
Exposing Resource Tradeoffs in Region-Based
Communication Abstractions for Sensor Networks

Matt Welsh
Harvard University

mdw@eecs.harvard.edu

Abstract
We argue that communication abstractions for wireless sensor networks
should expose the tradeoff between accuracy and resource usage, al-
lowing applications to adapt to changing network conditions and tune
energy and bandwidth requirements. We describeabstract regions, a
family of spatial operators that capture local communication within re-
gions of the network, which may be defined in terms of radio connectiv-
ity, geographic location, or other properties of nodes. Abstract regions
provide feedback on the quality of collective operations, and expose an
interface for tuning resource consumption. We present the implemen-
tation of abstract regions in the TinyOS programming environment, as
well as preliminary results demonstrating their use for building adaptive
sensor network applications.

1 Introduction
Sensor networks are an emerging computing platform consisting
of large numbers of small, low-powered, wireless “motes” each
with limited computation, sensing, and communication abili-
ties. Sensor networks are being investigated for applications
such as environmental monitoring [4, 17], seismic analysis of
structures [3, 12], and tracking moving vehicles [18]. Still, sen-
sor network programming is incredibly difficult, due to the lim-
ited capabilities and energy resources of each node as well as the
unreliability of the radio channel.

As a result, application designers must make many complex,
low-level choices, and build up a great deal of machinery to per-
form routing, time synchronization, node localization, and data
aggregation within the sensor network. Little of this machinery
carries over directly from one application to the next, as it en-
capsulates application-specific tradeoffs in terms of complexity,
resource usage, and communication patterns. Many novel algo-
rithms and communication paradigms have been developed for
sensor networks, such as directed diffusion [11], TinyDB [15],
and GHT [19]. Though each of these mechanisms has a wide
range of internal parameters that affect resource usage, these
“tuning knobs” are typically not exposed to applications. Our
goal is to simplify sensor network development by providing
communication abstractions that expose the inherent tradeoffs
between resource consumption and accuracy.

In this paper, we describeabstract regions, a programming
model that supports collective communication over network re-
gions defined in terms of radio connectivity, geographic area,
or other properties of nodes. In addition to providing a flex-
ible means of node addressing within local neighborhoods of

each node, abstract regions support sharing of data using a tuple-
space-like programming model as well as efficient aggregation
over shared variables. Abstract regions support adaptivity to
changing network conditions by providing feedback on the accu-
racy of collective operations as well as exposing a set of tuning
knobs that control resource usage.

Abstract regions are general enough to support a wide range
of sensor network applications and form the basis for other,
higher-level communication models. In this paper we motivate
their use through two application examples, and describe sev-
eral implementations, including geographic and radio neighbor-
hoods, spanning trees, and an approximate planar mesh. We
present preliminary results highlighting the resource consump-
tion/quality tradeoff in abstract regions and their use for enabling
adaptive application design.

2 Motivation and Background
Sensor networks have attracted increasing interest from research
and industry. The potential to instrument the physical world at
high resolution and low cost opens up a wide range of novel ap-
plications in areas such as engineering [3, 12], biology [4, 17],
and medicine [5, 21]. The future success of sensor networks de-
pends to a large extent on the programming and communication
abstractions presented to application developers.

The bandwidth and energy limitations of sensor nodes typ-
ically require that in-network processing be performed to re-
duce the amount of data that must be transferred out of the net-
work. Application designers are therefore faced with the prob-
lem of decomposing an initially straightforward data-collection
task into a parallel program with local communication among
sensor nodes. Unlike traditional distributed computing environ-
ments, sensor networks do not have the benefit of reliable, any-
to-any communication channels. Moreover, sensor networks
may exist in highly volatile environments, resulting in frequent
node and communication failure. As a result, it is often desirable
to consume fewer resources (e.g., energy or radio bandwidth)
to obtain an approximate result, rather than pay an arbitrary re-
source cost for complete accuracy.

