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Abstract

Wireless sensor networks have attracted attention from a di-
verse set of researchers, due to the unique combination of dis-
tributed, resource and data processing constraints. However,
until now, the lack of real sensor network deployments have
resulted in ad-hoc assumptions on a wide range of issues in-
cluding topology characteristics and data distribution. As de-
ployments of sensor networks become more widespread [1, 2],
many of these assumptions need to be revisited.

This paper deals with the fundamental issue of spatio-temporal
irregularity in sensor networks We make the case for the ex-
istence of such irregular spatio-temporal sampling, and show
that it impacts many performance issues in sensor networks.
For instance, data aggregation schemes provide inaccurate re-
sults, compression efficiency is dramatically reduced, data
storage skews storage load among nodes and incurs signif-
icantly greater routing overhead. To mitigate the impact of
irregularity, we outline a spectrum of solutions. For data ag-
gregation and compression, we propose the use of spatial in-
terpolation of data (first suggested by Ganeriwal et al in [3])
and temporal signal segmentation followed by alignment. To
reduce the cost of data-centric storage and routing, we propose
the use of virtualization, and boundary detection.

1 Motivation

Wireless Sensor Networks have received tremendous attention
over past few years. Early research in this area [4, 5, 6] has
identified several important research challenges: energy ef-
ficiency, system and environmental dynamics, resource con-
straints, calibration, etc . These fundamental challenges have
led to exciting research in data aggregation ([5, 7]), self-
configuration ([8, 9]), distributed storage ([10]), GPS-less lo-
calization and time-synchronization [11], among others.

A central issue that cuts across each one of these research
thrusts is the impact of irregular sampling. We argue that

spatio-temporal irregularity is fundamental to wireless sen-
sor networks and must be considered by sensor network al-
gorithm, protocol, and application designers. We contend that
this bit of reality is as fundamental to sensor network devel-
opment, as was the adoption of bursty traffic models for the
design and analysis of Internet protocols. The remainder of
this introduction describes the origin of irregular sampling in
wireless sensor networks.

Spatially Irregular Deployments

Can we expect sensor network deployments to be uniformly
regular?

Most sensor network deployments will have irregular spatial
configurations for two fundamental reasons: (a) the phenon-
mena of interest are not uniformly distributed and the deploy-
ment of sensor resources will be variable in order to achieve
denser sensing where there is greater spatial variability (e.g.,
on the edge of biological regions), and (b) terrain and other
deployment practicalities bias deployment locations to where
necessary power sources, communication or access can be
achieved.

Sensor networks in built environments such as structures and
factories might be deployable with regular topologies. How-
ever, in environmental monitoring networks such as that shown
in Figure 1(a), node placement is highly irregular, both be-
cause of the ecological interest in particular biotic regions,
and because of terrain conditions that render uniformly ran-
dom topologies unachievable.

Why are irregular topologies a concern?

Irregular deployments impact many aspects of sensor network
design and performance. For example, spatial sampling of data
depends on the topology, hence, data processing schemes that
take into account spatial location or frequency will be affected.
Consider the common signal-processing problem of ensuring
Nyquist sampling of a band-limited signal to prevent aliasing.
Such a problem becomes more complex in the distributed sen-
sor network case, since the system needs to ensure Nyquist
sampling rate in the presense of network dynamics such as
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(a) Micro-climate monitoring sensor network deployment at James
Reserve: Node placement is irregular, with the lower left being more
densely deployed than the rest of the network.

(b) This figure shows the lag between nine iPAQs that start sampling
simultaneously and continue for 5 seconds at 48 KHz. The time dif-
ference of the last samples for different iPAQs can be up to 150 micro
seconds.

Figure 1:Examples of spatio-temporal irregularity in sensor networks

node failures. Frequency-independent aggregation functions
are impacted by irregular spatial sampling as well. Consider
the simple problem of finding the average temperature in a spa-
tial area. To provide an accurate result in an irregular setting,
the spatial average needs to weigh nodes in a sparse area higher
than nodes in a dense area (described in [3]).

