Lenses in Arrangements of Pseudo-circles and Their
Applications

Pankaj K. Agarwdl Eran Nevé  Janos Pach Rom Pinchadi  Micha Sharit
Shakhar Smorodinsky

November 11, 2002

Abstract

A collection of simple closed Jordan curves in the plane is called a fampgeddo-circles
if any two of its members intersect at most twice. A closed curve composed of two subarcs of
distinct pseudo-circles is said to be empty lensf it does not intersect any other member of
the family. We establish a linear upper bound on the number of empty lenses in an arrangement
of n pseudo-circles with the property that any two curves intersect precisely twice. This bound
implies that any collection af z-monotone pseudo-circles can be cut iGtm3/°) arcs so that
any two intersect at most once; this improves a previous bouit{o?/3) due to Tamaki and
Tokuyama. If, in addition, the given collection admits an algebraic representation by three real
parameters that satisfies some simple conditions, then the number of cuts can be further reduced
to O(n*/?(logn)°(®" (™)), wherea(n) is the inverse Ackermann function, asds a constant
that depends on the the representation of the pseudo-circles. For arbitrary collections of pseudo-
circles, any two of which intersect exactly twice, the number of necessary cuts reduces still
further toO(n*/?). As applications, we obtain improved bounds for the number of incidences,
the complexity of a single level, and the complexity of many faces in arrangements of circles,
of pairwise intersecting pseudo-circles, of arbitrarynonotone pseudo-circles, of parabolas,
and of homothetic copies of any fixed simply-shaped convex curve. We also obtain a variant
of the Gallai-Sylvester theorem for arrangements of pairwise intersecting pseudo-circles, and a
new lower bound on the number of distinct distances under any well-behaved norm.
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1 Introduction

Thearrangemenof a finite collectionC' of geometric curves ifR?, denoted asl(C), is the planar
subdivision induced by, whose vertices are the intersection points of the curvés efhose edges

are the maximal connected portions of curvegimot containing a vertex, and whose faces are
maximal connected portions & \ | C. Because of numerous applications and the rich geometric
structure that they possess, arrangements of curves, especially of lines and segments, have been
widely studied [4].

A family of Jordan curves (resp., arcs) is called a familpséudo-linegresp. pseudo-segments
if every pair of curves intersect in at most one point and they cross at that point. A colléttdn
closed Jordan curves is called a familypsleudo-circlesf every pair of them intersect at most twice.
If the curves ofC' are graphs of continuous functions everywhere defined on the set of real numbers,
such that every two intersect at most twice, we call tis@udo-parabola$ Although many combi-
natorial results on arrangements of lines and segments extend to pseudo-lines and pseudo-segments,
as they rely on the fact that any two curves intersect in at most one point, they rarely extend to ar-
rangements of curves in which a pair intersect in more than one point. In the last few years, progress
has been made on analyzing arrangements of circles, pseudo-circles, or pseudo-parabolas by “cut-
ting” the curves into subarcs so that the resulting set is a family of pseudo-segments and by applying
results on pseudo-segments to the new arrangement; see [1, 7, 8, 11, 24, 27]. This paper continues
this line of study—it improves a number of previous results on arrangements of pseudo-circles, and
extends a few of the recent results on arrangements of circles (e.g., those presented in [7, 8, 24]) to
arrangements of pseudo-circles.

Let C be a finite set of pseudo-circles in the plane. &@indc be two pseudo-circles ify,
intersecting at two points,v. A lens\ formed byc and¢’ is the union of two arcs, one efand
one ofc’, both delimited byu andv. If X is a face ofA(C), we callA anemptylens; \ is called a
lens-faceif it is contained in the interiors of both and¢’, and alune-faceif it is contained in the
interior of one of them and in the exterior of the other. See Figure 1. (We ignore the casel\where
lies in the exteriors of both pseudo-circles, because there can be only one suchA4¢8 inLet
1(C) denote the number of empty lensesCin A family of lenses formed by the curves @i is
calledpairwise nonoverlapping the (relative interiors of the) arcs forming any two of them do not
overlap. Letv(C) denote the maximum size of a family of nonoverlapping lensés.ilve define
the cutting numbeiof C, denoted byy(C'), as the minimum number of arcs into which the curves
of C have to be cut so that any pair of resulting arcs intersect at most once (i.e., these arcs form a
collection of pseudo-segments); thye”') = |C| when no cuts need to be made. In this paper, we
obtain improved bounds gi(C), v(C'), andx(C') for several special classes of pseudo-circles, and
apply them to obtain bounds on various substructures(cf).

Previous results. Tamaki and Tokuyama [27] proved thatC)) = O(n®/?) for a family C of n
pseudo-parabolas or pseudo-circles, and exhibited a lower bomﬂ(dzéf?’). In fact, their construc-

tion gives a lower bound on the number of empty lenses in an arrangement of circles or parabolas.
Subsequently, improved bounds @(C') andr(C') have been obtained for arrangements of circles.
Alon et al.[7] and Pinchasi [24] proved that(C) = ©(n) for a set ofn pairwise intersecting
circles. IfC'is an arbitrary collection of circles, ther(C) = O(n?/?t¢), for anye > 0, as shown

by Aronov and Sharir [8]. No better bound is known for the number of empty lenses in an arbitrary

For simplicity, we assume that every tangency counts as two intersections, i.e., if two pseudo-circles or pseudo-
parabolas are tangent at some point, but they do not properly cross there, they do not have any other point in common.
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Figure 1. (i) A pseudo-circley supporting one lens-face and two lune-faces. (ii) A family of (shaded) nonoverlapping
lenses.

lune-face

family of circles. Howevery(C) = O(n*/3) for a set ofn, unit circles, though no superlinear lower
bound is known for this special case.

The analysis in [27] shows that the cutting numféf’) is proportional ta/(C) for collections
of pseudo-parabolas or of pseudo-circles. Therefore ong(t@s= O(n"/?) for pseudo-parabolas
and pseudo-circles [27], andC') = O(n?/?*¢) for circles. Using this bound og(C), Aronov
and Sharir [8] proved that the maximum number of incidences between(aakt circles and a
setP of m, points isO(m?/3n2/3 4 m8/11+3ep9/11=¢ Ly 1 p), for anye > 0. Recently, following
a similar but more involved argument, Agarvwatlal.[1] proved a similar bound on the complexity
of m distinct faces in an arrangementotircles in the plané. An interesting consequence of the
results in [7, 24] is the following generalization of the Sylvester-Gallai theorem: In an arrangement
of pairwise intersecting circles, there always exists a vertex incident upon at most three circles,
provided that the number of circles is sufficiently large and that they do not form a pencil. For
pairwise intersecting unit circles, the property holds when the number of circles is at least five
[7, 24].