Communication performance depends on a number of fac-
tors, including node density, radio channel quality, and local
activity within the network. Moreover, these factors are gen-
erally not knowna priori and may be highly dynamic. Given
the diverse needs of sensor network applications, we argue that
communication abstractions should expose the quality/resource

consumption tradeoff, allowing applications to make informed
decisions as to the cost of operations. This approach makes ap-
plications part of the control loop, rather than hiding adaptive
logic within underlying layers.

Two important issues are how to define the set of tuning
“knobs” and how feedback is provided to applications. For ex-
ample, an algorithm for computing the maximum value over a
set of neighboring nodes may be parameterized in terms of the
maximum number of nodes to communicate with, the number
of retransmission attempts for each message, and the timeout for
waiting for replies from each node. Different settings for these
parameters translate into tradeoffs for accuracy, latency, energy
consumption, and channel contention. Applications should be
given control over these parameter settings and information on
their associated resource cost.

A number of systems share our goal of providing a high-
level programming framework for sensor networks [7, 8, 11, 19].
Most of these systems provide a fairly broad set of services, and
some require that applications conform to a given communica-
tion pattern. For example, TinyDB [15] allows data collection
queries to be pushed into the network, and is focused on relay-
ing aggregate data along a spanning tree rooted at a base station,
rather than performing more general local computations within
the network. TinyDB relies on low-level implementations of
data aggregation operators to build up queries; one could not
easily build an object tracking application directly in TinyDB,
unless TinyDB were to provide an object-tracking operator. In
contrast, we are interested in providing a lower-level set of com-
munication abstractions that support local processing within the
network and can be used to implement higher-level applications
and services.

Several adaptive communication mechanisms for sensor net-
works have been proposed. In many cases, adaptation is hid-
den within the protocol layer itself, while in others some mea-
sure of control is exposed to the application. SPIN [9] is a set
of data dissemination protocols that adapt to energy availability
by reducing protocol overhead when energy resources are low.
TinyDB provides alifetimekeyword that scales the query sam-
pling and transmission period to meet a user-supplied network
lifetime [16]. Bouliset al. [1] describe an aggregation mecha-
nism that exposes an energy/accuracy knob to the user. These
approaches are steps in the right direction, and our goal is to
identify a unified communication framework that captures these
resource tradeoffs at runtime for a broad set of applications.

3 Abstract Regions
Sensor network applications are often expressed in terms of re-
gions over which local sampling, computation, and communica-
tion occur. For example, tracking a moving object involves ag-
gregating sensor readings from nodes near the object. Abstract
regions are a communication abstraction intended to simplify
application development by providing a region-based collective
communication interface. Abstract regions capture the inherent
locality of communication and hide the details of data dissemi-
nation and aggregation within regions.

An abstract region is a collection of sensor nodes with an as-
sociatedroot node. Membership within the region is defined in

terms of some predicate over each node’s relationship to the root.
For example, one region definition is “the set of nodes withinN
radio hops from the root.” Other predicates may be used to de-
fine regions, such as the set of nodes within distanced. The
region defines the notion of the “local neighborhood” around a
node, which is useful when performing local, spatial computa-
tions within the sensor network. In general, each node in the
sensor network defines a set of abstract regions that it wishes to
operate over. Note that a node can belong to more than one re-
gion at a time: for example, node will belong to several different
N -radio-hop regions rooted at different nodes.

Abstract regions support the following set of operators:
Region formation: Before performing other operations on a re-
gion, the root first initiates formation of the region, which iden-
tifies the nodes that are members. Depending on the type of
region, this may require broadcasting messages, collecting in-
formation on node locations, or estimating link quality between
participating nodes.
Enumeration: The enumeration operator retrieves the set of
nodes participating in the region, allowing them to be addressed
directly. Supplemental information, such as the location of each
node, may be returned as well.
Data sharing: The data sharing operator allows variables, rep-
resented as key/value pairs, to be shared amongst nodes in the
region.get(v,n)retrieves the value of variablev from noden, and
put(v,l)stores the valuel of variablev at the local node. Depend-
ing on the implementation, data sharing may involve broadcast-
ing shared variables to the region, gossiping, or separate fetch
messages for eachgetoperation.
Reduction: The reduction operator takes a shared variable key
and an associative operator (such assum, max, or min) and re-
duces the shared variable across nodes in the region, storing the
result in a shared variable at the root. Alternatively, the result
may be broadcast to all nodes in the region.

