
Energy Savings and Speedups from
Partitioning Critical Software Loops to
Hardware in Embedded Systems

GREG STITT, FRANK VAHID, and SHAWN NEMATBAKHSH
University of California, Riverside

We present results of extensive hardware/software partitioning experiments on numerous bench-
marks. We describe our loop-oriented partitioning methodology for moving critical code from hard-
ware to software. Our benchmarks included programs from PowerStone, MediaBench, and Net-
Bench. Our experiments included estimated results for partitioning using an 8051 8-bit microcon-
troller or a 32-bit MIPS microprocessor for the software, and using on-chip configurable logic or
custom application-specific integrated circuit hardware for the hardware. Additional experiments
involved actual measurements taken from several physical implementations of hardware/software
partitionings on real single-chip microprocessor/configurable-logic devices. We also estimated re-
sults assuming voltage scalable processors. We provide performance, energy, and size data for all
of the experiments. We found that the benchmarks spent an average of 80% of their execution time
in only 3% of their code, amounting to only about 200 bytes of critical code. For various experi-
ments, we found that moving critical code to hardware resulted in average speedups of 3 to 5 and
average energy savings of 35% to 70%, with average hardware requirements of only 5000 to 10,000
gates. To our knowledge, these experiments represent the most comprehensive hardware/software
partitioning study published to date.

Categories and Subject Descriptors: C.3 [Special Purpose and Application-Based Systems]:
Real-Time and Embedded Systems

General Terms: Design, Performance

Additional Key Words and Phrases: Hardware/software partitioning, FPGA, synthesis, platforms,
low energy, speedup, embedded systems

1. INTRODUCTION

Much previous work has shown the advantages of hardware/software parti-
tioning in embedded system design. Hardware/software partitioning divides
an application into software running on a microprocessor and some number of
coprocessors implemented in custom hardware. Advantages of such partition-
ing include improvement in performance (e.g., Gokhale and Stone 1998; Hauser

This research was supported in part by a Department of Education GAANN fellowship and by the
National Science Foundation (CCR-9811164 and CCR-0203813).
FV is also with the Center for Embedded Computer Systems at the University of California, Irvine.
Authors’ address: Department of Computer Science and Engineering, University of California,
Riverside, CA 92521; email: gstitt@cs.ucr.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage,
the copyright notice, the title of the publication, and its date of appear, and notice is given that
copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permision and/or a fee.
C© 2004 ACM 1539-9087/04/0200-0218 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004, Pages 218–232.

Energy Savings and Speedups • 219

and Wawrzynek 1997), as well as reduction in power or energy [Henkel and Li
1998; Henkel 1999; Stitt et al. 2002; Wan et al. 1998]. These advantages are
gained at the expense of increased silicon area—area that is becoming cheaper
and more readily available every year.

Many previous efforts have focused on partitioning an application that con-
sists of numerous concurrent processes [Hou and Wolf 1996; Kalavade and Lee
1994]. Our work focuses on partitioning a single sequential program among a
microprocessor and one or more custom coprocessors. In such single-program
partitioning, custom coprocessors execute certain functions that were previ-
ously implemented in software. Such partitioning is possible in embedded sys-
tems, where the program is often fixed for the lifetime of the system. Previous
work on single-program partitioning [Balboni et al. 1967; Eles et al. 1997; Gajski
et al. 1998; Henkel and Ernst 1977; Vanmeerbeeck et al. 2001] has emphasized
exploration of large numbers of candidate partitionings in order to meet timing
constraints, utilizing powerful search algorithms such as simulated annealing,
and utilizing sophisticated estimation models.

However, we have observed that most embedded applications spend a major-
ity of their time in a few small loops or subroutines. Therefore, we will discuss a
straightforward methodology for hardware/software partitioning that capital-
izes on this observation, and is easy to implement manually or automatically.

The primary contribution of our work, though, is an extensive examination
of the energy savings as well as speedups possible through hardware/software
partitioning. We have examined numerous benchmarks ranging from small
applications from the PowerStone suite [Malik et al. 2000], to medium-sized
applications from MediaBench [Lee et al. 1997] and NetBench [Mernik et al.
2001]. We have utilized an 8-bit microcontroller as well as 32-bit processors. We
have analyzed energy savings by using estimation models, as well as by taking
physical measurements of real platforms. We have examined partitioning for an
application-specific integrated circuit (ASIC) design flow, as well as for increas-
ingly popular single-chip platforms having a microprocessor plus configurable-
logic [Altera Corporation 2001; Atmel FPSLIC; E5; Triscend Corporation; Xilinx
Corporation]. We have considered energy savings of partitioning using a micro-
processor with low-power standby mode, and with a voltage-scalable power
source.