New results. In this paper we first obtain improved bounds @fC'), v(C), andx(C) for var-

ious special classes of pseudo-circles, and then apply these bounds to several problems involving
arrangements of such pseudo-circles. Ldéte a collection of: pseudo-parabolas such that any two
have at least one point in common. We show that the number of tangenciess st most2n — 4

(for n > 3). In fact, we prove the stronger result that the tangency graph for such a colléttion

is bipartite and planar. Using this result, we prove thétf') = ©(n) for a setC of n pairwise
intersecting pseudo-circles. Next, we show thaf') = O(n*/?) for collectionsC' of n pairwise
intersecting pseudo-parabolas. We then go on to study the general case, in which not every pair of
curves intersect. We first show, in Section 4, théf') = O(n®/®) for arbitrary collections ofn
pseudo-parabolas and for collectionsnof-monotone pseudo-circles. This improves the general
bound of Tamaki and Tokuyama [27], and is based on a recent result of Pinchasi ancid{2&di”

on the size of graphs drawn in the plane so that any pair of edges in a cycle of length 4 intersect
an even number of times. In order to improve this bound further, we need to make a few additional
assumptions on the geometric shape of the given curves. Specifically, we assume, in Section 5, that,
in addition tox-monotonicity, then given curves admit a 3-parameter algebraic representation that
satisfies some simple conditions (a notion defined more precisely in Section 5). Three important

2Actually, the paper [1], having been written alongside with the present paper, already exploits the slightly improved
bound derived here.



classes of curves that satisfy these assumptions are the classes of circles, vertical parabolas (of the
form y = az? + bz + ¢), and of homothetic copies of any fixed simply-shaped convex curve. We
show that, in the case of such a representatids}) = O(n?*/?(logn)°(* (")), wherea(n) is the

inverse Ackermann function andis a constant depending on the algebraic parametrizatien

for circles and vertical parabolas. This bound gives a slightly improved bound@h compared

to the bound proved in [8], for a family of circles.

In Section 6, we apply the above results to several problems. The better bounds on the cutting
numbery(C) lead to improved bounds on the complexity of levels, on the number of incidences
between points and curves, and on the complexity of many faces, in arrangements of several classes
of pseudo-circles, including the cases of circles, parabolas, pairwise-intersecting pseudo-circles,
homothetic copies of a fixed convex curve, and general pseudo-parabolasyambtone pseudo-
circles. The exact bounds are stated in Section 6. We also obtain a generalized Gallai-Sylvester re-
sult for arrangements of pairwise-intersecting pseudo-circles, and a new lower bound for the number
of distinct distances determined bypoints in the plane and induced by an arbitrary well-behaved
norm.

2 Pairwise Intersecting Pseudo-Circles

Let C be a set of. pseudo-circles, any two of which intersect in two points. We prove ili&t),

the number of empty lenses #(C), is O(n). The proof proceeds in three stages: First, we reduce
the problem taD(1) instances of counting the number of empty lenses in an arrangement of at most
n pairwise intersecting pseudo-circles, all of whose interiors are star shaped with respect to a fixed
point o. Next, we reduce the latter problem to counting the number of tangencies in a family of
pairwise intersecting pseudo-parabolas. Finally, we prove that the number of such tangencies is
O(n). For simplicity, we provide the proof in the reverse order: Section 2.1 proves a bound on the
number of tangencies in a family of pairwise intersecting pseudo-parabolas; this provides the main
geometric insight of this paper, on which all other results are built. Section 2.2 proves a bounds on
w(C) for a family C' of pairwise-intersecting star-shaped pseudo-circles, by using the result in the
previous subsection; Section 2.3 supplies the final reduction, and shows that the number of empty
lenses in a family of arbitrary pairwise-intersecting pseudo-circles can be counted using the result
obtained in Section 2.2.

2.1 Tangencies of pseudo-parabolas

LetI" be a set of, pairwise intersectingseudo-parabolgs.e., graphs of totally defined continuous
functions, each pair of which intersect, either in exactly two crossing points or in exactly one point
of tangency, where no crossing occriVe also assume that no three of these curves have a point

in common. This general position assumption is made in order to simplify our analysis. Later on,
we will show how to extend our analysis to sets of curves that are not in general position. Note
also that considering tangencies, rather than empty lenses, is just another simplifying step: Since no
three curves are concurrent, any tangency can be deformed into a small empty lens and vice versa.
Let T denote the set of all tangencies between pairs of curvBs @ur goal is to bound the size of

3The requirement that the number of intersections of every pair be exactly two can be relaxed to that of requiring that
every pair intersect at least once: A family satisfying the latter condition can easily be extended to a family that satisfies
the former condition.



T.

We associate a graph with T', whose vertices are the curveslofand whose edges connect
pairs of tangent curves. A pseudo-parabol&' is calledlower (resp.,uppe) if it forms a tangency
with another curve that lies above (resp., below) it. We observe that a guevE cannot be both
upper and lower because the two other curves forming the respective tangencieswwiitd have
to be disjoint, contrary to assumption. Hen€gis bipartite. In the remainder of this subsection we
show that(F is planar, and this will establish a linear upper bound on the siZé of

The drawing rule. Let ¢ be a vertical line that lies to the left of all the verticesAfT"). We
draw G in the plane as follows. Each € T is represented by the point = v N . Each edge
(71,72) € G is drawn as g-monotone curve that connects the poiffsv;. We use(v;,~;) to
denote the arc drawn fdry;,v2). The arc has to navigate to the left or to the right of each of the
intermediate vertice§* betweeny; and~; along/.

We use the following rule for drawing an ede, v2): Assume thaty; lies below~; along/.
Let W (+1,72) denote thdeft wedgeformed by~y; and~y,, consisting of all points that lie abovg
and belowy, and to the left of the tangency between them. &Let T be a curve so that* lies
on ¢ betweeny; and-~y;. The curves has to exitW (vy;,v2). If its first exit point (i.e., its leftmost
intersection wittOW (-1, y2)) lies onvy; then we draw(y,,y2) to pass to the right of*. Otherwise
we draw it to pass to the left @f; see Figure 2(i). Note that a tangency also counts as an exit point
(with immediate re-entry back into the wedge). Except for these requirements, theyedgg can
be drawn in an arbitrary-monotone manner.

(ii)

Figure 2. (i) lllustrating the drawing rule. (ii) Drawing the graph for an arrangement of five pairwise intersecting
pseudo-parabolas with three tangencies.

Lemma 2.1 Suppose that the following conditions hold for each quadrgples, v, v4 of distinct
curves inl’, whose intercepts withappear in thisy-increasing order:

(@) If (y1,7v4) and (vy2,73) are edges of7, then bothy; and ;3 lie on the same side of the arc
(V15 71)-

(b) If (y1,73) and (y2,74) are edges ofi and the arc(v;,v;) passes to the left (resp., right) of
75, then the arqy;3, v;) passes to the right (resp., left) of.

Thend is planar.

Proof: Figure 3 shows the configurations allowed and forbidden by conditions (a) and (b). We show
that the drawings of each pair of edges®ivithout a common endpoint cross an even number of
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times. (With additional care, this property can also be enforced for pairs of edges with a common
endpoint, as will be shown later. This extension is not needed for the main result, Theorem 2.4, but
is needed for the analysis in Section 4 involving general pseudo-parabolasnandotone pseudo-
circles.) This, combined with Hanani-Tutte’s theorem [29] (see also [16] and [22]), implie&that

is planar. Clearly, it suffices to check this for pairs of edges (with distinct endpoints) for which the
y-projections of their drawings have a nonempty intersection. In this case, the projections are either
nestedas in case (a) of the condition in the lemmapartially overlapping as in case (b).

allowed forbidden

Figure 3. The allowed and forbidden configurations in conditions (a) and (b).

Consider first a pair of edges= (1, v4) ande’ = (2, 3), with nested projections, as in case
(a). Regard the drawing @fas the graph of a continuous partial functien= e(y), defined over
the interval[v;, v;], and similarly fore’. Part (a) of the condition implies that eitheis to the left
of ¢’ at both; and~;, or e is to the right ofe’ at both these points. Sineeande’ correspond to
graphs of functions that are defined and continuous [pxery;], it follows thate ande’ intersect in
an even number of points.

Consider next a pair of edges= (y1,73) ande’ = (2, ~4), with partially overlapping projec-
tions, as in case (b). Here, too, part (b) of the condition implies that eitigeto the left ofe’ at
both~; and~j, or e is to the right ofe’ at both these points. This implies, as above, thabde’
intersect in an even number of points.