3.1 Quality feedback and tuning interface
Abstract region operations are unreliable in the sense that they
do not guarantee that all potential nodes in the region will be
contacted. Region formation and reduction return aquality mea-
surethat represents the completeness or accuracy of a given op-
eration. The quality of region formation represents the fraction
of candidate nodes that responded to the formation request. Re-
duction quality represents the fraction of nodes in the region that
participated in the reduction.

Applications can use this quality feedback to affect resource
consumption of collective operations through atuning interface.
For example, region formation may be tuned by adjusting the
number of messages, amount of time, or number of candidate
nodes to consider. Likewise, data sharing and reduction perform
message retransmission and acknowledgment to increase the re-
liability of communication; the depth of the transmit queue and
number of retransmission attempts can be tuned by the applica-
tion.

In our current implementation, the set of parameters exposed
by the tuning interface are somewhat low-level and may be spe-
cific to the particular region implementation. We are currently
working on a resource-centric tuning mechanism that allows the

d

(a) Geographic region (b) Planar mesh (c) Spanning tree

Figure 1:Examples of abstract regions.

programmer to express an energy, radio bandwidth, or latency
budget for each operator, and which maps these constraints onto
the appropriate low-level parameter settings. This is discussed
further in Section 5.

3.2 Implementations
Given the diverse needs of sensor network applications, we ex-
pect a range of abstract region definitions will be useful to pro-
grammers. We have completed several abstract region imple-
mentations, with several others underway. Three examples are
shown in Figure 1. They include:

• N -radio hop: All nodes withinN radio hops of the root;
• N -radio hop with geographic filter:All nodes withinN

radio hops and distanced from the root;
• k-nearest neighbor:k nearest nodes withinN radio hops;
• k-best neighbor:k nodes withinN radio hops with the

highest link quality to the root, as measured in fraction of
packets dropped over some measurement interval;

• Approximate planar mesh:A mesh with a small number
(possibly zero) crossing edges; and

• Spanning tree:A spanning tree rooted at a single node,
used for aggregating values over the entire network.

Abstract regions are implemented innesC[6], a component-
oriented programming language for sensor networks using
the TinyOS [10] operating system. TinyOS is designed for
low-power, resource-constrained sensor nodes, such as the
UC Berkeley MICA mote. This device consists of a 4 MHz At-
mega128 processor, 128KB of code memory, 4KB of data mem-
ory, and a Chipcon CC1000 radio capable of 38.4 Kbps and an
outdoor transmission range of approximately 300m. The lim-
ited memory and computational resources of this platform make
an interesting design point, as traditional programming models
(such as threads or complex protocol stacks) cannot be imple-
mented. TinyOS uses an event-driven design and provides an
unreliable radio communication stack.

3.2.1 Radio and geographic neighborhoods

The implementation of the radio and geographic neighborhoods
is straightforward. Forming the region involves broadcasting
node advertisements that the root uses to select a set of mem-
ber nodes. Data sharing may be implemented using either a
“push” (put broadcasts updates to neighboring nodes) or “pull”
(getsends a fetch message to the corresponding node) approach;
our current implementation uses the latter. Reduction involves
collecting shared variable values at the root and combining them
with the reduction operator, storing the result in a shared variable
at the root.

3.2.2 Approximate planar mesh

Planar meshes, such as the Delaunay triangulation [20], are use-
ful for spatial computation (e.g., dividing space into nonoverlap-
ping cells), but generally require extensive interprocessor com-
munication to compute. We have implemented anapproximate
planar mesh in which a small number of edges may cross, using
only communication within local neighborhoods of each node.