2. HARDWARE/SOFTWARE PARTITIONING METHOD

2.1 Problem Description

We assume a designer is interested in reducing the energy required by a soft-
ware application, in speeding up the application, or both. We assume the com-
mon situation in embedded systems of an application being made up of a partic-
ular repeating task. In some cases, that task must repeat once every X seconds;
executing more frequently is not necessary. For example, an audio decompres-
sor might have to decode a compressed audio frame once every 2 ms in order
to provide a steady audio stream. In other cases, we may want the task to ex-
ecute as frequently as possible. Thus, our goal is to reduce the energy for each

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

220 • G. Stitt et al.

execution of the task, or to just speedup the task. Energy, measured in joules, is
the product of time (seconds) and power (watts). In general, hardware/software
partitioning reduces energy by reducing the execution time of the task, that
is, by speeding up the task. Speedup is defined as the old execution time (soft-
ware only) divided by the new execution time (software and hardware). The
speedup typically occurs because a custom coprocessor can often execute a soft-
ware region in one clock cycle that would have required numerous assembly
instructions in software, due to the fine-grained parallelism possible in custom
hardware. For example, the following software:

if (a + b < c + d)
x = y + z;

else if (a ∗ b > e − f)
y = x + z ∗ 5;

might require dozens of clock cycles in software, but could easily be accom-
plished in one cycle using custom hardware.

However, energy reduction is not obvious from this speedup because such
partitioning typically increases the power of the system while the system is ex-
ecuting. Thus, to reduce energy, the speedup must be great enough to overcome
the increase in power.

2.2 Critical Loop Detection

Past work in hardware/software partitioning, including our own, has typically
emphasized extensive exploration of the partitioning solution space. Explo-
ration algorithms typically examine thousands of possible partitionings. How-
ever, during our experiences with embedded applications, we have observed
that most applications spend a majority of their time in just a few loops or
subroutines—what we will call critical loops. We use the term critical loop for
any loop that accounts for roughly 7% or more of a task’s execution time. Though
we use the term “critical loop” for simplicity, sometimes the region actually rep-
resents a subroutine. That subroutine is usually critical due to being called from
a loop or due to containing a loop, so the term “loop” is appropriate. In very few
cases, the subroutine is critical because of being called from numerous places
throughout a program.

The number of critical loops in each benchmark is typically between two
and four. Amdahl’s law [Amdahl 1967] leads us to realize that we should focus
initially on those critical loops to obtain our speedup. For example, a task may
have a critical loop that accounts for 60% of the task’s execution time, and
numerous other loops that each account for only 5% each. Speeding up the
critical loop may ideally result in a speedup of 100/(100 – 60) = 2.5, whereas
speeding up any of the other loops could have at best only resulted in a speedup
of 100/(100 – 5) = 1.1; even speeding up all of those other loops would have at
best resulted in a speedup of 100/(100 – 40) = 1.7.

Table I summarizes critical loop statistics for a variety of benchmarks on sev-
eral different microprocessors. The prefixes PS, MB, or NB indicate whether
the benchmark application was taken from PowerStone [Malik et al. 2000],

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Energy Savings and Speedups • 221

Table I. Critical Loops for the Benchmarks Studied

Critical Loops
Size % time Ideal Cum. Speedup

Benchmark Arch Size L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4
PS g3fax I8051 8,270 24 55% 2.2
PS crc I8051 810 58 62% 2.6
PS summin I8051 1,593 130 128 14% 6% 1.2 1.3
PS brev I8051 2,406 1710 93% 14.3
PS matmul I8051 836 212 85% 6.7
PS g3fax MIPS 4,452 24 31% 1.4
PS adpcm MIPS 7,640 88 64 17% 13% 1.2 1.4
PS crc MIPS 4,288 68 65% 2.9
PS des MIPS 6,116 360 52% 2.1
PS engine MIPS 4,432 32 32 14% 14% 1.2 1.4
PS jpeg MIPS 5,960 116 10% 1.1
PS summin MIPS 4,136 48 52 36% 12% 1.6 1.9

PS v42 MIPS 6,388 60 23% 1.3
PS brev MIPS 3,968 416 70% 3.3
MB g721 SS 11,878 31 594 45% 10% 1.8 2.2
MB adpcm SS 9,302 153 99.9% 1000.0
MB pegwit SS 24,990 62 62 64 31 35% 35% 4% 3% 1.5 3.3 3.8 4.3
NB dh SS 21,678 100 77 73 40% 18% 17% 1.7 2.4 4.0
NB md5 SS 10,724 5 18 850 13% 11% 32% 1.1 1.3 2.3
NB tl SS 12,140 9 51% 2.0
NB url SS 13,526 17 80% 5.0
% of benchmark size: 2% 3% 3%
% of benchmark time: 47% 62% 80%

MediaBench [Lee et al. 1997; MediaBench], or NetBench [Mernik et al. 2001].
Arch indicates the microprocessor architecture onto which we compiled the
application, being either an Intel 8051 8-bit microcontroller, a MIPS 32-bit
embedded processor [MIPS], or the SimpleScalar (SS) processor (a MIPS ex-
tension) [Burger and Austin 1997]. Size indicates the static size in bytes of the
application after being compiled to the given architecture.

The Critical Loops columns provide statistics on the most critical loops of
each application, up to four of them (L1, L2, L3, and L4). Size represents the
static size of the loop in bytes. % time indicates the percentage of task execution
time (in this case, the percentage of total cycles) that this loop accounts for.
Ideal Cum. Speedup represents the speedup that would ideally be obtained if
this loop were executed in zero time. The speedups shown are cumulative for
each successive loop, so the speedup under loop L2 assumes both L1 and L2
execute in zero time.

