UCLA

Technical Reports

Title
Coping with irregular spatio-temporal sampling in sensor networks

Permalink
https://escholarship.org/uc/item/01h8v8qt

Authors

Deepak Ganesan
Sylvia Ratnasamy
Hanbiao Wang

Publication Date
2003

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/01h8v8qt
https://escholarship.org/uc/item/01h8v8qt#author
https://escholarship.org
http://www.cdlib.org/

Coping with irregular spatio-temporal sampling in sensor networks

Deepak Ganes;n Sylvia Ratnasamv Hanbiao Wanjj Deborah Estri#ﬂ
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71 Intel Research, Berkeley, CA 94704
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Abstract spatio-temporal irregularity is fundamental to wireless sen-
sor networks and must be considered by sensor network al-

Wireless sensor networks have attracted attention from atzﬁ-mhm' protocol, and application designers. We contend that
I

verse set of researchers, due to the unique com_blnatlon of ment, as was the adoption of bursty traffic models for the
tributed, resource and data processing constraints. Howeg

until now. the lack of real sensor network deplovments h erSign and analysis of Internet protocols. The remainder of
! ) . ploymel ffis introduction describes the origin of irregular sampling in
resulted in ad-hoc assumptions on a wide range of issues in-
X o L wireless sensor networks.
cluding topology characteristics and data distribution. As de-

ployments of sensor networks become more widespread [1 SJjatially Irregular Deployments
many of these assumptions need to be revisited.

5 bit of reality is as fundamental to sensor network devel-

Can we expect sensor network deployments to be uniformly
This paper deals with the fundamental issue of spatio-tempaegjular?

irregularity in sensor networks We make the case for the ex- ) ) )
istence of such irregular spatio-temporal sampling, and shMlpst sensor network deployments will have irregular spatial

that it impacts many performance issues in sensor netwofi1figurations for two fundamental reasons: (a) the phenon-
For instance, data aggregation schemes provide inaccurat@g@ of interest are not uniformly distributed and the deploy-
sults, compression efficiency is dramatically reduced d&pent of sensor resources will be variable in order to achieve
storage skews storage load among nodes and incurs sigifif’Ser sensing where there is greater spatial variability (e.g.,
icantly greater routing overhead. To mitigate the impact 8f the edge of biological regions), and (b) terrain and other
irregularity, we outline a spectrum of solutions. For data ag€Ployment practicalities bias deployment locations to where
gregation and compression, we propose the use of spatiafficeSSary power sources, communication or access can be

terpolation of data (first suggested by Ganeriwal et al in [&fhieved.

and temporal signal segmentation followed by alignment. &nsor networks in built environments such as structures and

reduce the cost of data-centric storage and routing, we propeR&ories might be deployable with regular topologies. How-

the use of virtualization, and boundary detection. ever, in environmental monitoring networks such as that shown
in Figure 1(a), node placement is highly irregular, both be-
cause of the ecological interest in particular biotic regions,

1 Motivation and becausg of terraln conditions that render uniformly ran-
dom topologies unachievable.

. . A are irregular topologies a concern?
Wireless Sensor Networks have received tremendous attenyl\(/)%y 9 polog

over past few years. Early research in this area [4, 5, 6] haggular deployments impact many aspects of sensor network
identified several important research challenges: energy dsign and performance. For example, spatial sampling of data
ficiency, system and environmental dynamics, resource cg@Bpends on the topology, hence, data processing schemes that
straints, calibration, etc . These fundamental challenges hges into account spatial location or frequency will be affected.
led to exciting research in data aggregation ([5, 7]), sefonsider the common signal-processing problem of ensuring
configuration ([8, 9]), distributed storage ([10]), GPS-less Igtyquist sampling of a band-limited signal to prevent aliasing.
calization and time-synchronization [11], among others.  Such a problem becomes more complex in the distributed sen-

A central issue that cuts across each one of these reseg%rﬂntﬁtnwo:ktcaiie{h5|ncre thﬁ systferr:] tr\:veerdks dtoner:siure Nyr(]qwst
thrusts is the impact of irregular sampling. We argue thatmPing rate € presense of network dynamics such as
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(b) This figure shows the lag between nine iPAQs that start sampling
simultaneously and continue for 5 seconds at 48 KHz. The time dif-
ference of the last samples for different iPAQs can be up to 150 micro

(a) Micro-climate monitoring sensor network deployment at James
seconds.