Our algorithm is based on a pruned Yao graph [14] and op-
erates as follows. First, each node forms ak-nearest radio re-
gion of candidate nodes. Each node then forms the Yao graph
by dividing space around it intom equal-sized sectors of angle
θ = 2π/m and selecting the nearest node within each sector as a
potential neighbor. Next, each node advertises its set of selected
outedges with a single-hop broadcast. Upon reception of an edge
advertisement, nodes test whether the given edge crosses one of
its own outedges, and if so send an invalidation message to the
source, causing it to prune the offending edge from its set. Nodes
do not select additional neighbors beyond the initial candidates,
so a node may end up with fewer thanm outedges. Nodes per-
form several rounds of edge set broadcasts and wait for some
time before settling on a final set of neighbors. Data sharing and
reduction are implemented using the same components as in the
radio neighborhood, as all neighbors are one radio hop away.

3.2.3 Spanning tree

Spanning trees are useful for aggregating values within the sen-
sor network at a single point, as demonstrated by systems such
as TinyDB [15]. The spanning tree region is formed by broad-
casting messages indicating the source node ID and number of
hops from the root; nodes rebroadcast received advertisements
with their own ID as the source and the hopcount incremented
by 1. Nodes select a parent in the tree based on the lowest hop-
count advertisement they receive. Data sharing is implemented
by sendingputdata to the root, which caches the value for future
getoperations. Reduction is performed by flooding a request to
all nodes in the spanning tree, causing each node to aggregate its
local value with that of its children and propagate the result to
its parent.

3.3 Applications
Abstract regions are general enough to support a wide range of
sensor network applications, shielding developers from much of
the complexity of low-level communication while still exposing
meaningful efficiency/quality tradeoffs. In this section we de-
scribe two simple applications based on abstract regions: track-
ing an object in the sensor field and finding spatial contours in
sensor readings.

3.3.1 Object tracking

Object tracking is an oft-cited application for sensor net-
works [2, 22] and involves determining the location and velocity
of a moving object by detecting changes in magnetic field. Our
version of object tracking uses a simple algorithm1 in which
nodes take periodic magnetometer readings and compare them
to a threshold value. Nodes above the threshold communicate

1This algorithm is based on one used in the UC Berkeley NEST project
demonstration software, which has not yet been published.

with their neighbors and identify the centroid of nearby sensor
readings, transmitting the result to a base station.

The following pseudocode shows this application expressed
in terms of abstract regions:2

location = get_location();
/* Get 8 nearest neighbors */
region = k_nearest_region.create(8);

while (true) {
reading = get_sensor_reading();
region.putvar(reading_key, reading);
region.putvar(reg_x_key, reading * location.x);
region.putvar(reg_y_key, reading * location.y);

if (reading > threshold) {
/* Compute ID of the node with the maximum value */
max_id = region.reduce(OP_MAXID, reading_key);
if (max_id == my_id) {

sum = region.reduce(OP_SUM, reading_key);
sum_x = region.reduce(OP_SUM, reg_x_key);
sum_y = region.reduce(OP_SUM, reg_y_key);
centroid.x = sum_x / sum;
centroid.y = sum_y / sum;
send_to_basestation(centroid);

}
}

}

The program performs essentially all communication through
the abstract regions interface, in this case thek-nearest-
neighborhood. Nodes store their local sensor reading and the
reading scaled by thex andy dimensions of their location as
shared variables. Nodes above the threshold perform a reduction
to determine the node with the maximum sensor reading, which
is responsible for calculating the centroid of its neighbors’ read-
ings. A series of sum-reductions is performed over the shared
variables which is used to compute the centroid, given as

cx =
∑

i

Rixi/
∑

i

Ri

cy =
∑

i

Riyi/
∑

i

Ri

wherecx andcy are the(x, y)-coordinates of the centroid,Ri is
the reading at nodei, andxi andyi are the(x, y)-coordinates of
nodei.

3.3.2 Contour finding

The contour finding problem is expressed as determining a set
of points in space that lie along, or close to, an isoline in the gra-
dient of sensor readings. For example, a contour may represent
the frontier of an event of interest, such as a thermocline. Con-
tour finding is a valuable spatial operation as it compresses the
per-node sensor data into a low-dimensional surface.