We obtained the data in Table I as follows. After compiling the C source code
of the benchmark to a binary, for the 8051, MIPS, and SimpleScalar, we exe-
cuted the binary on a cycle-accurate instruction set simulator. We developed
our own instruction-set simulators for the 8051 [Univ. of California] and for the
MIPS [Givargis et al. 2001], and we used the SimpleScalar simulator for the
SimpleScalar processor. We configured each simulator to output an instruction
trace. We also wrote a tool that parses each binary and outputs a listing of
all the loops and subroutine locations. We then created a tool, called LOOAN

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

222 • G. Stitt et al.

[Villarreal et al. 2001], that reads the loop/subroutine file, and then processes
the instruction trace, maintaining a wide variety of statistics on loop/subroutine
behavior, including the number of visits to the loop/subroutine and the number
of iterations per loop—keeping minimums, maximums, and averages of these
numbers. While this tool was quite useful in isolating critical loops, the trace
files the tool generates are rather large, exceeding several gigabytes in some
cases. Such size not only results in long run times for LOOAN, but can also
exceed available disk space. Thus, we plan to update the instruction-set sim-
ulators to keep LOOAN’s statistics during runtime (related work at UCR has
already resulted in integration of LOOAN with the Simics simulator [Werner
and Magnusson 1997]).

Table I indicates the extent to which most execution time is spent in just a
few small loops. Many people refer to this phenomenon as the “80–20 rule” or
the “90–10 rule,” wherein software spends 90% of the time in 10% of the code.
From the averages at the bottom of the table, we see that the phenomenon in
these benchmarks results in what we might call a “50–2 rule”—about 50% of
the time is spent in 2% of the code, or an “80–3 rule”—about 80% of the time is
spent in 3% of the code.

The main observation we might make from these data is that most of
our speedup will come from speeding up just one to three very small loops.
This observation implies that an extensive solution space search during hard-
ware/software partitioning is not necessary. This observation may also imply
that only a small amount of hardware may be necessary to gain speedups of 2 to
3, and that in some cases, extremely high speedups may be possible with that
small amount of hardware. With such speedups, we may also find good energy
savings.

2.3 Partitioning Approach

To examine different hardware/software partitions of the applications, we began
by ordering the critical loops according to their percentage of total time, with
the loops labeled L1, L2, and so on. We then created a version of the application
with all the critical loops moved to hardware. We modeled the hardware using
a synthesizable register–transfer level VHDL process [Synopsys]. Each process
described a finite-state machine, where we scheduled C-level statements into
a minimal number of states.

When multiple loops from the application were synthesized, we included
them as substates of a single-state machine, so that when synthesized they
would share hardware. Such sharing was possible because we were guaranteed
that the loops would not execute concurrently to one another, since they came
from sequential software.

For our microprocessor/configurable-logic experiments, our target architec-
ture was based on that in Figure 1, which is similar to the architecture found
in Triscend’s single-chip microprocessor/configurable-logic platforms [Triscend
Corporation]. Unlike Triscend’s platforms, we assume the configurable system
logic (CSL) is a master of the bus. CSL bus mastering allows for more flexi-
ble CSL memory accesses compared to a DMA. However, a DMA can generally

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Energy Savings and Speedups • 223

Fig. 1. Target architecture for single chip platform microprocessor with configurable logic.

Fig. 2. Target architecture for single chip ASIC microprocessor core with custom loop logic.

handle block accesses more efficiently and allows for parallel execution of the
processor and CSL. The added flexibility of giving the CSL the option of using
a DMA or directly accessing the bus allows for hardware to be implemented for
almost any software region. Communication between the microprocessor and
CSL takes place via shared memory and several direct signals. Some of this
shared memory is implemented in registers in the CSL, which have a direct
connection to the hardware. The processor can efficiently communicate with
the hardware by writing or reading from these registers. Due to a variety of
types of on-chip configurable logic (FPGA, CPLD, and PLA), we use the more
general term CSL to refer to all of these.

For the core-based ASIC experiments, we use a simpler architecture shown in
Figure 2. This model shares a memory between the microprocessor and custom

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

224 • G. Stitt et al.

hardware, but does not require a DMA component because the execution of
the processor and custom logic is guaranteed not to overlap. The simplified
architecture also has less interconnect between the microprocessor and custom
logic because of the absence of the CSL.

We implemented each partitioning by replacing the selected software regions
with a handshaking routine. The software would activate the custom hardware
(either in the CSL or on the ASIC) using a start signal. For the micropro-
cessor, such activation consists of simply setting a memory-mapped register
with a direct connection to the hardware. The microprocessor then enters a
low-power state while waiting for the hardware, achieved by setting a bit in a
special function register. The processor then waits for the hardware to assert
an interrupt, thereby waking up the processor. While the software partition is
running, the hardware partition enters a low-power idle state. Waking up the
processor from its low-power state requires anywhere between a few cycles to
a few dozen, depending on the processor. In either case, these cycles are only
expended after a loop in hardware completes (and not on every iteration), and
thus is generally negligible compared to the thousands of cycles for the loop
execution.

Currently, we are only considering the situation where the microprocessor
and CSL execute in mutual exclusion. Mutually exclusive execution simplifies
the architecture because the microprocessor and CSL will never access memory
at the same time. In fact, because we are partitioning a sequential program,
there would likely be little benefit to parallelizing the execution of the hardware
and software partitions.