This completes the proof of the lemma. O

We next show that the conditions in Lemma 2.1 do indeed hold for our drawig of

Lemma 2.2 Let~yq, 9, 7v3, 4 be four curves if", whose intercepts withappear in this increasing
order, and suppose thadt,v4) and (2, y3) are tangent pairs. Then it is impossible that the first
exit points ofy; and~ys from the wedgéV (v,,,) are at opposite sides of the wedge.

Proof: Suppose to the contrary that such a configuration exists. Then, except for the respective
points of tangencyys; always lies aboves, and~y, always lies above;. This implies that if the

first exit point ofy, from W (v, v4) lies on+yy, then the first exit point ofy; also has to lie ony,,
contrary to assumption. Hence, the first exit pointypfies on-y; and, by symmetric reasoning, the

first exit point of+y3 lies onvy,. See Figure 4. Let;, denote the point of tangency ¢f and~y,. We
distinguish between two cases:

(a) v2 passes below, 4 andvs passes above 4. See Figure 4 (i). In this case, the second intersec-
tion point ofy; and~y, must lie to the right of14, for otherwisey; could not have passed belay,.
Similarly, the second intersection point®f and-y, also lies to the right of;4. This also implies



that~, and~y, do not intersect to the left afi4, and thaty; and-; also do not intersect to the left
of v14. Letuys (resp.,uz4) denote the leftmost intersection point-gf and-~ys (resp., ofy, and-y,),
both lying to the right ofv14. Suppose, without loss of generality, that lies to the left ofug,.
In this case, the second intersectiomypfand~, must lie to the right of:;3. Indeed, otherwise-
would become “trapped” inside the wedBé(+, y3) becausey, cannot crosg; and it has already
crossedy; at two points. The second intersectionygfand~, occurs to the left ofi13. Now, v
and-y, cannot intersect to the left afi5: v does not interseeyy to the left of its first exitw,o from
W (vy1,7v4). To the right ofw;5 and to the left ofu;3, 72 remains belowy;, which lies belowy,.
Finally, to the right ofu,3, - lies below~s, which lies belowy, (since it has already intersected
twice). This implies that, cannot intersect, at all, a contradiction, which shows that case (a) is
impossible.

Y4

3 3
V14 V14
Y2 u13 Yo
w12
71 71

0} (ii)

Figure 4. Edges ofG with nested projections: (i). passes below:;s andvys passes above,4; (ii) both v» andvys pass
on the same side ofi4.

(b) Both+y, and~vs pass on the same side«@f;: Without loss of generality, assume that they pass
abovev4. See Figure 4 (ii). Thefye must crossy; again and then crosg, both withindW (1, y4).

In this case;y; cannot cross, to the left ofvy4, because to do so it must first cregsagain, and
then it would get “trapped” inside the wed§é(~2, v4). But theny; and~s; cannot intersect at all:

We have argued that they cannot intersect to the left of To the right of this point;; lies above

~2, Which lies abovey,. This contradiction rules out case (b), and thus completes the proof of the
lemma. O

Lemma 2.3 Let~y1, 2, v3,v4 be four curves if’, whose intercepts withappear in this increasing
order, and suppose thdty,y3) and (2, 4) are tangent pairs. Then it is impossible that the first
exit point ofy, from the wedgéV (1, y3) and the first exit point of;; from the wedgéV (2, v4)
both lie on the bottom sides of the respective wedges, or both lie on the top sides.

Proof: Suppose to the contrary that such a configuration exists. By symmetry, we may assume,
without loss of generality, that both exit points lie on the bottom sides. That is, the exitpgiat

2 from W (~1,v3) lies onvy; and the exit pointigz of 3 from W (2, v4) lies on+y,. See Figure 5.

By definition,~y, and-~ys do not intersect to the left af;5. So,us3 occurs to the right ofi;2 and, in

fact, also to the right of the second intersection poinj;ofnd-y,. Again, by assumptiony; and-,

do not intersect to the left afy3. Hencey; and+y, also do not intersect to the left af3, because

~1 lies below~s. But thenry; andy, cannot intersect at all, because to the right.©f, v4 lies above

v2, which lies abovey;. This contradiction completes the proof of the lemma. |

Lemmas 2.2 and 2.3 show that the conditions in Lemma 2.1 hol@:; isoplanar and bipartite
and thus has at mo3t. — 4 edges, fom > 3. Hence, we obtain the following.
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Y2

71

Figure 5. Edges ofG with partially overlapping projections.

Theorem 2.4 LetI" be a family ofn pairwise intersecting pseudo-parabolas in the plane, i.e., each
pair intersect either in exactly two crossing points or in exactly one point of noncrossing tangency.
Assume also that no three curveslbfmeet at a common point. Then there are at nfost- 4
tangencies between pairs of curvediifor n. > 3.

2.2 Empty lenses in star-shaped pseudo-circles

The main result of this subsection is:

Theorem 2.5 The number of empty lenses in an arrangement oF 3 pairwise intersecting
pseudo-circles, no pair of whicch are tangent and no three concurrent, so that all their interiors
are star shaped with respect to a poitis at most2n — 3. This number is 3 forn = 2. Both
bounds are tight in the worst case.

The lower bound, for, = 5, is illustrated in Figure 6. It is easy to generalize this construction
for anyn > 3. The casen = 2 is trivial: A pair of intersecting circles form three empty lenses
(ignoring the unbounded face), of which two are lune-faces and one is a lens-face, containing

Figure 6. Lower-bound construction: Five circles with a common interior point forming seven empty lenses.

Assume then that > 3. At most one empty lens contains We will show that the number of
empty lenses not containingis at most2n — 4. By definition, each of these lenses is a lune-face
(whereas the empty lens containingf any, is a lens-face).

We deform the pseudo-circles 6f, so as to turn each lune-face intdaagencybetween the
two corresponding pseudo-circles. This is easy to do, by deforming the two pseudo-circles bounding
such an empty lens, using the facts that no two empty lenses share an arc or a vertex; see Figure 7 for

8
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Figure 7. Transforming an empty lens into a tangency.

an illustration. We can deform the pseudo-circles in this manner without losing the star-shapedness
property.

Draw a generic ray that emanates from and does not pass through any vertexAqi”');
in particular, it does not pass through any empty lens, each now reduced to a point of tangency
between the respective pseudo-circles. Without loss of generality, assumpehtmbrientation O,
i.e., it points to the direction of the positiveaxis. Regard each curve 6fas the graph of a function
in polar coordinates, and map the open intef¢al~) of orientations onto the real line (e.g., by
x = —cot #/2). This transformg” into a collectionl” of pairwise intersectingseudo-parabolas
that is, graphs of totally defined continuous functions, each pair of which intersect exactly twice.
The rayp is mapped to the vertical lines at= +oc.

The problem has thus been reduced to that of bounding the number of tangenciesramong
pairwise intersecting pseudo-parabolas, no three of which are concurrent. By Theorem 2.4, the
number of tangencies is at mast — 4, for n > 3, so the number of lune-faces is at moat— 4.

This completes the overall inductive proof of the theorem.

2.3 Reduction to pairwise intersecting star-shaped pseudo-circles

Let C be a family ofn pseudo-circles, any two of which intersect each other in two points. We refer

to the interiors of these pseudo-circlespasudo-disksWe bound.(C') by reducing the problem to

a constant number of subproblems, each of which is ultimately reduced to counting the number of
empty lenses in a family of pairwise intersecting star-shaped pseudo-circles. We continue to assume
that the curves i’ are in general position, as in the preceding subsection.

We need the following easy observation.

Lemma 2.6 Among any five pseudo-disks bounded by the elemelits thiere are at least three
that have a point in common.