Our contour finding application is depicted in Figure 2.
Nodes first form an approximate planar mesh region, as de-
scribed earlier. Each node stores its local sensor reading as a
shared variable. Nodes that are above the sensor threshold of
interest fetch readings from their neighbors. For each neighbor
that is below the threshold, the node advertises a contour point
as the midpoint between itself and its neighbor. This results in

2For brevity, the use of tuning and quality feedback is not shown in this
example.

Figure 2: Contour finding application. The shaded region repre-
sents an area where sensor readings fall above a threshold. Nodes are
connected into an approximate planar mesh, shown as edges between
nodes. Each contour point is chosen as the midpoint between a node
above the threshold and a node below the threshold.

a small number of contour points advertised along the threshold
boundary.

4 Evaluation
In this section, we demonstrate use of abstract regions in three
scenarios: shared variable reduction, construction of the approx-
imate planar mesh, and tracking a moving object through the
sensor field. For reduction, the fundamental resource/quality
tradeoff is the number of messages transmitted versus the num-
ber of candidate nodes participating in the reduction. For mesh
formation and object tracking, performance depends on a num-
ber of factors including number of messages sent, timing, and
physical density of the sensor network.

These results were obtained using TOSSIM [13], a simula-
tion environment that executes TinyOS code directly; hence, our
abstract region code can either run directly on real sensor motes
or in the TOSSIM environment. TOSSIM incorporates a realis-
tic radio connectivity model based on data obtained from a trace
of radio performance on the Berkeley MICA motes in an out-
door setting. We simulate a network of 100 nodes distributed
semi-irregularly in a20 × 20 foot area. Because TOSSIM does
not currently simulate the energy consumption of nodes, we re-
port the number of radio messages sent as a rough measure of
energy consumption. On the MICA platform, radio communi-
cation dominates CPU energy usage by several orders of magni-
tude.

4.1 Adaptive reduction algorithm
Here, we evaluate the use of abstract regions to implement an
adaptive reduction algorithm. By performing reduction over a
subset of neighbors, nodes can trade off energy consumption for
accuracy. As described earlier, the reduction operator provides
quality feedback in the form of the fraction of nodes that re-
sponded to the reduce operation. Over an unreliable radio link,
this yield is directly related to the number of retransmission at-
tempts made by the underlying transport layer, as shown in Fig-
ure 3. Moreover, the appropriate retransmission count to meet a
given yield is a function of the local network density and channel
characteristics, which vary across space and time.

We implemented a simple adaptive reduction algorithm that
attempts to maintain a yield target of 75%. The algorithm con-
trols the number of retransmission attempts made by the trans-
port layer with a simple additive-increase/additive-decrease con-

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9 10
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

M
es

sa
ge

s
pe

r n
od

e
pe

r r
ed

uc
tio

n

A
ve

ra
ge

 y
ie

ld

Retransmit count

Messages per node per reduction
Average yield

Figure 3:Reduction yield and overhead in thek-nearest neighbor-
hood region. This figure shows the average yield (fraction of neigh-
bors responding to a reduction request) and number of messages for
reduction operations. The yield and overhead are directly related to the
number of retransmission attempts made by the transport layer.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

M
es

sa
ge

s
pe

r n
od

e

Fr
ac

tio
n

of
 c

ro
ss

ed
 e

dg
es

Number of broadcasts

Number of messages per node
Fraction of crossed edges

Figure 4:Quality and overhead of the pruned Yao graph as a function
of number of message broadcasts.

troller. Nodes form ak-nearest-neighbor region (withk = 8)
and repeatedly perform a max-reduce over a local sensor read-
ing. When the yield is above 85%, the algorithm reduces the
retransmission count by 1, and when the yield is below 65%, the
algorithm increases the count by 1. Using this algorithm, nodes
achieve an average yield (over a sample run of 200 reductions) of
0.778 with an average of 28.3 messages per node per reduction.3

Each node is tuned to the appropriate number of retransmission
attempts that it requires to meet the quality target.