3. SPEEDUP AND ENERGY SAVINGS FOR MICROPROCESSOR/CSL
DEVICES

3.1 Estimation Based

In Section 2.2, we discussed our method for determining software cycles, uti-
lizing instruction-set simulators. To determine the software cycles for a parti-
tioned design, we replaced the software loop with the required handshaking
behavior. To determine the hardware cycles for a loop, we pessimistically as-
sumed the longest path through the loop body was taken for every loop iteration.
Such an assumption enabled us to avoid having to get every example simulat-
ing perfectly—something not necessary to estimate the speedup and energy
improvements. Thus, the actual speedups and energy savings from partition-
ing may actually be slightly better than what we report.

Speedup data is shown in Table II for the benchmarks on which we performed
estimation. Cyclesorig represent the clock cycles for the entire application exe-
cuting on a microprocessor. For the critical loops, Cyclessw represent the cycles
those loops account for on the microprocessor, while Cycleshw represent the
number of clock cycles needed for those loops to execute in the CSL hardware.
We see that the speedups (Sp.) range from almost none (1.1) to 12.9, averaging
3.2. For all examples, the MIPS ran at 100 MHz and the 8051 ran at 25 MHz. The
custom hardware in the CSL was run at the maximum possible clock frequency

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Energy Savings and Speedups • 225

Table II. Estimated Microprocessor/CSL Speedups

Loop Performance
Example Arch Cyclesorig Cyclessw Cycleshw Clkhw Sp.
PS g3fax 8051 19,675,456 10,812,544 176,562 25 2.2
PS crc 8051 291,196 180,224 7,168 25 2.5
PS summin 8051 109,821,892 20,394,080 384,416 25 1.2
PS brev 8051 330,064 305,768 1,360 25 12.9
PS matmul 8051 119,420 101,576 2,560 25 5.9
PS g3fax MIPS 15,600,000 4,720,000 599,000 100 1.4
PS adpcm MIPS 113,000 29,300 5,440 100 1.3
PS crc MIPS 5,040,000 3,480,000 460,800 100 2.5
PS des MIPS 142,000 70,700 15,100 100 1.6
PS engine MIPS 915,000 145,000 28,100 100 1.1
PS jpeg MIPS 7,900,000 646,000 171,000 100 1.1
PS summin MIPS 2,920,000 1,270,000 266,000 100 1.5
PS v42 MIPS 3,850,000 846,000 216,000 100 1.2
PS brev MIPS 3,566 2,499 138 100 3.0
MB g721 MIPS 838,230,002 457,674,179 9,985,261 100 2.1
MB adpcm MIPS 32,894,094 32,866,110 1,183,260 42 11.6
MB pegwit MIPS 42,752,919 33,276,287 2,167,651 50 3.1
NB dh MIPS 1,793,032,157 1,349,063,192 45,156,767 69 3.5
NB md5 MIPS 5,374,034 3,046,881 289,877 47 1.8
NB tl MIPS 57,412,470 29,244,221 2,479,552 58 1.8

Average: 3.2

reported by CSL tools after synthesis, place and route. These frequencies are
specified in the column labeled Clkhw.

We used Xilinx’s virtex power estimator [Virtex] to estimate the power of
the CSL executing the critical loops of each example, for a 0.18 µm FPGA
technology at 1.8 V (in particular, for the XCV50E), shown in Table III as Phw.
We must also consider that the idle microprocessor continues to consume power
while the CSL is active. Through physical measurement of Triscend’s parts, we
determined the idle microprocessor to consume 85% of the power of its active
state, so we use 85% throughout the experiments.

We used typical power values for a commercial MIPS processor [MIPS Tech-
nologies] in 0.18 µm CMOS at 1.8 V, shown as Psw, for the microprocessor active
state. However, as above, we must also consider the idle power of the CSL while
the processor is active, which we found through experimentation with Triscend
parts to be about 12.5% of the CSL active power.

When either the microprocessor or CSL is active, we must also consider the
power of interconnect and memory, Pi, which we obtained through physical
measurement on Triscend parts and used throughout the experiments. Thus,
we developed the following equation for total system energy E:

E = Timesw ∗ (Psw + 0.125 ∗ Phw + Pi) + Timehw ∗ (0.85 ∗ Psw + Phw + Pi).

Timesw is the number of cycles the microprocessor is active times the micropro-
cessor clock period. We multiply Timesw by the system power consumed while
the microprocessor is active. Similerly, Timehw is the number of cycles the CSL
is active times the CSL clock period, which is then multiplied by the system
power consumed while the CSL is active.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

226 • G. Stitt et al.