Proof: Indeed, if this were false, then there would exist five pseudo-disks such that any two of them
intersect in an empty lens (in the arrangement of the five corresponding boundary curves), which
would give rise to a forbidden planar drawing &§f, the complete graph with five vertices.

O

The following topological variant of Helly’s theorem [18] was found by Maiii23]. It can be
proved by a fairly straightforward induction.

Lemma 2.7 Any finite family of at least three simply connected regions in the plane has a nonempty
simply connected intersection, provided that any two of its members have a connected intersection
and any three have a nonempty intersection. Consequently, the intersection of any subfamily of
pseudo-disks bounded by element§'dd either empty or simply connected and hence contractible.



Letp > ¢ > 2 be integers. We say that a famifyof sets has thép, ¢) propertyif among every
p members off” there argy that have a point in common. We say that a family of géis pierced
by a setT" if every member ofF' contains at least one elementBf The setT is often called a
transversalof F. Fixp > ¢ > d + 1. Alon and Kleitman [6] proved that there exists a transversal
of size at mosk = k(p, ¢,d) for any finite family of convex sets ¢ with the (p, ¢)-property.
Recently, Alonet al.[5] extended this result to any finite family of open regions inl-space with
the property that the intersection of every subfamilyFois either empty or contractible. Their
result, combined with Lemmas 2.6 and 2.7, implies the following.

Corollary 2.8 There is an absolute constahtsuch that any family of pseudo-disks bounded by
pairwise intersecting pseudo-circles can be pierced by at fpsints.

FixasetO = {o1,09,..., 0k} of k points that pierces all pseudo-disks bounded by the elements
of C'. LetC; consist of all elements d@f' that contairp; in their interior, fori = 1,2, ..., k.

It suffices to derive an upper bound on the number of empty lenses formed by pairs of pseudo-
circles belonging to the same cla€$, and on the number of empty lenses formed by pairs of
pseudo-circles belonging to two fixed clasggs C;. We begin by considering the first case and
then reduce the second case to the first one.

Let C be a family of pseudo-circles, so that any two of them intersect and each of them contains
the origino in its interior. We wish to boung:(C). Obviously, there exists at most one empty
lens-face formed by elements 6f namely, the face containing Therefore, it is sufficient to
bound the number of lune-faces determined’hyThe combinatorial structureof an arrangement
is its face lattice. We call two arrangemewtsmbinatorially equivalent if the face lattices of their
arrangements are isomorphic. For a fgceve say that an edge bounding f is pointinginside
(resp.outsidg if f isinthe interior (resp., the exterior) of the pseudo-disk whose boundary includes
€.

We need the following technical lemma to prove the main result.

Lemma 2.9 Let C' be a family of pseudo-circles such that all of them have an interior pwint
in common. Then the union of any set of pseudo-disks bounded by the elem@nits smply
connected.

Proof: For anyy; € C, let D; denote the pseudo-disk bounded~y Using stereographic projec-
tion, we can map each; into a simply connected regiaR; of a spherés? touching the plane at,
where the center of projection is the poirite S? antipodal too. Clearly, we have

s?\ U pi= () S*\ D).

1<i<k 1<i<k

The setsD} = S?\ D] form a collection of pseudo-disks in the “punctured” sphgfe\ {o},
isomorphic to the plane, and they all containThus, applying Lemma 2.7 (clearly, the intersection

of two pseudo-disks is always connected), we obtain that the right-hand side of the above equation
is simply connected. ThereforB? \ |J,.,., D} is also simply connected, which implies that the
union of C'is simply connected. o O

By Lemma 2.9,R? \ |J; D; consists of only one (unbounded) cell #(C). An immediate
corollary of the above lemma is the following.
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Corollary 2.10 Every bounded face ¢f(C) has an edge that points inside.

Proof: Let f be a bounded face @f(C'). Denoting bys; andD;, fori = 1,2,..., k, the edges of
and the respective pseudo-disks whose boundaries contain these edges, and assuming that every

is pointing outside, we obtain thdtlies in the exterior of all pseudo-disk3;, fori = 1,2,... k.
However, this would imply thaf is a bounded cell of the complement|df_, ., D;, contradicting
Lemma 2.9, which states thig}; ., D; is a simply connected bounded set. O

We now prove the main technical result of this subsection.

Lemma 2.11 Let C be a finite family of pseudo-circles in general position, such that all of them
have an interior pointo in common. Then there exists a combinatorially equivalent fa6tilpf
pseudo-circles, all of which are star-shaped with respeet to

(ii)

(0]

Figure 8. ConvertingC' into a star-shaped family by a counterclockwise topological sweep: (i) The original curves; (ii)
The transformed curvesl = (123, 213, 231, 321, 312, 132, 123).

Proof: We perform an “angular” topological sweep.AfC') with respect tw by a semi-infinite arc

7 that haso as an endpoint, and intersects, at any time, each pseudo-cirCleexdctly once. The
ordering of the intersections efwith the members of’ gives a permutation of’, and the sweep
produces a circular sequendeof permutations, each differing from the preceding one by a swap of
two adjacent elements. We then construct a fafiilpf pseudo-circles, all of which are star-shaped
with respect tw, so that the angular sweep.4fC’) by aray emanating fronv produces the same
sequencél; this will imply that C’ is combinatorially equivalent t@'.

First we show how to construct an initial instance of the cutvé.et f; be the cell ofA(C)
containingo. Clearly, all edges of; point inside. Start drawing a curvefrom o so that it first
crosses an edgg of fq, pointing insidef;. Let fo denote the cell on the other sideaf and let
eo be an edge of this cell pointing inside; cleary, # e;. Extendr through f, until it crosseses.
Proceeding in this way, we reach, aftessteps, the unique unbounded cgll, ;; see Figure 8(i).

This follows by noting that at each step we exit a different pseudo-disk, and never enter into any
pseudo-disk. Let; € C denote the pseudo-circle whose boundary containlearly, the se-
quencer; = (v1,---,7), Wherey; is the curve containing the edgg is a permutation of’.

The following claim shows that there always exists a “local” move that advances the sweep of
the curver aroundo. It is reminiscent of a similar result given in [20].
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Claim A There exist two consecutive edggse; 1 that are crossed by and have a common
endpoint counterclockwise 9 i.e., the triangular region enclosed lay, e¢; 11, and+ is contained
in a face ofA(C) and lies (locally) on the counterclockwise siderof

T

@ (i)

Figure 9. (i) e; ande;, have a common endpoint counterclockwisé tii) advancing the sweep curve.

Proof: Let j(i), for eachl < i < n, denote the index of the first element @fthat intersects
7; counterclockwise t@. Let7; denote the triangular region boundedy~;;), and7. We say
that7; is positive(resp.,negative, if j(i) < 7 (resp.,j(i) > 7). Letk be the smallest integer for
which Ty, is positive, and put = j(k); see Figure 9(i). Observe tha}, is positive, sok is well
defined. No curve whose index is greater thacan intersect, because such a curve would have
to intersecty; at more than two points (it has to “enter” and “leav@’ through-y,, but to reach the
entry point it has to crossg; once more, counterclockwise 1@). Sincej(l) > [, it follows that if

I = k — 1 thene; ande,, satisfy the property in the claim. The proof is completed by noting that
this is the only possible case: If< k — 1 thenv,_; cannot exitT}. at all, which is impossible.
Indeed,v, 1 cannot intersect any curve ¢f in the interior of T, because theff;, ; would be
positive, as the index of any curve intersecting the interidfrois smaller thark. If -y, exitsTy

by intersectingy,, then agairil;, | would be positive. Finallyy, ; cannot exitT; by crossingys
because: — 1 # [ = j(k). This contradiction implies thdt= k& — 1, and the claim holds with
€, Ck- O

Assume that; ande;; share an endpoinb counterclockwise t@. Now fix a pair of points
u,v € 7, close to the points wherecrosses)T; and lying outsidel;, and continuously sweep the
portion of the curve” betweenu andv, keeping the other parts fixed, pushing the crossing points
with 9T; towardsw, and finally pull it throughw, so that* no longer intersectg;; see Figure 9(ii).