4.2 Approximate planar mesh construction
Constructing an approximate planar mesh is a tradeoff between
the number of messages sent and the quality of the resulting
mesh, which we measure in terms of the fraction of crossing
edges. Given the unreliable nature of the communication chan-
nel, our pruned Yao graph algorithm cannot guarantee that the
mesh will be planar. For many applications, a perfect mesh is
not necessary, since planarity is impossible to guarantee if there
is measurement error in node localization.

3In the best case, with no lost messages, our reduction algorithm requires
16 messages per node per reduction: one message per neighbor to fetch its value,
and one message per neighbor to respond to its reduction request.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 4 6 8 10 12 14 16
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

M
es

sa
ge

s
pe

r d
et

ec
tio

n
ev

en
t

M
ed

ia
n

po
si

tio
n

er
ro

r,
fe

et

Size of k-nearest neighborhood

Messages per detection
Median position error

Figure 5:Accuracy and overhead of object tracking as a function
of neighborhood size.

In our implementation, the quality of the mesh depends pri-
marily on the number of broadcasts made by each node to ad-
vertise its location, used for selection by thek-nearest neighbor
region on which the Yao graph depends. Figure 4 shows the cost
in terms of total messages sent, as well as the fraction of crossed
edges, as the number of broadcasts is increased. There is a clear
relationship between increased communication and the quality
of the mesh. As in the case of reduction, applications can tune
the number of broadcasts to meet a given target mesh quality.

4.3 Object tracking accuracy
Finally, we evaluate the accuracy of the object tracking appli-
cation described in Section 3.3. The application tracks a simu-
lated object moving in a circular path of radius 6 feet at a rate of
0.6 feet every 2 sec. Moving the object in a circular path induces
nodes in different regions of the network to detect and track the
object. Nodes take sensor readings once a second, the values of
which scale linearly with the node’s distance to the object, with
a maximum detection range of 5 feet.

The resource tuning parameter in question is the size of the
k-nearest neighbor region. A smaller number of neighbors re-
duces communication requirements but yields a less accurate
estimate of the object location. Figure 5 shows the accuracy
of the tracking application as we vary the number of neighbors
in each region. For each time step, we calculate the average dis-
tance between the simulated object and the value reported by the
sensor network. As the figure shows, as the size of the neighbor-
hood increases, so does the accuracy, as well as the total number
of messages sent. Note that increasing the neighborhood size
beyond a certain point does not significantly increase tracking
accuracy, as more distant nodes are less likely to have detected
the object and may not respond to the reduction request due to
packet loss.

5 Future Directions
The abstract region is a fairly general primitive that captures a
wide range of communication patterns within sensor networks.
The notion of communicating within, and computing across, a
local region (for a range of definitions of “local”) is a useful
concept for sensor applications. Similar concepts are evident
in other communication models for sensor networks, although

often exposed at a much higher level of abstraction. For ex-
ample, directed diffusion [11] and TinyDB [15] embody similar
concepts but lump them together with additional semantics. Ab-
stract regions are fairly low-level and are intended to serve as
building blocks for these higher-level systems.

In the future, we intend to explore how far the abstract region
concept addresses the needs of sensor net applications. We are
currently completing a suite of abstract region implementations
and are developing several applications based on them. We also
intend to provide a set of tools that allow application designers to
understand the resource consumption and quality tradeoffs pro-
vided by abstract regions. These tools will provide developers
with a view of energy consumption, communication overheads,
and accuracy for a given application. Our goal is to allow de-
signers to express tolerances (say, in terms of a resource budget
or quality threshold) that map onto the tuning knobs offered by
abstract regions. This process cannot be performed entirely off-
line, as resource requirements depend on activity within the net-
work (such as the number of nodes detecting an event). Runtime
feedback between the application and the underlying abstract re-
gion primitives will continue to be necessary.

Finally, we intend to use abstract regions as a building block
for a high-level programming language for sensor networks. The
essential idea is to capture communication patterns, locality, and
resource tradeoffs in a high-level language that compiles down
to the detailed behavior of individual nodes. Shielding program-
mers from the details of message routing, in-network aggrega-
tion, and achieving a given fidelity under a fixed resource budget
should greatly simplify application development for this new do-
main.