Table III. Estimated Microprocessor/CSL Power, Energy, and Area

Power Energy
Example Arch Psw Phw Eorig Esw/hw ESav Area
PS g3fax 8051 0.05 0.032 0.1142 0.05408 53% 2,858
PS crc 8051 0.05 0.028 0.0017 0.00071 58% 770
PS summin 8051 0.05 0.033 0.6376 0.53657 16% 4,191
PS brev 8051 0.05 0.034 0.0019 0.00015 92% 3,961
PS matmul 8051 0.05 0.035 0.0007 0.00012 82% 5,882
PS g3fax MIPS 0.07 0.111 0.0265 0.02163 18% 2,858
PS adpcm MIPS 0.07 0.181 0.0002 0.00018 6% 8,075
PS crc MIPS 0.07 0.061 0.0086 0.00379 56% 770
PS des MIPS 0.07 0.197 0.0002 0.00019 20% 9,031
PS engine MIPS 0.07 0.082 0.0016 0.00146 6% 2,074
PS jpeg MIPS 0.07 0.092 0.0134 0.01360 −1% 3,161
PS summin MIPS 0.07 0.111 0.0050 0.00375 24% 4,191
PS v42 MIPS 0.07 0.102 0.0065 0.00605 7% 3,319
PS brev MIPS 0.07 0.107 0.0000 0.00000 62% 3,961
MB g721 MIPS 0.07 0.152 1.4250 0.75035 47% 5,811
MB adpcm MIPS 0.07 0.130 0.0559 0.00821 85% 14,132
MB pegwit MIPS 0.07 0.170 0.0727 0.03241 55% 18,150
NB dh MIPS 0.07 0.121 3.0482 1.00547 67% 21,383
NB md5 MIPS 0.07 0.251 0.0091 0.00722 21% 90,074
NB tl MIPS 0.07 0.059 0.0976 0.05930 39% 5,478

Average: 34% 10,507

Energy results are shown in Table III. Eorig is the energy for the unparti-
tioned, software-only application, while Esw/hw is the energy after partitioning.
In general, we see modest energy savings, averaging 34%, due to the lack of
major speedups. These speedups were obtained using an equivalent of 10,507
logic gates on average.

3.2 Physical Measurement Based

We obtained two single-chip microprocessor/CSL devices from Triscend: an E5
and an A7. The E5 contained an accelerated 8051 8-bit microcontroller, which
used only four clock cycles per instruction byte instead of the typical 12 cy-
cles per instruction, and a 40,000 gate equivalent CSL. The clock frequency for
both the 8051 and the CSL was 25 MHz. The A7 contained an ARM7 32-bit
microprocessor plus a 40,000 gate equivalent CSL, both of which were clocked
at 40 MHz. We used these parts to determine energy and speedup through
physical measurement rather than estimation. We connected a digital multi-
meter to each device to measure current, and we used the timer available on our
workstation to measure time. By multiplying current with voltage, we obtained
power, which could be multiplied by our time measurements to obtain energy.

Results for the benchmarks we implemented on the A7 and E5 are shown
in Table IV. As getting complete working implementations was rather time
consuming, we obtained results for a subset of the benchmarks. We see good
speedups and energy savings. We also see that our estimated results were
reasonably accurate, and that our energy estimates were perhaps even a bit
conservative.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Energy Savings and Speedups • 227

Table IV. Microprocessor/CSL Speedups and Energy Savings from Physical Measurements of
Triscend A7 and E5 Devices

Benchmark Timeorig Timesw/hw Sp. Porig Psw/hw Eorig Esw/hw Esav

A7 Results
PS g3fax 11.47 7.44 1.5 1.320 1.332 15.140 9.910 35%
PS crc 10.92 4.51 2.4 1.320 1.320 14.414 5.953 59%
PS brev 9.84 3.28 3.0 1.332 1.344 13.107 4.408 66%

Average 2.3 Average 53%

E5 Results
PS g3fax 15.16 7.11 2.1 0.252 0.270 3.820 1.920 50%
PS crc 10.64 4.64 2.3 0.207 0.225 2.202 1.044 53%
PS brev 17.81 1.81 9.8 0.252 0.270 4.488 0.489 89%
PS matmul 32.66 2.06 15.9 0.270 0.288 8.818 0.593 93%

Average 7.5 Average 71%

Table V. Estimated Speedups for a Core-Based ASIC

Loop Performance
Example Arch Cyclesorig Cyclessw Cycleshw Clk Sp.
PS g3fax 8051 19,675,456 10,812,544 176,562 25 2.2
PS crc 8051 291,196 180,224 7,168 25 2.5
PS summin 8051 109,821,892 20,394,080 384,416 25 1.2
PS brev 8051 330,064 305,768 1,360 25 12.9
PS matmul 8051 119,420 101,576 2,560 25 5.9
PS g3fax MIPS 15,600,000 4,720,000 599,000 100 1.4
PS adpcm MIPS 113,000 29,300 5,440 100 1.3
PS crc MIPS 5,040,000 3,480,000 460,800 100 2.5
PS des MIPS 142,000 70,700 15,100 100 1.6
PS engine MIPS 915,000 145,000 28,100 100 1.1
PS jpeg MIPS 7,900,000 646,000 171,000 100 1.1
PS summin MIPS 2,920,000 1,270,000 266,000 100 1.5
PS v42 MIPS 3,850,000 846,000 216,000 100 1.2
PS brev MIPS 3,566 2499 138 100 3.0
MB g721 MIPS 838,230,002 457,674,179 9,985,261 100 2.1
MB adpcm MIPS 32,894,094 32,866,110 1,183,260 100 27.2
MB pegwit MIPS 42,752,919 33,276,287 2,167,651 100 3.7
NB dh MIPS 1,793,032,157 1,349,063,192 45,156,767 100 3.7
NB md5 MIPS 5,374,034 3,046,881 289,877 100 2.1
NB tl MIPS 57,412,470 29,244,221 2,479,552 100 1.9

Average 4.0

4. SPEEDUP AND ENERGY SAVINGS FOR CORE-BASED ASICs

The results given in the previous section utilize prefabricated single-chip mi-
croprocessor/CSL devices. We now describe estimated results if the critical
loops could be implemented in custom hardware alongside a microprocessor
core on a single ASIC. We utilized Synopsys synthesis and power estimation
tools to obtain estimates for a 0.18 µm library similar to that used for the
microprocessor.