Reserve: Node placement is irregular, with the lower left being more
densely deployed than the rest of the network.

Figure 1:Examples of spatio-temporal irregularity in sensor networks

node failures. Frequency-independent aggregation functidtegular temporal sampling requires synchronized clocks at all
are impacted by irregular spatial sampling as well. Considg#rthe measurement points. This is particularly an issue at in-
the simple problem of finding the average temperature in a sfEzded deployment sites where GPS access is unavailable, for
tial area. To provide an accurate result in an irregular settimgstance, much of the deployment shown in Figure 1(a) is in
the spatial average needs to weigh nodes in a sparse area hipiee foliage. Similarly, seismologists have interest in study-
than nodes in a dense area (described in [3]). ing wave propagation in canyons (such as San Gabriel) which

do not have GPS access.
Another architectural component that is impacted by spatial

irregularity is data storage schemes that make use of unifdR@cent research into time-synchronization for such GPS-less
hashing over a name-space, followed by geographic routsensor networks([11, 13]) have shown that distributed, pre-
using GPSR [12] to the node closest to the hashed locatioise synchronization is indeed feasible. Such a procedure,
Such schemes, that are loosely based on Data Centric Stowever, comes with the associated cost of transmitting pe-
age [10], move from a distributed storage model in whicfodic beacons for noise reduction and multi-hop synchroniza-
nodes store only locally sensed data to one in which this t@n. Thus there is a fundamental tradeoff: more energy is
cal data is stored at (possibly multiple) remote nodes. Hemegquired for finer synchronization for high-frequency sensing
the load (storage, lookup, routing etc) at a particular node(ésg., seismic applications which sample at 100Hz, acoustic at
now impacted by the behavior of an arbitrary collection of rd8KHz), while nodes with constrained energy budgets must
mote nodes without knowledge of their network parametemsphasize energy conservation. For instance, Figure 1(b)
(eg: storage capacity, bottleneck capacity, dynamism). If sshows that a cluster of ipags lose synchronization wpt:s

sor networks were uniform in terms of placement, node d&-acoustic samples) within a matter of seconds, requiring high
pability, dynamics and sensed data, this lack of knowledgeaade of time-synchronization and therefore, high communica-
not a concern, but irregularity can exacerbate the load and ¢wst overhead. As pointed out by Elson et al. ([11]), variabil-
imbalance between different parts of the network. ity in time-synchronization will result from precisely this need
to sacrifice synchronization guarantees for energy consump-
tion. Additionally, many external factors will contribute to

Can we expect clocks at different nodes in a sensor networlth variability including changing ambient and system noise

be continually, synchronized to the precision required by tivels, loss of synchronization beacons, node failures and other
application? system dynamics.

Temporally Irregular Sampling:



Is imprecise and variable synchronization a concern?

Variable time-synchronization impacts in-network data pro- agg;igzmg

cessing schemes such as collaborative signal processing (CSP)
that rely on having precisely time-stamped samples for pur- {

poses such as target detection, localization, and data compres-

sion. For instance, consider an in-network processing scheme

where a sensor node combines acoustic measurements at the

nine ipags in Figure 1(b) to localize the sound source and point

a camera accordingly. The synchronization error in this exam-

ple (maximum ofl50.s) translates to localization errors upto

5 cm for measurements within barely a few seconds of pErigure 2:Section of an aggregation tree: Junction node compresses
fect synchronization of all Ipags. Further difference betweegrrelated spatio-temporal data from different areas of the network.