In this new positions meetsy; 1 before it meetsy;. We obtain a new permutatiary, which is the
same asr; except that the positions of and~y; are swapped.

We repeat the above procedure for the new cuiveontinuing in this manner, we obtain a
sequencdl = (w1, me,...) of permutations of the elements 6f, corresponding to the different
orders in whichr crosses the curves.

We now construct a family of pseudo-circles that realize the same seqieifoese sweep
their arrangement by a ray arouadThis is done similar to the procedure described by Goodman
and Pollack [17] for realizing aallowablesequence by an arrangement of pseudo-lines. Roughly
speaking, we draw concentric circlesr, oo, . . . , o, aroundo, and draw a ray; from o for each
permutationr; in IL. If 7,1 is obtained fromr; by swappingy; and~;,:, we erase small arcs of
oj andoj near their intersection points withy,; and connect the endpoints of the two erased
arcs by two crossing segments; see Figure 8(ii). Cetenote the set of curves, obtained by
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modifying the circlesry, ..., o, in this manner. By construction, each curveCihis star-shaped
with respect tw andC’ produces the sequentEif we sweep it around with a ray. By induction
on the length of1, one can show that’ andC’ are combinatorially equivalent, which implies that
C’ is a family of pseudo-circles, any pair of which intersect in exactly two points. O

Lemma 2.11 implies that the number of empty lenseS'is the same as that ifi’. Hence, by
Theorem 2.5, we obtain the following.

Corollary 2.12 LetC be a family of» > 3 pairwise-intersecting pseudo-circles in general position
whose common interior is not empty. Thei@’) < 2n — 3. Forn =2, u(C) = 3.

We are now ready to prove the main result of this section.

Theorem 2.13 Let C be a family ofn pairwise-intersecting pseudo-circles in general position.
Thenu(C) = O(n).

Proof: By Corollary 2.8, there exists a partitidrCy, . . ., Cx } of C into O(1) subsets, so that all
the pseudo-circles i@; contain a poinb; in their common interior, foi = 1,..., k. Corollary 2.12
implies that the number of empty lenses induced by two pseudo-circles within the samed@amily
is at mos2|C;| — 1, for a total of at mosgn — k. It thus remains to consider the case in which the
given family of pairwise intersecting pseudo-circles is the union of two subfandili€®, such that
the interiors of all pseudo-circles ifi (resp., inC’) contain a common point (resp.,0’). We wish

to bound the number of “bichromatic” empty lenses, i.e., empty lensgg U C’) formed by a
pseudo-circle irC and a pseudo-circle i@’. We may assume that none of the pseudo-circles’ of
containso in its interior. Indeed, each pseudo-circle @f whose interior contains can be added
to C, and every bichromatic empty lens it determines is counted among the empty lerg&s)in
using Theorem 2.5. Similarly, we may assume that none of the pseudo-cirdésaftainso’ in

its interior. Any bichromatic lune-face iA(C U C’) must contain eithes or o', so there can be at
most two such faces. Thus, it suffices to bound the number of bichrotensdaces

Apply an inversion of the plane with respectdo Then each bichromatic lens-face is mapped
into a lune-face, which lies outside the incident pseudo-circl€’' ahd inside the incident pseudo-
circle of C’. Moreover, all the pseudo-circles of both families now contéin their interior. Hence,
by Theorem 2.5, the number of these lune-faces (that is, the original lens-faces) is a@hmost
for n > 3;itis 2 forn = 2. Summing this bound over all pairs of sets in the partition, the theorem
follows. O

2.4 Pairwise nonoverlapping lenses

Let C be a family ofn pairwise-intersecting pseudo-parabolas or pseudo-circles in general position,
and letZ be a family of pairwise nonoverlapping lenses4C'). In this subsection, we obtain the
following bound for the size of..

Theorem 2.14 LetC' be a family ofn pairwise-intersecting pseudo-parabolas or pseudo-circles in
general position. Then the maximum size of a family of pairwise nonoverlapping lensg&s s
O(n*/3).
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We begin by considering the case of pseudo-parabolas; we then show that the other case can be
reduced to this case, using the analysis given in the preceding subsections. We first prove several
lemmas.

Lemma 2.15 Let C and L be as above, and assume further that the lensek frave pairwise
disjoint interiors. ThenL| = O(n).

Proof: For each lens\ € L, leto), denote the number of edges#{C) that lie in the interior of
(i.e., the region bounded by), and ser;, = } ,.; or. We prove the lemma by induction on the
value ofoy,. If o, = 0, i.e., all lenses irl, are empty, then the lemma follows from Theorem 2.13.
Supposer;, > 1.

Let Ao be a lens inL with 0y, > 1, and letK, be the interior of\,. Let~y,y" € C be the
pseudo-parabolas forming,, and letd C y andd’ C ' be the two arcs forming,. Let¢ € C be
a curve that intersect&; clearly,( € C cannot be fully contained in the interior &fy, so it must
cross)g. Up to symmetry, there are two possible kinds of intersection betyeem \,:

(i) KN =2and¢ N =0.

(i) ¢ intersects botld andd’. In this case, eithef intersects each of, ¢’ at a single point, or it
intersects each of them at two points.

SupposeK is crossed by a curvé € C of type (i). LetA; be the lens formed by and+’.
We replace\y with A\ in L. See Figure 10(i). The new sét still consists of lenses with pairwise
disjoint interiors, so in particular the lensesiihare still pairwise nonoverlapping. Moreover, the
interior of A\ is strictly contained inK, and contains fewer edges 4{C) than Ky, soo; < 0.
The lemma now holds by the induction hypothesis. We may thus assume that no curve of type (i)
crossesKy, so all these curves are of type (ii). In this case, we defgany’, thereby shrinking,
to an empty lens betweenpand+’. For example, we can replaéeby an arc that proceeds parallel
to 0 and outsidekX, and connects two points oyl close to the endpoints of, except for a small
region where the neW crosses twice, forming a small empty lens; see Figure 10(ii). Since only
curves of type (ii) cross(y, it is easy to check that' is still a collection of pairwise-intersecting
pseudo-parabolas. Moreover, since the lensésare pairwise nonoverlapping and no pair of them
share an endpoint, the deformationib€an be done in such a way that no other lens is affected.
The lens) is replaced by the new lens formed between and the modified’. Sinceo,, = 0,
we have reduced the size ®f , and the claim follows by the induction hypothesis. This completes
the proof of the lemma. O

A pair (A, \') of lenses inL is calledcrossingif an arc of X intersects an arc of’. (Note that
a pair of lenses may be nonoverlapping and yet crossing.) A(pak’) of lenses inL is said to be
nestedf both arcs of)\’ are fully contained in the interior of. Let X be the number of crossing
pairs of lenses i, and letY” be the number of nested pairs of lenseg.in

Lemma 2.16 LetC, L, X andY be as above. Then
|IL|=0(n+ X +Y). @

Proof: If L contains a pair of crossing or nested lenses, remove one of thendfrdims decreases
|L| by 1 andX + Y by at least 1, so if (1) holds for the nely it also holds for the original set.

14



0] (i)

Figure 10. (i) ReplacingAo by a “smaller” lens if it intersects a type (i) curve. (ii) Shrinking to an empty lens when
it is crossed only by type (ii) curves.