The speedup results of hardware/software partitioning in an ASIC design
are shown in Table V. Average speedup increased to 4.0, due to higher clock
frequencies for the hardware partitions. Energy savings are shown in Table VI.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

228 • G. Stitt et al.

Table VI. Estimated Power, Energy, and Area for a Core-Based ASIC

Power Energy
Example Arch Psw Phw Eorig Esw/hw Esav Area
PS g3fax 8051 0.05 0.001 0.11423 0.05249 54% 2,850
PS crc 8051 0.05 0.001 0.00169 0.00068 60% 1,515
PS summin 8051 0.05 0.000 0.63758 0.52150 18% 2,261
PS brev 8051 0.05 0.001 0.00192 0.00015 92% 1,955
PS matmul 8051 0.05 0.002 0.00069 0.00012 83% 3,989
PS g3fax MIPS 0.07 0.071 0.02652 0.02084 21% 2,850
PS adpcm MIPS 0.07 0.031 0.00019 0.00016 19% 10,592
PS crc MIPS 0.07 0.004 0.00857 0.00341 60% 1,515
PS des MIPS 0.07 0.021 0.00024 0.00015 38% 8,580
PS engine MIPS 0.07 0.010 0.00156 0.00137 12% 1,422
PS jpeg MIPS 0.07 0.006 0.01343 0.01267 6% 2,233
PS summin MIPS 0.07 0.003 0.00496 0.00324 35% 2,261
PS v42 MIPS 0.07 0.009 0.00655 0.00550 16% 2,155
PS brev MIPS 0.07 0.002 0.00001 0.00000 66% 1,955
MB g721 MIPS 0.07 0.002 1.42499 0.66403 53% 1,825
MB adpcm MIPS 0.07 0.029 0.05592 0.00228 96% 13,462
MB pegwit MIPS 0.07 0.047 0.07268 0.02113 71% 8,569
NB dh MIPS 0.07 0.051 3.04815 0.87815 71% 15,833
NB md5 MIPS 0.07 0.028 0.00914 0.00458 50% 26,454
NB tl MIPS 0.07 0.011 0.09760 0.05249 46% 2,488

Average 48% 5,738

The energy savings improve to nearly 50%. The reason for the increased energy
savings is primarily because the hardware partition consumes nearly an order
of magnitude less power in an ASIC than in CSL. The core-based ASIC required,
on an average, only 5738 gates to implement the hardware partition.

5. VOLTAGE SCALING

Dynamic power consumption in CMOS designs is proportional to the supply
voltage squared. Therefore, voltage scaling can be effective at reducing en-
ergy because lowering the voltage results in a quadratic reduction in power.
Lowering voltage also increases the delay of the critical path, resulting in a
slower clock and decreased performance. Due to the decreased performance,
voltage scaling is typically performed dynamically during nonperformance crit-
ical parts of an application. An example of a voltage-scalable processor is the
Intel XScale [Intel], having the capability to reduce the clock and voltage dy-
namically in order to reduce power at the expense of performance.

Hardware/software partitioning introduces a new possibility for voltage scal-
ing. Due to the speedups achieved from the custom hardware, we can reduce
voltage until the performance matches the original software, while consuming
much less energy due to the approximately quadratic reduction in power.

We estimated the energy savings from voltage scaling using the following
formulae [Gonzalez et al. 1997]:

TαV/(V − Vt)2

T = k ∗ V/(V − Vt)2,

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Energy Savings and Speedups • 229

where T is the delay of the critical path, V is the supply voltage, Vt is the
threshold voltage, and k is a design-dependent constant.

Using the previous formulae, we are able to derive an equation for determin-
ing the clock frequency at a given supply voltage:

F = 1/T
F = (V − Vt)2/(k ∗ V),

where F is the clock frequency.
We first determine how much we can reduce the clock in order to match the

performance of the software-only design. We then estimate the delay of the
critical path by using the maximum clock frequency. Using this delay, we can
determine k. We use a threshold voltage of 0.8 V. With this information, we can
determine the minimum supply voltage that allows the design to run at the
reduced clock speed. Once we have determined this voltage, we can estimate
power for the voltage-scaled system in the following way:

C = Po/
(
0.5 ∗ V 2

o ∗ a ∗ Fo
)

P = 0.5 ∗ V 2 ∗ C ∗ a ∗ F
P = 0.5 ∗ V 2 ∗ (

Po
/(

0.5 ∗ V 2
o ∗ a ∗ Fo

)) ∗ a ∗ F

P = (
V 2/V 2

o

) ∗ (F/Fo) ∗ Po,

where Po, Vo, and Fo are the power, voltage, and clock frequency of the system
before voltage scaling, C is the capacitance of the system and a is the switching
frequency. P, V , and F are the power, voltage, and clock frequency after voltage
scaling. Therefore, we are estimating the power of the voltage-scaled system by
using the power of the original system and the voltages and clock frequencies
of both systems.

