying the adaptation time-scale I and the
processor allocation granularity G for different values of g;
we consider the case where the system is provisioned with
sum max processors.

Figure 4 shows the effect of increasing I on the total adapta-
tion benefits Btotal (with g = 0.0001). It illustrates that the ben-
efits decrease with increase in I. For instance, adapting proces-
sor allocations at 1 second time-scales yields 40-60% benefits
(down from 80-90% for I = 1) for all the applications. The
greater the adaptation time-scale (I), the greater the opportu-
nity to average out instantaneous bursts of packet arrivals (and
hence workload) over a longer duration, and hence the smaller
is the difference between the required processor provisioning
level (sum max) and the average processor requirements. Ob-
serve, however, that provisioning processor resources to match
the average requirements over longer time-scales increases the
average delay incurred by packets.

Figure 5 shows the effect of increasing processor allocation
granularity G (by increasing values of g) on the total benefits
(with I = 1). It illustrates that when the average workload in an
interval is sufficiently larger than the processor granularity G ,
then increasing G has little effect on the adaptation benefits.
However, as G approaches the average workload W p

i of each
packet type per interval, the adaptation benefits fall sharply.

Time-scale (in ms)Resource Granularity
(in terms of g)

T
ot

al
 B

en
ef

it 
%

 1
 10

 100
 1000

 10000
 100000

 0.001
 0.01

 0.1
 1

 10

 0

 20

 40

 60

 80

 100

Figure 6: Variation of benefits with τ ∗ I and g for the header
compression application with the UNC1 trace.

The adaptation benefits become zero when the processor gran-
ularity is large enough (G ≥ max

j∈[1...n]
W p

i ) such that at most one

processor per packet type is required in any interval. For some
applications and traces, some of the intervals contain no packet
of certain types; in these cases, an adaptive system can con-
serve energy by turning off those processors, and hence the
benefit does not drop down to zero. This analysis suggests that
an NP architecture that supports a large number of small pro-
cessor allocation units will achieve higher adaptation benefits
as compared to an architecture that supports a small number of
large processor allocation units.

Figure 6 shows the effect of simultaneously varying both
the time-scale of adaptation (I) and the granularity of proces-
sor allocation (g) on the total benefits. It illustrates that ensur-
ing that allocating processors at small granularities is crucial.
At coarse processor allocation granularities, regardless of the
adaptation time-scales, the adaptation benefits are meager.

4 Run-time Adaptation: Challenges
In the previous section, we have demonstrated that run-time
adaptation of processor allocation can yield significant benefits
for packet processing systems. In this section, we argue that
realizing these benefits can be quite challenging. It requires
the design of a run-time environment for packet processing
systems that can address the following fundamental questions:
(1) when should processor allocations be adapted? (2) what
should the revised processor allocation be? and (3) what mech-
anisms should the packet processing systems support to facil-
itate adaptation of processor allocations at small time-scales
and processor granularities? Observe that the above questions
need to be addressed in any system (e.g., server clusters in data
centers) that supports dynamic adaptation of processor alloca-
tions. However, addressing these questions in packet process-
ing systems is significantly more involved than conventional
server cluster because of the following two reasons.

First, there is a significant difference in the time-scales at
which requests are received and processed at a packet pro-
cessing system and at a server cluster. A cluster-based web
server generally receives and processes at most hundreds or a
few thousand requests per second. A packet processing system

5



supporting multiple gigabit ports, on the other hand, receives
and processes hundreds-of-thousands to millions of packets
per second. Hence, the adaptation time-scales in packet pro-
cessing systems are likely to be significantly smaller than con-
ventional server clusters. Unfortunately, because of the high
rate of packet arrivals, profiling and predicting workload at
fine time-scales is prohibitively expensive. A packet process-
ing system may monitor the traffic at coarser time-scales; how-
ever, doing so adversely affects the system’s ability to react
rapidly to traffic fluctuations (and thereby decreases the real-
izable adaptation benefits). Thus, monitoring and predicting
packet arrivals, and hence determining when processor alloca-
tions should be adapted, is significantly more challenging in
packet processing systems.

Second, most network processors today support multiple
processor cores, each with multiple hardware threads (or con-
texts). For instance, Intel R©’s IXP2800 network processor sup-
port 16 processors cores with 8 hardware threads each (with a
total of 128 hardware threads). If hardware threads are the
units of allocation, then such network processor architectures
can support processor allocations with g < 0.01. As our re-
sults indicate, at these g values, a packet processing system
can achieve much of the adaptation benefits. Realizing these
benefits, however, is challenging. This is because each proces-
sor core in these network processors is configured with only
a small amount of instruction store (e.g., 4K instructions in
IXP2800). The limited instruction store sizes make it impos-
sible to provision hardware threads on each processor with the
code for processing all packet types. Thus, a run-time adapta-
tion system is required to determine the mapping of code for
subsets of packet types onto different threads/processors such
that the instruction store constraints are not violated, and yet
the computational requirements for all packet types are met.
This mapping is a function of the workload; with fluctuations
in the workload the mapping may need to be adapted. Further,
to minimize the impact of run-time adaptations on system per-
formance, the derivation of the mapping from packet types to
processors and the transitioning of the system from one alloca-
tion state to another must be performed within a small fraction
of adaptation time-scale. The design of such a light-weight
run-time adaptation system poses significant challenges.