measurement time and synchronization time will result in corpatial irregularity requires interpolated coding schemes, and tempo-
respondingly greater error ral irregularity (mis-aligned time-series) requires schemes to correct

for time-varying lag.
Paper organization: In the rest of this paper, we take an in-
depth look at the impact of spatio-temporal irregularity on two
building blocks of sensor network applications: data compres-
sion and data storage. For each of these subjects, we suggest
techniques that can be used to tackle irregularity. We conclude
with a discussion of a other sensor network research areas $tahlack of space, we do not exhaustively deal with the im-
as network connectivity that are impacted by irregularity.  pact of irregularity on all these data aggregation operators.
Instead, we focus on one instance, data compression, whose
performance is affected by both spatial and temporal irregu-
2 Impact of sampling irregularity on larity. However, we believe that the techniques that we pro-
. pose to deal with irregular data compression are also appli-
data compression cable to other aggregation operators that process distributed
sensor data.

One of the foremost research challenges in sensor networkg t§pical application of data compression is in data gathering
the disparity between the amount of data generated by sengp&ensor networks, where many sensors transmit data to a sink
and the amount of data that a network can communicate befgyer a tree structure (a part of which is shown in Figure 2). In
depleting limited energy resources or exceeding available lifiis example, we will assume that each junction node on this
bandwidths in multihop systems. In-network data procesfee receives compressed data from its children, decodes the
ing mechanisms seek to reduce the communication overhgagh, jointly compresses the decoded data with its own data,
of such networks by a wealth of different techniques such @&sd forwards the encoded data to its parent on the tree. Our
exploiting correlation to compress data and performing daggal is not to target a specific coding scheme ([15, 17, 16] but
interpretation ([14]) within the network. to discuss practical concerns that are raised by irregular spatio-

Significant research has gone into distributed data aggrjﬁgjporal sampling, and to suggest some initial solutions for

tion. Various query types have been studied including st
dard SQL queries such as COUNT, MIN, MAX, AVG, SUMspatial irregularity impacts an in-network compression
([7, 3, 15]), more complex spatial features such as edggfemes for data gathering simply because most practical
[14, 15], distributed compression and estimation techniqu&sdecs assume regularly sampled datasets. For instance, typ-
[16], etc. Most aggregation operators have to deal with jeal wavelet codecs such as JPEG operate on regularly sam-
regularity in some phase of their processing. Consider, {§ed images whereas in-network compression using wavelets
instance, a COUNT aggregator, that determines the NUM@AT need to handle spatially irregular data samples. Simi-
of targets in a region. While such an aggregator seems unafty, compressing two mis-aligned but correlated time-series
fected by irregularity, the collaborative signal processing f@jpically reduces compression efficiency. For instance, in a
target detection has to deal with temporal irregularity to detegiple test case, a bird call recorded at proximate Ipaq sensor
or localize the target. nodes were compressed together using Delta coding followed
by Huffman coding. In this case, a lag of 4 samples between
the two time-series reduced compression efficiency by approx-
imately 25%. This factor will be higher for more correlated
datasets and greater lag.



035 Regularly Sampled Data »aa
rregularly Sampled Data and Nearest Neighbor Interpolation ---------- &
= gs x
g n
o 2
g E‘7 X X X
o 3
3 z
S 8 *
8 g
= @
8 £5 x o oxoox
5 g
] 4
€] 0 0.5 1 15 2 25 3
Time (s)
005 ¢ > 3 4 Figure 4: The lag between samples corresponding to a stationary
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time due to differences in clock frequencies between the two nodes.
Figure 3:Performance of a drill-down MAX query. Irregular topol-Cross-correlation techniques can correct for a constant lag but time-
ogy with nearest neighbor interpolation clearly performs significanijrying lag is significantly harder to deal with.
worse than one with regularly sampled data.