Results for voltage scaling are shown in Table VII. PSR is the percent speed
reduction in order to match the original software. ClkVS is the lower clock fre-
quency used to achieve the required speed reduction. The 8051 had an original
clock speed of 25 MHz and the MIPS had a clock of 100 MHz. VVS is the voltage
after voltage scaling. All examples originally used a supply voltage of 1.8 V.
Power is the original power of the system. PowerVS is the power after voltage
scaling. Energy is the amount of energy for each example on the original sys-
tem. EnergyVS is the energy required after voltage scaling. Esav is the energy
savings achieved from voltage scaling.

We see that voltage scaling increases the energy savings by nearly an addi-
tional 14%, to 62%.

6. CONCLUSIONS

Our experiments demonstrate that significant performance and energy bene-
fits can be obtained for a wide variety of real software applications by mov-
ing just a small amount of critical code to hardware, while in some cases
the speedups and energy savings can be huge. One interesting conclusion is
that increasingly popular single-chip microprocessor/configurable-logic plat-
forms can yield big improvements over microprocessor-only platforms, using

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

230 • G. Stitt et al.

Table VII. Estimated Energy Savings for an ASIC Assuming a Voltage-Scalable Microprocessors

Example Arch PSR ClkVS VVS Power PowerVS Energy EnergyVS ESav
PS g3fax 8051 54% 11.5 1.39 0.145 0.040 0.11423 0.03119 73%
PS crc 8051 59% 10.1 1.36 0.143 0.033 0.00169 0.00039 77%
PS summin 8051 18% 20.4 1.68 0.145 0.103 0.63758 0.45392 29%
PS brev 8051 92% 1.9 1.01 0.144 0.004 0.00192 0.00005 98%
PS matmul 8051 83% 4.3 1.13 0.141 0.010 0.00069 0.00005 93%
PS g3fax MIPS 26% 73.6 1.61 0.168 0.099 0.02652 0.01547 42%
PS adpcm MIPS 21% 78.9 1.65 0.172 0.114 0.00019 0.00013 33%
PS crc MIPS 60% 40.1 1.34 0.159 0.035 0.00857 0.00178 79%
PS des MIPS 39% 60.8 1.51 0.167 0.071 0.00024 0.00010 58%
PS engine MIPS 13% 87.2 1.71 0.170 0.134 0.00156 0.00122 21%
PS jpeg MIPS 6% 94.0 1.75 0.170 0.151 0.01344 0.01191 11%
PS summin MIPS 34% 65.5 1.55 0.163 0.079 0.00496 0.00232 53%
PS v42 MIPS 16% 83.6 1.68 0.168 0.122 0.00654 0.00471 28%
PS brev MIPS 66% 33.8 1.29 0.164 0.029 0.00001 0.00000 83%
MB g721 MIPS 52% 48.4 1.41 0.178 0.053 1.50043 0.44280 70%
MB adpcm MIPS 91% 9.1 1.02 0.156 0.005 0.05888 0.00150 97%
MB pegwit MIPS 65% 34.8 1.30 0.183 0.033 0.07653 0.01419 81%
NB dh MIPS 69% 31.1 1.26 0.185 0.028 3.20953 0.50386 84%
NB md5 MIPS 43% 56.8 1.48 0.179 0.069 0.00962 0.00370 62%
NB tl MIPS 40% 59.9 1.50 0.177 0.074 0.10277 0.04221 59%

Average 62%

only a modest amount of hardware. A second conclusion is that good speedups
can be obtained by moving just one to three small loops from software to
hardware, for which extensive hardware/software exploration methods are not
necessary. Thus, automation tools could foreseeably be developed whose main
tasks would be profiling followed by synthesis of critical loops into hardware—
something becoming increasingly possible with the advent of C-based synthesis
tools.

We plan in the future to analyze the impacts of various architecture fea-
tures, such as microprocessor and hardware clock frequencies and power con-
sumption, interconnect power, CSL power, available hardware size, and mem-
ory bandwidth, on obtaining speedups and energy savings. We also plan to
investigate the benefits of moving additional loops to hardware after the initial
critical loops have been moved.

ACKNOWLEDGMENTS

We thank Brian Grattan for his assistance with partitioning and measurement
of several of the benchmarks. We thank the Triscend Corporation for their do-
nation of several boards to support our research, and for numerous technical
discussions. This work was supported in part by the National Science Founda-
tion (CCR-0203829) and a Department of Education GAANN fellowship.

REFERENCES

ALTERA CORPORATION. 2001. ARM-Based Embedded Processor PLDs.
AMDAHL, G. 1967. Validity of the single processor approach to achieving large scale computing

capabilities. In Proceedings AFIPS 1967 Spring Joint Computer Conference 30, 483–485.
ATMEL FPSLIC, http://www.atmel.com/atmel/products/prod39.htm.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

Energy Savings and Speedups • 231

BALBONI, A., FORNACIARI, W., AND SCIUTO, W. 1996. Partitioning and exploration in the TOSCA
co-design flow. In Proceedings of the International Workshop on Hardware/Software Codesign,
62–69.