5 Conclusion
Most packet processing applications receive and process mul-
tiple types of packets. Today, the processors available within
packet processing systems are allocated to these packet types
at design time. In this paper, we explore the benefits and chal-
lenges of adapting processor allocations at run-time in packet
processing systems. We demonstrate that, for all the packet
processing applications and traces considered, run-time adap-
tation reduces energy consumption by 70-80% and processor
provisioning level by 40-50%. The adaptation benefits are
maximized if processor allocations can be adapted at fine time-
scales and if processing power can be allocated in small gran-
ularities; of these two factors, allocating processors in small
granularity is more important—if processing power can be al-
located only at coarse granularities, even a very fine adapta-

tion time-scale yields meager benefits. We argue that real-
izing these adaptation benefits requires the design of a low-
overhead, adaptive run-time environment for packet process-
ing systems.

References
[1] Intel IXA Software Developers Kit 3.0.

http://www.intel.com/design/network/products/npfamily/sdk3.htm.

[2] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory Hierarchy Reconfiguration for Energy and Per-
formance in General-Purpose Processor Architectures. In Proceedings
of International Symposium on Microarchitecture, December 2000.

[3] R. Berrendorf and B. Mohr. PCL - The Performance Counter Library:
A Common Interface to Access Hardware Performance Counters on Mi-
croprocessors. http://www.fz-juelich.de/zam/PCL/doc/pcl/pcl.pdf.

[4] A. Chandra, P. Goyal, and P. Shenoy. Quantifying the Benefits of Re-
source Multiplexing in On-demand Data Centers. In Proceedings of the
First Workshop on Algorithms and Architectures for Self-Managing Sys-
tems, June 2003.

[5] J. S. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing
Energy and Server Resources in Hosting Centers. In Proceedings of the
Eighteenth ACM Symposium on Operating Systems Principles (SOSP),
October 2001.

[6] S. Choi and J. Turner. Configuring Sessions in Programmable Networks
with Capacity Constraints. In Proceedings of IEEE ICC, May 2003.

[7] K. Egevang and P. Francis. The IP Network Address Translator (NAT).
IETF RFC 1631, May 1994.

[8] M. Elnozahy, M. Kistler, and R. Rajamony. Energy Conservation Poli-
cies for Web Servers. In Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS), March 2003.

[9] J. Flinn and M. Satyanarayanan. Energy-aware Adaptation for Mobile
Applications. In Proceedings of Symposium on Operating Systems Prin-
ciples, December 1999.

[10] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol Version
3.0. Internet Draft, November 1996.

[11] M. Huang, J. Renau, and J. Torrellas. Positional Adaptation of Proces-
sors: Application to Energy Reduction. In Proceedings of International
Symposium on Computer Architecture, June 2003.

[12] N. C. Hutchinson and L. L. Peterson. The x-Kernel: An Architecture
for Implementing Network Protocols. IEEE Transactions on Software
Engineering, 17(1), 1991.

[13] Internet Protocol. IETF RFC 791, September 1981.

[14] Intel IXP2400 Network Processor Hardware Reference Manual, January
2003.

[15] V. Jacobson. Compressing TCP/IP Headers for Low-speed Serial Links.
IETF RFC 1144, February 1990.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click Modular Router. ACM Transactions on Computer Systems, 18(3),
August 2000.

[17] R. Kokku, T. L. Riché, A. Kunze, J. Mudigonda, J. Jason, and H. M. Vin.
A Case for Run-time Adaptation in Packet Processing Systems. Techni-
cal Report TR-03-27, Department of Computer Sciences, The University
of Texas at Austin, November 2003.

[18] NLANR Network Traffic Packet Header Traces.
http://pma.nlanr.net/Traces/.

[19] P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems. In Proceedings of 18th ACM Sym-
posium on Operating Systems Principles, October 2001.

[20] F. D. Smith, F. H. Campos, K. Jeffay, and D. Ott. What TCP/IP Protocol
Headers Can Tell Us About the Web. In Proceedings of ACM SIGMET-
RICS 2001/Performance 2001, June 2001.

[21] G. Tsirtsis and P. Srisuresh. Network Address Translation - Protocol
Translation (NAT-PT). IETF RFC 2766, February 2000.

6