2.1 Coping with irregularity in data compres-

sion the system for lack of space, but point out that, as shown in

Figuree 3, the performance of a simple MAX query is poor in
the irregular case.

Although the combination of irregular sensor data samplin L .
and in-network processing is a novel challenge, irregulari-[%ese results reflect the need for more sophisticated spatial

has been dealt with extensively in contexts such as signal pq{)qcesg,ing inglud?ng .higher order inte.rpolation, especially if
cessing, geo-spatial data processing and computational ge%ﬂ%e _d'smbﬁt'on IS h'.ghhi skewed as in our. exqmplr:a. _Suchh
etry. In this section, we identify techniques in these diver: niques, however, involves more communication than in the

areas that can be applied and extended to a distributed Seﬁﬁ?est-naghbor case, since samples from a larger area is re-
to cope with irregularity. quired for better interpolation.

Interpolation of Spatially Irregular Data Time-series alignment

Irregular spatial samples are routinely regularized in gejg_the previous section, we addressed how a junction node on a

spatial data processing since analysis of irregular datasetgqs can deal with irregular spatial sampling. As we mentioned

significantly more complex than that of regularly spaced on&&er, Iogsely synﬁhronlzed clocks lead to poor time-series
This regularization procedure, callessampling typically in- compression as wel.

volves interpolation and can be used to deal with irregularitﬁigure 4 shows two difficulties in dea"ng with loose Sychro_
jzation and clock variability due to ambient environmental

While there are a wide range of interpolation schemes (po " A .
ggdmons. Loose synchronization resultdag between the

nomial, fourier, least squares, etc [18]), many of these sche i hich similar to ph | b
are not applicable for spatial interpolation in sensor networlf® ime-sequences, which similar to phase lags, can be cor-

due to their communication complexity. The cheapest inté?—CtEd using the commonly used met_hod of crqs_s-correlaﬂon.
polation scheme for distributed sensor datagsrest neigh- Wang _et a! [19] describe a computatlo_nally efficient manner
bor [18], which assigns the value of a resampled grid point ar estimating the lag be_tween time-series signals qf blr_d—calls
the nearest known data sample. Such sampling can be uses cross-c.orrelathns.. However, as shpwn. n F|_gure 4
in a distributed and inexpensive manner by constructing & lag F’etW?e“ t|me-ser.|es IS not.constant with time, in fact,
Voronoi cells corresponding to each sensor node. or a pair of ipags detecting a staﬂpnary source, thg Igg do'u-

bles within a couple of seconds. This results from variations in
Such nearest neighbor (or k-nearest neighbor) interpolat@ack frequency, which can be expected when sensors in dif-
techniques may, however, perform poorly in highly irreguléerent parts of the network are subject to different conditions
settings. Figure 3 shows nearest neighbor interpolation wiguch as one sensor in shade and the other in the sun). Some
the Dimensions storage and search system [15] in a highisnple techniques such as chopping the time-series into seg-
irregular network. Briefly, the system stores wavelet suments and assuming fixed lag within each segment can be an
maries at different resolutions, and uses these summariesitial heuristic to solve this problem. However, the problem
route queries to parts of the network that are most likely taises many difficult questions that future research will need to
provide a good answer. We do not go into significant detail oonsider.



3 Impact of spatial irregularity on data est node. For target locations outside the external perime-
Storage ter, GPSR’s perimeter mode will traverse tetire external

perimeter of the network before terminating at the appropriate

storage node. For example, in Figure 1(a): any attempt to store

Energy-efficient data-gathering techniques are required to gQEa at p03|t|oqs south of§ensor 36 and east of sensor 25 would
tract relevant sensed data from within a sensor network. Ea?ﬂﬂ up traversing the_ entire boundary of_the network. For the
work [5, 7] relied on a flood-and-respond approach in whid{tMe reasons, hashing to a sparse region (such as the upper
queries are flooded and responses (data) are routed back t§fh@' the figure) would result in high perimeter forwarding
querying node. More recently, in-network storage has bedffrhead, however, the impact is less severe.