Repeat this step until has no pair of crossing or nested lenses. Every pair of lenses in (theLnew)
must have disjoint interiors. The lemma is then an immediate consequence of Lemma 2.15.

We next derive upper bounds far andY'. The first bound is easy:
Lemma 2.17 X = O(n?).

Proof: We charge each crossing pair of lengas)\’) in L to an intersection point of some arc
bounding\ and some arc bounding. Since the lenses df are pairwise nonoverlapping, it easily
follows that such an intersection point can be charged at mpisttimes (it is charged at most once

if the crossing occurs at a point in the relative interior of arcs of both lenses), and this implies the
lemma. O

We next derive an upper bound fir, with the following twist:

Lemma 2.18 Letk < n be some threshold integer parameter, and suppose that each lénis of
crossed by at mogt curves ofC. ThenY = O(k|L|).

Proof: Fixalens)' € L. Let\ € L be a lens that contains in its interior, i.e.,()\, \’) is a nested
pair. Pick any poing on )\’ (e.g., its left vertex), and draw an upward vertical pafiyom ¢; p must
cross the upper boundary &f It cannot cross more thanother curves before hitting because any
such curve has to cross(as mentioned in the proof of Lemma 2.15, no curve can be fully contained
in the interior of a lens of.). Because of the nonoverlap of the lensed.@nd the general position
assumption, the crossing point A uniquely identifies\. This implies that at mosD (k) lenses in

L can contain\’, thereby implying that the number of nested pairs of lensdsigO (k|L|). O

Proof of Theorem 2.14: Continue to assume théatis a collection of pseudo-parabolas, andilet
be a family of pairwise nonoverlapping lensesAiC'). Let k be any fixed threshold parameter,
which will be determined later. First, remove fromall lenses which are intersected by at lefast
curves ofC'. Any such lens contains points of intersection of at léagairs of curves of”'. Since
these lenses are pairwise nonoverlapping, and there(are 1) intersection points, the number of
such “heavily intersected” lenses is at moX¥t?/k). So, we may assume that each remaining lens
in L is crossed by at mogtcurves ofC.
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Draw a random sampl& of curves fromC, where each curve is chosen independently with
probability p, to be determined shortly. The expected number of curvésignp, and the expected
size|L'| of the subsef.’ of lenses ofL that survive inR (i.e., both curves bounding the lens are
chosen inR) is | L|p?. HereL refers to the set after removal, withitC'), of the heavily intersected
lenses. The expected numBérof nested pairg), \') in L' is Yp* (any such pair must be counted
in'Y for the whole arrangement, and its probability of survivingiiis p*). Similarly, the expected
numberX’ of crossing pair§\, \') in L' is Xp*. By Lemmas 2.16 (applied td(R)), 2.17, and
2.18, we have

|LIp* < c(np + n*p* + k| L|p"),

for an appropriate constant That is, we have
IL|(1 = ckp?) < ¢ (g + n2p2> .

Choosep = 1/(2ck)'/?, to obtain|L| = O(nk'/? + n?/k). Adding the bound on the number of
heavy lenses, we conclude that the size of the wihae

2
IL| =0 (nk1/2 + %) .

By choosingk = n?/3, we obtain|L| = O(n*/?), thereby completing the proof of the theorem for
the case of pseudo-parabolas.

Suppose next that' is a collection of pairwise intersecting pseudo-circles. We apply the se-
guence of reductions used in Section 2, and keep track of the “fate” of each lénsmsuring
that they remain pairwise nonoverlapping. The transformations effected by Lemma 2.11 and The-
orem 2.13 clearly do not violate this property. Moreover, when we pass to the subcollgc¢tions
C; U C}, the remaining lenses continue to be pairwise nonoverlapping. Finally, “opening-up” the
pseudo-circles into pseudo-parabolas by cutting them with a ray may destroy some lelslestof
the number of lenses df that are cut by the ray is clearly on{y(n), so we can remove them from
L and consider only the surviving lenses, to which the analysis just presented can be applied.

2.5 Cutting pairwise intersecting pseudo-circles into pseudo-segments

Let C be a family ofn pairwise intersecting pseudo-parabolas or pseudo-circles that are not neces-
sarily in general position. (This is the first time that we treat degenerate situations as well.) Recall
thaty (C') denotes the minimum number of subarcs into which the curvesriaed to be cut so that

any two arcs intersect at most once. As noted, the analysis of Tamaki and Tokuyama [27] implies
thatx(C') = O(v(C)). Hence, if the curves if' are in general position, Theorem 2.14 implies that
x(C) = O(n'/?).

Remark. For the analysis of [27] to apply, one has to assume that the propertiethat are needed

for the derivation of a bound om(C) also hold for any (random) sample 6f For example, here

we assume that every pair of curvesGnintersect, and this clearly holds for any subsetofin

later applications similar hereditary behavior also has to be verified, but we will not do it explicitly,
as it will trivially hold in all cases.

Handling degeneracies. Suppose that the curves @ are in degenerate position. For technical
reasons, we assume that, for the case of pseudo-circles, the curvesaretone. We will first
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deform them into a collection of curves in general position, then apply Theorem 2.14 to obtain the
boundO(n*/?) onv(C"), for the deformed collectiod”, then apply the analysis of Tamaki and
Tokuyama to cut the curves 6f into O(n*/3) pseudo-segments, and finally deform the cut curves
of C’, together with the cutting points, back to their original position.

In more detail, we proceed as follows. Lebe a point at which at least three curvesbare
incident or at least two curves @f are tangent; any number of pairs of curves incident toay
be tangent to each other af Draw a small axis-parallel rectangie= 7p centered ap, so that
(i) the interior ofy does not contain any vertex @f(C') except forp; (ii) each curve incident tp
intersectsy in exactly two points, which lie on the left and right edgesypand (iii) no curve that
is not incident tgp intersectsy. The z-monotonicity and continuity of the curves 6f are easily
seen to imply that such-aexists. For each curvethat is incident tg, we replace the (connected)
portion of ¢ inside-y by the pair of straight segments connecting the two points ot: N v. See
Figure 11(i).

@ (i)

Figure 11. Perturbing arrangements in degenerate position: (i) Straightening the curves in the vicinity of a degenerate
pointp. (ii) Deforming the curves near. (Note thatc, andcs cross ap, while every other pair is tangent af

For each curve; € C passing through, let \; (resp.,p;) denote the intersection of with the
left (resp., right) edge of. Order the curves incident {pascy,...,c;, So that\,..., \; appear
in this increasingy-order along the left edge of. Replacep by a sequence of distinct points
p1,---,p; lying on the vertical line passing through and arranged along it in this decreasing
y-order. For each = 1,...,7, replace the portion of; within v by the two straight segments
connecting\; andp; to p;; see Figure 11(ii).

It is easily verified that (i) each pair of original curves that were tangeptaae replaced by
a pair of curves that cross twice withinand (ii) each pair of original curves that crosseg aire
replaced by a pair of curves that cross once withinThis implies that the resulting curves are
still a family of pairwise-intersecting pseudo-parabolastanonotone pseudo-circles, and, with
an appropriate choice of the points, ..., p;, the portions of these curves withinare in general
position.