Another architectural component that is impacted by spatial
irregularity is data storage schemes that make use of uniform
hashing over a name-space, followed by geographic routing
using GPSR [12] to the node closest to the hashed location.
Such schemes, that are loosely based on Data Centric Stor-
age [10], move from a distributed storage model in which
nodes store only locally sensed data to one in which this lo-
cal data is stored at (possibly multiple) remote nodes. Hence
the load (storage, lookup, routing etc) at a particular node is
now impacted by the behavior of an arbitrary collection of re-
mote nodes without knowledge of their network parameters
(eg: storage capacity, bottleneck capacity, dynamism). If sen-
sor networks were uniform in terms of placement, node ca-
pability, dynamics and sensed data, this lack of knowledge is
not a concern, but irregularity can exacerbate the load and cost
imbalance between different parts of the network.

Temporally Irregular Sampling:

Can we expect clocks at different nodes in a sensor network to
be continually, synchronized to the precision required by the
application?

Regular temporal sampling requires synchronized clocks at all
of the measurement points. This is particularly an issue at in-
tended deployment sites where GPS access is unavailable, for
instance, much of the deployment shown in Figure 1(a) is in
thick foliage. Similarly, seismologists have interest in study-
ing wave propagation in canyons (such as San Gabriel) which
do not have GPS access.

Recent research into time-synchronization for such GPS-less
sensor networks([11, 13]) have shown that distributed, pre-
cise synchronization is indeed feasible. Such a procedure,
however, comes with the associated cost of transmitting pe-
riodic beacons for noise reduction and multi-hop synchroniza-
tion. Thus there is a fundamental tradeoff: more energy is
required for finer synchronization for high-frequency sensing
(e.g., seismic applications which sample at 100Hz, acoustic at
48KHz), while nodes with constrained energy budgets must
emphasize energy conservation. For instance, Figure 1(b)
shows that a cluster of ipaqs lose synchronization upto150µs
(5 acoustic samples) within a matter of seconds, requiring high
rate of time-synchronization and therefore, high communica-
tion overhead. As pointed out by Elson et al. ([11]), variabil-
ity in time-synchronization will result from precisely this need
to sacrifice synchronization guarantees for energy consump-
tion. Additionally, many external factors will contribute to
such variability including changing ambient and system noise
levels, loss of synchronization beacons, node failures and other
system dynamics.
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Is imprecise and variable synchronization a concern?

Variable time-synchronization impacts in-network data pro-
cessing schemes such as collaborative signal processing (CSP)
that rely on having precisely time-stamped samples for pur-
poses such as target detection, localization, and data compres-
sion. For instance, consider an in-network processing scheme
where a sensor node combines acoustic measurements at the
nine ipaqs in Figure 1(b) to localize the sound source and point
a camera accordingly. The synchronization error in this exam-
ple (maximum of150µs) translates to localization errors upto
5 cm for measurements within barely a few seconds of per-
fect synchronization of all Ipaqs. Further difference between
measurement time and synchronization time will result in cor-
respondingly greater error.

Paper organization: In the rest of this paper, we take an in-
depth look at the impact of spatio-temporal irregularity on two
building blocks of sensor network applications: data compres-
sion and data storage. For each of these subjects, we suggest
techniques that can be used to tackle irregularity. We conclude
with a discussion of a other sensor network research areas such
as network connectivity that are impacted by irregularity.

2 Impact of sampling irregularity on
data compression

One of the foremost research challenges in sensor networks is
the disparity between the amount of data generated by sensors
and the amount of data that a network can communicate before
depleting limited energy resources or exceeding available link
bandwidths in multihop systems. In-network data process-
ing mechanisms seek to reduce the communication overhead
of such networks by a wealth of different techniques such as
exploiting correlation to compress data and performing data-
interpretation ([14]) within the network.