BURGER, D. AND AUSTIN, T. M. 1997. The SimpleScalar tool set, Version 2.0. In Tech. Rep. #1342,
University of Wisconsin-Madison Computer Sciences Department.

E5 PRESS RELEASE, http://www.triscend.com/about/indexrelease051401.html.
ELES, P., PENG, Z., KUCHCINSKY, K., AND DOBOLI, A. 1997. System level hardware/software partition-

ing based on simulated annealing and tabu search. Design Automation for Embedded Systems
2, 1, 5–32.

GAJSKI, D.D., VAHID, F., NARAYAN, S., AND GONG, J. 1998. SpecSyn: An environment supporting
the specify-explore-refine paradigm for hardware/software system design. IEEE Transactions on
VLSI Systems 6, 1, 84–100.

GIVARGIS, T., VAHID F., AND HENKEL, J. 2001. System-level exploration for pareto-optimal config-
urations in parameterized systems-on-a-chip. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD).

GOKHALE, M. AND STONE, J. 1998. NAPA C: Compiling for hybrid RISC/FPGA architectures. In
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM).

GONZALEZ, R., GORDON, B., AND HOROWITZ, M. 1997. Supply and threshold voltage scaling for low
power CMOS. IEEE Journal of Solid-State Circuits 32, 8.

HAUSER, J. AND WAWRZYNEK, J. 1997. Garp: A MIPS processor with a reconfigurable coprocessor.
In Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines, Napa Valley,
CA, 12–21.

HENKEL, J. 1999. A low power hardware/software partitioning approach for core-based embedded
systems. In Proceedings of the 36th ACM/IEEE Design Automation Conference, 122–127.

HENKEL, J. AND ERNST R. 1997. A hardware/software partitioner using a dynamically determined
granularity. In Proceedings of the Design Automation Conference.

HENKEL, J. AND LI, Y. 1998. Energy-conscious HW/SW-partitioning of embedded systems: A
Case Study on an MPEG-2 Encoder. In Proceedings of 6th International Workshop on Hard-
ware/Software Codesign, 23–27.

HOU, J. AND WOLF, W. 1996. Process partitioning for distributed embedded systems. In Proceeding
International Workshop on Hardware/Software Codesign.

INTEL XSCALE PROCESSOR, http://developer.intel.com/design/intelxscale.
KALAVADE, A. AND LEE, E. 1994. A global criticality/local phase driven algorithm for the con-

strained hardware/software partitioning problem. In Proceedings of the International Workshop
on Hardware/Software Codesign, 42–48.

LEE, C., POTKONJAK, M., AND MAGIONE-SMITH, W. 1997. MediaBench: A tool for evaluating and
synthesizing multimedia and communication systems. In Proceedings of MICRO.

MALIK, A., MOYER, B., AND CERMAK, D. 2000. A low power unified cache architecture providing
power and performance flexibility. In Proceedings of the International Symposium on Low Power
Electronics and Design.

MEDIABENCH. http://www.cs.ucla.edu/∼leec/mediabench/.
MERNIK, G., MANGIONE-SMITH, W. H., AND HU, W. 2001. NetBench: A benchmarking suite for net-

work processors. In Proceedings of the IEEE/ACM International Conference on Computer Aided
Design, 39–42.

MIPS TECHNOLOGIES, INC., http://www.mips.com.
STITT, G., GRATTAN, B., VILLARREAL, J., AND VAHID, F. 2002. Using on-chip configurable logic to

reduce embedded system software energy. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa Valley, CA.

SYNOPSYS, http://www.synopsys.com.
TRISCEND CORPORATION, http://www.triscend.com. 2002.
UNIVERSITY OF CALIFORNIA, Riverside; Dalton Project. http://www.cs.ucr.edu/∼dalton.
VANMEERBEECK, G., SCHAUMONT, P., VERNALDE, S., ENGELS, M., AND BOLSENS, I. 2001. Hard-

ware/software partitioning of embedded system in OCAPI-xl. In Proceedings of the International
Symposium on Hardware/Software Codesign, 30–35.

VILLARREAL, J., LYSECKY, R., COTTERELL, S., AND VAHID, F. 2001. Loop analysis of embedded appli-
cations. In Tech. Rep. UCR-CSE-01-03, University of California, Riverside.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

232 • G. Stitt et al.

VIRTEX POWER ESTIMATOR, http://support.xilinx.com/cgi-bin/powerweb.pl.
WAN, M., ICHIKAWA, Y., LIDSKY, D., RABAEY, J. 1998. An energy conscious methodology for early

design exploration of heterogeneous DSPs. In Proceedings of the IEEE Custom Integrated Circuits
Conference, 111–117.

WERNER, B. AND MAGNUSSON, P. 1997. A hybrid simulation approach enabling performance char-
acterization of large software systems. In Proceedings of MASCOTS.

XILINX CORPORATION. 2002. Virtex-II Pro Platform FGPA Handbook.

Received February 2002; revised August 2002; accepted April 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, February 2004.