We repeat this perturbation in the neighborhood of each point that is incident to at least three
curves or to at least one tangent pair. The final perturbed colle€tias still a family of pairwise
intersecting pseudo-parabolaszemonotone pseudo-circles, and they are now in general position.
Applying, as above, the analysis of Tamaki and Tokuyama and Theorem 2.14, we can cut the curves
in C’ into O(n4/3) pseudo-segments. Moreover, the cuts can be made in such a way that, for any
curvec incident to a degenerate poipt its perturbed versior’ is cut within the corresponding

“Note that it may be the case that, c2) and(c1, c3) are two pairs of tangent curves gtbut ¢ andcs arenot
tangent; see Figure 11(i).
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surrounding rectangley, only if ¢’ participates in a lens that is fully contained 4p, which is
equivalent to the original curvebeing tangent to some other curve(spat

Finally, after having cut the perturbed curves, we deform them back to their original positions.
If a perturbed curve’ was cut within some rectanglg,, we cut the original curve at the centep
itself. It is easily verified that the resulting collection of arcs is indeed a family of pseudo-segments.
No two arcs are tangent to each other (in their relative interiors), but an endpoint of an arc may lie
on (the relative interior of) another arc. We summarize this analysis in the following theorem.

Theorem 2.19 Let C be a collection ofx pairwise intersecting pseudo-parabolas :eimonotone
pseudo-circles, not necessarily in general position. TheR) = O(n*/?). (z-monotonicity need
not be assumed for pseudo-circles in general position.)

3 Bichromatic Lenses in Pseudo-Parabolas and Their Elimination

In this section we consider the followingchromaticextension of the problems involving empty

and pairwise-nonoverlapping lenses, which is required as a main technical tool in the analysis of
the general case, treated in Section 5, where not all pairs of the given pseudo-circles necessarily
intersect.

We consider in this section only the case of pseudo-parabolas, which is simpler to handle. The
case of pseudo-circles will be treated indirectly in Section 5. Moreover, we return to our initial
assumption that the given curves are in general position. Degenerate cases will be treated later on.
LetI' = A U B be a family ofn pseudo-parabolas in general position, whédrel B = () and
each pseudo-parabola dfintersects every pseudo-parabolaibtwice; a pair of pseudo-parabolas
within A (or B) may be disjoint. A lens formed by a pseudo-parabola belonging aod another
belonging toB is calledbichromatic

We first extend Theorem 2.4 to the bichromatic case, and show that the number of empty bichro-
matic lenses, in the setup assumed aboweyis). Then we obtain a bound 6f(n*/?) on the max-
imum size of a family of bichromatic pairwise nonoverlapping lenses. These results are obtained
by pruning away some curves fraih so that the remaining curves are pairwise intersecting, and no
lens in the family under consideration is lost. More specifically, we proceed as follows.

Theorem 3.1 LetI’ = AU B be a family of» pseudo-parabolas in general position, whele B =
() and each pseudo-parabola dfintersects every pseudo-parabolam®twice. Then the number of
empty bichromatic lenses i(I") is O(n).

Proof: It suffices to estimate the number of empty bichromatic lenses formed by s@mé and
by someh € B so thata lies aboveh within the lens. The complementary set of empty bichromatic
lenses is analyzed in a fully symmetric manner.

We apply the following pruning process to the curved'ofLet a, a’ be two disjoint curves in
A so thata’ lies fully belowa. Then no empty bichromatic lens of the kind under consideration
can be formed betweem and any pseudo-parabobac B, because then’ andb would have to
be disjoint; see Figure 12(i). Hence, we may remavieom A without affecting the number of
empty bichromatic lenses under consideration. Similarly,ahdd’ are two disjoint curves i3,
with b lying fully below ', then, for similar reasons, no empty bichromatic lens of the kind under
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consideration can be formed betwdeand any pseudo-parabalac A; see Figure 12 (ii). Hence,
b may be removed fron®? without affecting the number of lenses that we are after.

Figure 12. Discarding one of the nested pseudo-parabolas: i§)discarded, (iip is discarded.

We keep applying this pruning process until all pairs of remaining curvesinB intersect
each other. By Theorem 2.4, the number of empty lenség iU B) is O(n). As discussed above,
this completes the proof of the theorem. O

In order to bound the maximum number of bichromatic pairwise-nonoverlapping lenggs in
we need the following lemma.

Lemma 3.2 Letl’ = AUB be a family of» pseudo-parabolas in general position, whe@ B = ()
and each pseudo-parabola dfintersects every pseudo-parabola®ftwice. LetL be a family of
pairwise-nonoverlapping lenses #(I") that have pairwise disjoint interiors. Theh| = O(n).

Figure 13. Transforming a lens into an empty lens.

Proof: As earlier, it suffices to estimate the number of lensek that are formed by somee A
and by someé € B so thata lies aboveh within the lens. As in the proof of Theorem 3.1, we argue
that if there are two disjoint curvesa’ € A so thata’ lies fully belowa, thena can be pruned away.
Let\ € L be alensformed by and by some curvee B. Letd C bbe the arc ob forming \. Since

b\ ¢ lies fully abovea and thus above’, the curver’ must intersect at two points. Replack by the
lens )\, formed betweem’ andb. Since the lenses ih have disjoint interiors)’ is not a member

of L, and, after the replacemeni, is still a family of bichromatic lenses with pairwise-disjoint
interiors (and thus pairwise nonoverlapping), of the same size. Hence, by applying this replacement
rule to each lens i formed alongz, we construct a family of pairwise-nonoverlapping lenses in
which no lens is bounded hy, so we deletex from A. Hence, we can assume that all pairs of
curves inA intersect. By applying a symmetric rule for pruning the curve®ofve can assume
that every pair inB also intersect. Since every two curveslinintersect, the lemma follows from
Theorem 2.4. O

By proceeding as in Section 2.4 but using the above lemma instead of Lemma 2.15, we obtain
the following result.
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Lemma 3.3 Letl’ = AUB be a family of» pseudo-parabolas in general position, wheé@ B = ()
and each pseudo-parabola dfintersects every pseudo-parabola®ftwice. LetL be a family of
pairwise-nonoverlapping bichromatic lensesArl’). Then the size df is O(n*/?).

As a result, we obtain the main result of this section.

Theorem 3.4 Letl’ = AUB be afamily ofr pseudo-parabolas, not necessarily in general position,
whereA N B = () and each pseudo-parabola df intersects every pseudo-parabola Bftwice.
Then one can cut the curveslirinto O(n*/3) arcs, so that each arc lying on a curve éfintersects
every arc lying on a curve dB at most once.

Proof: If the curves are in general position, this is an immediate corollary of the analysis of [27],
in a similar manner to the application in Section 2.5. (As remarked there, we need to verify that the
conditions assumed in the theorem also hold for subsets &f, which is clearly the case.) I

andB are in degenerate position, we apply the perturbation scheme used in Section 2.5. It is easily
checked that this scheme maintains the property that each cudvimtersects every curve i, so

the bound on the number of cuts remaing:*/3) in this case too. O

4 Improving the Tamaki-Tokuyama Bound

In this section we improve the bound of Tamaki and Tokuyama [27] for arbitrary colleationfs
pseudo-parabolas armonotone pseudo-circles, and show théf) = O(n®/?) in these cases.

4.1 The case of pseudo-parabolas

Theorem 4.1 LetI" be a family ofn pseudo-parabolas (not necessarily in general position). Then
x(L) = O(n®").

Proof: Let us first assume that the given collection is in general position, and handle the degenerate
case towards the end of the proof, as in the preceding section$. lieeta collection of: pseudo-
parabolas in general position, andielbe a family of pairwise nonoverlapping lenseg'inConsider

the graphG = (T", L) as in Section 2.1. We dra in the plane using the same drawing rule
described in Section 23 We partitionI" into two subsetd’;, T, of size at mostn/2] each so

that for all (y1,72) € T'1 x 'y, 77 lies abovey;. Let G’ be the bipartite subgraph 6 in which

E(G'") = E(G)N (I'y xT'y). Then|L| < v(T'y) + v(T9) + |E(G')].