Significant research has gone into distributed data aggrega-
tion. Various query types have been studied including stan-
dard SQL queries such as COUNT, MIN, MAX, AVG, SUM
([7, 3, 15]), more complex spatial features such as edges
[14, 15], distributed compression and estimation techniques
[16], etc. Most aggregation operators have to deal with ir-
regularity in some phase of their processing. Consider, for
instance, a COUNT aggregator, that determines the number
of targets in a region. While such an aggregator seems unaf-
fected by irregularity, the collaborative signal processing for
target detection has to deal with temporal irregularity to detect
or localize the target.

Figure 2:Section of an aggregation tree: Junction node compresses
correlated spatio-temporal data from different areas of the network.
Spatial irregularity requires interpolated coding schemes, and tempo-
ral irregularity (mis-aligned time-series) requires schemes to correct
for time-varying lag.

For lack of space, we do not exhaustively deal with the im-
pact of irregularity on all these data aggregation operators.
Instead, we focus on one instance, data compression, whose
performance is affected by both spatial and temporal irregu-
larity. However, we believe that the techniques that we pro-
pose to deal with irregular data compression are also appli-
cable to other aggregation operators that process distributed
sensor data.

A typical application of data compression is in data gathering
in sensor networks, where many sensors transmit data to a sink
over a tree structure (a part of which is shown in Figure 2). In
this example, we will assume that each junction node on this
tree receives compressed data from its children, decodes the
data, jointly compresses the decoded data with its own data,
and forwards the encoded data to its parent on the tree. Our
goal is not to target a specific coding scheme ([15, 17, 16] but
to discuss practical concerns that are raised by irregular spatio-
temporal sampling, and to suggest some initial solutions for
these.

Spatial irregularity impacts an in-network compression
schemes for data gathering simply because most practical
codecs assume regularly sampled datasets. For instance, typ-
ical wavelet codecs such as JPEG operate on regularly sam-
pled images whereas in-network compression using wavelets
will need to handle spatially irregular data samples. Simi-
larly, compressing two mis-aligned but correlated time-series
typically reduces compression efficiency. For instance, in a
simple test case, a bird call recorded at proximate Ipaq sensor
nodes were compressed together using Delta coding followed
by Huffman coding. In this case, a lag of 4 samples between
the two time-series reduced compression efficiency by approx-
imately 25%. This factor will be higher for more correlated
datasets and greater lag.

3



 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  2  3  4

Q
ue

ry
 E

rr
or

 (M
ea

su
re

d 
- R

ea
l/R

ea
l)

Increasing levels of drilldown into finer resolution data

Regularly Sampled Data
Irregularly Sampled Data and Nearest Neighbor Interpolation

Figure 3:Performance of a drill-down MAX query. Irregular topol-
ogy with nearest neighbor interpolation clearly performs significantly
worse than one with regularly sampled data.

2.1 Coping with irregularity in data compres-
sion

Although the combination of irregular sensor data sampling
and in-network processing is a novel challenge, irregularity
has been dealt with extensively in contexts such as signal pro-
cessing, geo-spatial data processing and computational geom-
etry. In this section, we identify techniques in these diverse
areas that can be applied and extended to a distributed setting
to cope with irregularity.

Interpolation of Spatially Irregular Data

Irregular spatial samples are routinely regularized in geo-
spatial data processing since analysis of irregular datasets is
significantly more complex than that of regularly spaced ones.
This regularization procedure, calledresampling, typically in-
volves interpolation and can be used to deal with irregularity.

While there are a wide range of interpolation schemes (poly-
nomial, fourier, least squares, etc [18]), many of these schemes
are not applicable for spatial interpolation in sensor networks
due to their communication complexity. The cheapest inter-
polation scheme for distributed sensor data isnearest neigh-
bor [18], which assigns the value of a resampled grid point to
the nearest known data sample. Such sampling can be done
in a distributed and inexpensive manner by constructing the
Voronoi cells corresponding to each sensor node.