proposed as an alternative approach to the data-gathering prob-

lem. Under this approach, data are stored by name at nodes . o o .

within the sensor network; all data with the same generalnamd ~ Coping with irregularity in data-centric

are thus stored at the same node (typically not the one that Storage

originally gathered the data). Queries for data with a partic-

ular name can then be sent directly to the node storing thagedescribed above, to accomodate irregular topologies, data-
named data, thereby avoiding the query flooding typically rgentric storage schemes must address two issues: (a) discovery
quired in previous approaches. of the network’s external boundary and (b) dealing with inter-

Recent research has seen a a growing body of work on J}&livariations in node density. We now briefly describe two

storage schemes for sensor networks [20, 15, 21]. These 1Y diﬁereqt gpproaches to dealing with the former and some
niques differ in the aggregation mechanisms used, but ﬁwple heuristics that address the latter.

loosely based on the idea of geographic hashing and stiggundary tracing: Boundary estimation algorithms such as
tured replication. In geographic hashing, names are haspef} can be used to discover the true external perimeter of the
to points (locations) in the geographic space occupied by f&work, which is then disseminated to all nodes. Such a pro-
sensor network. Data is then stored at the node closest tod88ure has two potential drawbacks: (a) it is expensive since
location obtained by haShing its associated name. Gps%dﬁndary representations have to be Communicat@j/eoy
used as the routing mechanism to reach the node closest f@de in the network, and (b) the boundary tracing process
target location. Structured repliCation [20] uses a hierarChi%ukj need to be periodica"y repeated to accomodate System
decomposition of the geographic space into nested grids ¥ghamics (such as node failures or node mobility). Distribut-
is useful for aggregation and lends locality in storage. ing coarse boundary estimates (eg: constructed using wavelets
1), rather than more precise ones, can potentially mitigate

These two underlying primitives — geographic hashing a above overhead.

structured replication — build on two assumptions: (a) all nod
know the external boundary of the sensor network, and (b) digrtual Coordinate Spaces: A different approach, enabled by
tribution of nodes is uniform over the entire topology. Fqecent work on scalable ad-hoc routing algorithms (Rao et al.
example, in GHT, the location at which data is stored is det?22] and Song etal. [23])' is to embed nodes into a well-known
mined by uniformly hashing names over the geographic regigjiytual” region. These virtual coordinates need not be accu-
occupied by the sensor network, which is assumed knowrny4ge representations of the underlying geography but, in order
every node. to serve as the basis of routing, must capture the underlying
Two problems arise with irregular topologies where the mﬁglative connectivity between no_des. Using th‘?se algorithms,
geographic extent does not match that used for hashing, ah erork storage can be agh|eved by hashing names over
the node distribution is non-uniform: t e_wrtual coordmat_e space msteaq of the geographic space
as in GHT [22]. This approach to in-network storage deals
Skewed storage load: All data hashed to points outside thenore easily with irregular topologies because the extent of the
true external perimeter or to a sparsely deployed region in theual coordinate space is pre-defined and well known, thus
network are stored at a relatively small number of perimetdiminating the need to discover the external perimeter of the
nodes, thus greatly skewing the storage load. For instancepétwork.
Figure 1(a), the upper left region is sparsely deployed, and the . | . . .
|O\?VGI’ rig(ht) regioons outsidegthe extgrnal zemzrgboundageur'St'cs for local adaptation to irregular node densities:

Hashing to either of these regions would result in skewed st ithin a network's bounda_nes, S"T.‘P'e I.ocaI heuristics that
age load ynamically adapt to local irregularities in the placement of

nodes may be effective for small irregularities. For exam-
High routing overhead: To reach the node closest to @le, nodes can discover local voids in their immediate vicin-
hashed location, GPSR traverses the perimeter enclosingith@nd any data destined to locations within such voids are
target location before terminating appropriately at the claghashed and routed to an alternate destination. Yet another
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