References
[1] A. Boulis, S. Ganeriwal, and M. B. Srivastava. Aggregation in

sensor networks: An energy - accuracy tradeoff. InProc. IEEE
workshop on Sensor Network Protocols and Applications, 2003.

[2] R. Brooks, P. Ramanathan, and A. Sayeed. Distributed target clas-
sification and tracking in sensor networks.Proceedings of the
IEEE, November 2003.

[3] Center for Information Technology Research in the Inter-
est of Society. Smart buildings admit their faults.http:
//www.citris.berkeley.edu/applications/
disaster_response/smartbuil%dings.html , 2002.

[4] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao.
Habitat monitoring: Application driver for wireless communica-
tions technology. InProc. the Workshop on Data Communications
in Latin America and the Caribbean, Apr. 2001.

[5] R. X. Cringely. Chase Cringely: Finding Meaning in a
Lost Life. http://www.pbs.org/cringely/pulpit/
pulpit20020425.html .

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to networked
embedded systems. InProc. Programming Language Design and
Implementation (PLDI), June 2003.

[7] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, and
S. Shenker. DIFS: A distributed index for features in sensor net-
works. InProc. the First IEEE International Workshop on Sensor
Network Protocols and Applications, May 2003.

[8] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan. Building efficient wireless sensor net-

works with low-level naming. InProc. the 18th SOSP, Banff,
Canada, October 2001.

[9] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive proto-
cols for information dissemination in wireless sensor networks. In
Proc. the 5th ACM/IEEE Mobicom Conference, August 1999.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J.
Pister. System architecture directions for networked sensors. In
Proc. the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 93–
104, Boston, MA, USA, Nov. 2000.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffu-
sion: A scalable and robust communication paradigm for sensor
networks. InProc. International Conference on Mobile Comput-
ing and Networking, Aug. 2000.

[12] V. A. Kottapalli, A. S. Kiremidjian, J. P. Lynch, E. Carryer, T. W.
Kenny, K. H. Law, and Y. Lei. Two-tiered wireless sensor network
architecture for structural health monitoring. InProc. the SPIE
10th Annual International Symposium on Smart Structures and
Materials, San Diego, CA, March 2000.

[13] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
scalable simulation of entire TinyOS applications. InProc. the
First ACM Conference on Embedded Networked Sensor Systems
(SenSys 2003), November 2003.

[14] X.-Y. Li, P.-J. Wan, Y. Wang, and O. Frieder. Sparse power ef-
ficient topology for wireless networks. InProc. 35th Annual
Hawaii International Conference on System Sciences, January
2002.

[15] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG:
A Tiny AGgregation Service for Ad-Hoc Sensor Networks. In
Proc. the 5th OSDI, December 2002.

[16] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor networks. In
Proc. the ACM SIGMOD 2003 Conference, June 2003.

[17] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. An-
derson. Wireless sensor networks for habitat monitoring. InACM
International Workshop on Wireless Sensor Networks and Appli-
cations (WSNA’02), Atlanta, GA, USA, Sept. 2002.

[18] K. S. Pister. Tracking vehicles with a uav-delivered sen-
sor network. http://robotics.eecs.berkeley.edu/
˜pister/29Palms0103/ , March 2001.

[19] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu. Data-centric storage in sensornets with GHT,
a geographic hash table. Technical Report IRB-TR-03-006, Intel
Research Berkeley, March 2003.

[20] J. Shewchuk. Delaunay refinement algorithms for triangular mesh
generation.Computational Geometry: Theory and Applications,
22(1-3):21–74, May 2002.

[21] M. Welsh, D. Myung, M. Gaynor, and S. Moulton. Resuscita-
tion monitoring with a wireless sensor network. InSupplement
to Circulation: Journal of the American Heart Association, Oc-
tober 2003. Abstract, American Heart Association Resuscitation
Science Symposium.

[22] Y. Xu and W.-C. Lee. On localized prediction for power effi-
cient object tracking in sensor networks. InProc. 1st International
Workshop on Mobile Distributed Computing, May 2003.