Such nearest neighbor (or k-nearest neighbor) interpolation
techniques may, however, perform poorly in highly irregular
settings. Figure 3 shows nearest neighbor interpolation with
the Dimensions storage and search system [15] in a highly
irregular network. Briefly, the system stores wavelet sum-
maries at different resolutions, and uses these summaries to
route queries to parts of the network that are most likely to
provide a good answer. We do not go into significant detail on
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Figure 4: The lag between samples corresponding to a stationary
acoustic source at proximate time-synchronized Ipaqs increases with
time due to differences in clock frequencies between the two nodes.
Cross-correlation techniques can correct for a constant lag but time-
varying lag is significantly harder to deal with.

the system for lack of space, but point out that, as shown in
Figuree 3, the performance of a simple MAX query is poor in
the irregular case.

These results reflect the need for more sophisticated spatial
processing including higher order interpolation, especially if
node distribution is highly skewed as in our example. Such
techniques, however, involves more communication than in the
nearest-neighbor case, since samples from a larger area is re-
quired for better interpolation.

Time-series alignment

In the previous section, we addressed how a junction node on a
tree can deal with irregular spatial sampling. As we mentioned
earlier, loosely synchronized clocks lead to poor time-series
compression as well.

Figure 4 shows two difficulties in dealing with loose sychro-
nization and clock variability due to ambient environmental
conditions. Loose synchronization results inlag between the
two time-sequences, which similar to phase lags, can be cor-
rected using the commonly used method of cross-correlation.
Wang et al [19] describe a computationally efficient manner
for estimating the lag between time-series signals of bird-calls
that uses cross-correlations. However, as shown in Figure 4,
the lag between time-series is not constant with time, in fact,
for a pair of ipaqs detecting a stationary source, the lag dou-
bles within a couple of seconds. This results from variations in
clock frequency, which can be expected when sensors in dif-
ferent parts of the network are subject to different conditions
(such as one sensor in shade and the other in the sun). Some
simple techniques such as chopping the time-series into seg-
ments and assuming fixed lag within each segment can be an
initial heuristic to solve this problem. However, the problem
raises many difficult questions that future research will need to
consider.
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3 Impact of spatial irregularity on data
storage

Energy-efficient data-gathering techniques are required to ex-
tract relevant sensed data from within a sensor network. Early
work [5, 7] relied on a flood-and-respond approach in which
queries are flooded and responses (data) are routed back to the
querying node. More recently, in-network storage has been
proposed as an alternative approach to the data-gathering prob-
lem. Under this approach, data are stored by name at nodes
within the sensor network; all data with the same general name
are thus stored at the same node (typically not the one that
originally gathered the data). Queries for data with a partic-
ular name can then be sent directly to the node storing those
named data, thereby avoiding the query flooding typically re-
quired in previous approaches.

Recent research has seen a a growing body of work on data
storage schemes for sensor networks [20, 15, 21]. These tech-
niques differ in the aggregation mechanisms used, but are
loosely based on the idea of geographic hashing and struc-
tured replication. In geographic hashing, names are hashed
to points (locations) in the geographic space occupied by the
sensor network. Data is then stored at the node closest to the
location obtained by hashing its associated name. GPSR is
used as the routing mechanism to reach the node closest to a
target location. Structured replication [20] uses a hierarchical
decomposition of the geographic space into nested grids that
is useful for aggregation and lends locality in storage.

These two underlying primitives – geographic hashing and
structured replication – build on two assumptions: (a) all nodes
know the external boundary of the sensor network, and (b) dis-
tribution of nodes is uniform over the entire topology. For
example, in GHT, the location at which data is stored is deter-
mined by uniformly hashing names over the geographic region
occupied by the sensor network, which is assumed known to
every node.

Two problems arise with irregular topologies where the true
geographic extent does not match that used for hashing, and
the node distribution is non-uniform:

Skewed storage load: All data hashed to points outside the
true external perimeter or to a sparsely deployed region in the
network are stored at a relatively small number of perimeter
nodes, thus greatly skewing the storage load. For instance, in
Figure 1(a), the upper left region is sparsely deployed, and the
lower right region is outside the external network boundary.
Hashing to either of these regions would result in skewed stor-
age load.

High routing overhead: To reach the node closest to a
hashed location, GPSR traverses the perimeter enclosing the
target location before terminating appropriately at the clos-

est node. For target locations outside the external perime-
ter, GPSR’s perimeter mode will traverse theentire external
perimeter of the network before terminating at the appropriate
storage node. For example, in Figure 1(a): any attempt to store
data at positions south of sensor 36 and east of sensor 25 would
end up traversing the entire boundary of the network. For the
same reasons, hashing to a sparse region (such as the upper
left of the figure) would result in high perimeter forwarding
overhead, however, the impact is less severe.

3.1 Coping with irregularity in data-centric
storage

As described above, to accomodate irregular topologies, data-
centric storage schemes must address two issues: (a) discovery
of the network’s external boundary and (b) dealing with inter-
nal variations in node density. We now briefly describe two
very different approaches to dealing with the former and some
simple heuristics that address the latter.

Boundary tracing: Boundary estimation algorithms such as
[14] can be used to discover the true external perimeter of the
network, which is then disseminated to all nodes. Such a pro-
cedure has two potential drawbacks: (a) it is expensive since
boundary representations have to be communicated toevery
node in the network, and (b) the boundary tracing process
would need to be periodically repeated to accomodate system
dynamics (such as node failures or node mobility). Distribut-
ing coarse boundary estimates (eg: constructed using wavelets
[15]), rather than more precise ones, can potentially mitigate
the above overhead.

Virtual Coordinate Spaces:A different approach, enabled by
recent work on scalable ad-hoc routing algorithms (Rao et al.
[22] and Song et al. [23]), is to embed nodes into a well-known
“virtual” region. These virtual coordinates need not be accu-
rate representations of the underlying geography but, in order
to serve as the basis of routing, must capture the underlying
relativeconnectivity between nodes. Using these algorithms,
in-network storage can be achieved by hashing names over
the virtual coordinate space instead of the geographic space
as in GHT [22]. This approach to in-network storage deals
more easily with irregular topologies because the extent of the
virtual coordinate space is pre-defined and well known, thus
eliminating the need to discover the external perimeter of the
network.

Heuristics for local adaptation to irregular node densities:
Within a network’s boundaries, simple local heuristics that
dynamically adapt to local irregularities in the placement of
nodes may be effective for small irregularities. For exam-
ple, nodes can discover local voids in their immediate vicin-
ity and any data destined to locations within such voids are
rehashed and routed to an alternate destination. Yet another
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option might be to use multiple hash functions to store multi-
ple copies of the data (such replication is probably needed for
availability reasons in any case) and to abort a store/retrieve
operation if its perimeter traversal requires more than a thresh-
old number of hops.

4 Discussion and Conclusions

In this paper, we argued that spatio-temporal irregularity is
fundamental to wireless sensor networks. Many factors con-
tribute to this irregularity: application sampling requirements,
difficulty in deploying nodes on the terrain, availability of
power sources and radio connectivity, variability in clock syn-
chronization, etc. We focused on two research areas: data
compression and data storage, and suggested a spectrum of
schemes to deal with the challenges of irregularity.

It is likely that irregular spatio-temporal sampling will have
major implications for many other key research topics in sen-
sor networks as well. For example, a widely researched topic
in both ad-hoc and wireless sensor networks is the problem
of creating well-connected topologies. Experimental results
(eg: [24]) have shown that there are significant differences be-
tween communication cells in a real channel and a unit disk
model. While percolation theory for regular networks have
shown sharp transitions in connectivity when unit disk mod-
els are used, there is a growing body of literature that in-
dicates that communication irregularities may result in dra-
matic differences, including non-existence of such thresholds
in some extreme cases ([25]). Thus, the impact of irregularity
cuts across research themes in sensor networks, and warrants
deeper examination of existing results and techniques.
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