By refining the rule described in Section 2.1 we dr@vso that the drawings of every pair of
edges inG’ that belong to a cycle of length intersect an even number of times. By a result of
Pinchasi and Radait [25], a graph om vertices with this property has at mastn®/°) edges. Put
v(n) = maxp v(I'), where the maximum is taken over all s€tef n pseudo-parabolas in general
position. Sincdl'y|, |I'2| < [n/2], we obtain the recurrence

v(n) <2v ({g-D +0(n%),
whose solution i (n) = O(n®/?). This implies thatL| = O(n®/%). This, plus the analysis in [27]
implies thaty(I') = O(n®/?).

*We make a small technical modification in the statement of the rule: the Wédge, - ) is now defined to terminate
on the right at the left intersection point of and~. (rather than at their tangency, as in Section 2.1).
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Figure 14. lllustrating the refined drawing rule for the plane embedding=6f The lenses of. all appear along the
bottommost curve, and each empty circle designates the left endpoint of a lens, and the apex of the corresponding wedge.

We first describe how to refine the drawing®f. The drawing rule of Section 2.1 only specifies
how the edges ofi’ have to “navigate” around intermediate vertices along the vertical/|iet
the rule does not specify the order in which edges emanate from a verteX.* lbet a vertex of
the drawn graplti’. Letgy, ..., g; be all the vertices abovg" that are connected to it by an edge.
For eachl < i < k, letz; be thex-coordinate of the leftmost intersection point betwefeandg;.
Order theg;’s so thatz; < z; whenever < j. We then draw the edgég, g1), ..., (f, gx) So that
they emanate fronf* upward in this clockwise order. See Figure®14.

Symmetrically, for any given vertex* let i}, ..., h’, denote all the vertices beloy* that
are connected to it by an edge. Order them, as above, in the left-to-right order of the leftmost
intersection points betwedn, . .., h,, and f. We draw the edge§f, h1), ..., (f, hm) SO that they
emanate fromf* downward in this counterclockwise order. We call two edges/oadjacentif
they share an endpoint.

Claim A The drawings of every pair of adjacent edgegi#ncross an even number of times.

Proof: We prove this only for two adjacent edges whose drawings go upward from a common vertex
f*; the argument for edges that go downward is fully symmetric. Let the other endpoints of these
edges bg* andh*, and assume, without loss of generality, thaties abovey*.

If the arc(f*, h*) passes to the left of*, then the leftmost intersectian,, betweer, andg is
to the left of the leftmost intersectiony;, betweenh and f (clearly, both intersections exist); see
Figure 15(i). We claim that in this caseg,, lies to the left of the leftmost intersectiary, between
f andg. Indeed, assume to the contrary thai lies to the right ofv;,. Theng must intersect.
twice to the left ofvr, and then intersect at least once to the left af;,. Moreover, since the lenses
(f,g) and(f,h) are nonoverlapping, the rightmost intersecti% of f andg must also lie to the
left of vy,; see Figure 15(i). But then, immediately to the rightu%, the curveg is “trapped” in
the wedgd/V (f, h), since it has already intersected each of these curves twice. This contradiction
implies thatv, lies to the left ofv;,, and our modified drawing rule thus implies thigt, g*) lies
clockwise to(f*, h*) nearf*. Regarding the two edges as graphs of functiong, @ihd using the
mean-value theorem, as in Section 2.1, we conclude(tfiaty*) and (f*, h*) intersect an even
number of times.

If the arc(f*, h*) passes to the right gf* then the leftmost intersectiary, of f andg lies to
the left of the leftmost intersectiony;, of f andh. See Figure 15(ii). Then our modified drawing
rule implies that( f*, g*) lies counterclockwise tof*, h*) nearf*. Arguing as above, this implies
that these two edges intersect an even number of times, thus completing the proof of our Claim.

®Note that in this figure, unlike Figure 2(ii), we do not draw the lenses as tangencies, since they need not be empty.
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o
@ (i)

Figure 15. lllustrating the proof that adjacent edgesfintersect an even number of times. (i) The case whgteh™)
passes to the left af*. (i) The case wheréf*, h*) passes to the right of".

ClaimB If (f,p,g,q) is a cycle of length four i, then the curved, p, g, and ¢ are pairwise
intersecting.

Proof: This clearly holds for each pair of curves whose corresponding vertices are adjacent in the
cycle, so the only pairs that need to be analyzed are thefpaiand the paip, q. We show that

f,g must intersect each other, and the argumenpfaris similar. Assume to the contrary that

andg are disjoint and, without loss of generality, thaties always above. Trace the curve

from left to right. It starts abovg, g and it creates a lens with each pfandg. Clearly, p must

first intersectf, but then it cannot intersegtbefore it intersecty” again, for otherwise the lenses

(p, f) and(p, g) would be overlapping. However, aftgiintersectsf for the second time, it cannot
intersectg anymore, sincg now separates these two curves. See Figure 16 (i). This contradiction

implies thatf, p, g, ¢ are pairwise intersecting. O
p* p*
I g*
g [

0} (ii)

Figure 16. (i) All the pairs of curves that correspond to the given 4-cycle must intersect. (ii) The lenses that correspond
to the 4-cycle are all empty relative to the four curyesp, g, q.

Claim C If (f,p, g, q) is acycle of length four i, then the four lenses corresponding to the cycle
are empty with respect to the arrangement of these four curves.

Proof: Consider any of these four lenses, $#yp), and assume that eithgor ¢ intersects it. Since
the two cases are similar, we only consider the case whitersectq f, p). g cannot intersect the
arc of(f, p) that belongs tg, for then(f, p) and(g, p) would be overlapping. It follows thatmust
intersect twice the arc dff, p) that belongs tg; see Figure 16 (ii). In this case, singstarts below
p, g must intersecp once to the left of the lenéf, p) and once to its right, in which case the two
lenseq f, p) and(g, p) are overlapping, a contradiction that implies the claim. O

22



Finally, let (f,p, g,q) be a cycle of length four iiz’. By Claim A, the drawings of each of
the four pairs of adjacent edges intersect an even number of times. By Claims B and C, the lenses
(f,p) and(g, q) are empty in the family of the four pairwise intersecting pseudo-paraljolag, q.
It now follows from the analysis of Section 2.1 that the drawing$fof») and (g, ¢) intersect an
even number of times. Similarly, we can argue that the drawindd,af) and (g, p) intersect an
even number of times, thereby implying that the drawings of every pair of edges in the above cycle
intersect in an even number of times. Hend&(G’)| = O(n®/°), by the result in [25].

This completes the proof of the theorem for curves in general position. In the degenerate case
we proceed exactly as in Section 2.5, concluding (&) = O(n®/%) in these cases too. 0

4.2 The case of pseudo-circles

We next extend Theorem 4.1 to the case:ahonotongoseudo-circles. The corresponding exten-
sion to the case of arbitrary pseudo-circles remains an open problem, although we expect it to hold
just as well. LetC' be a family ofn z-monotone pseudo-circles. For any closed and bounded
monotone Jordan curvein the plane, denote by, (resp.,p.) the leftmost (resp., rightmost) point

of ¢, assuming these points to be well defined. The polpts, partition ¢ into two z-monotone

arcs, calledupperandlower arcs and denoted as, ¢, respectively; see Figure 17 (i).

0] (ii)

Figure 17. Converting a pseudo-circle into two pseudo-parabolas.

We convertC' into a family of pseudo-parabolas. For eack C, we extend its upper are"
to anz-monotone curvey,” by adding a downward (almost vertical) raty(resp..r¥) of sufficiently
large positive (resp., negative) slope from(resp.,p.); all rays emanating from the left (resp., right)
endpoints of the pseudo-circles are parallel. Similarly we extend evetyg anz-monotone curve
v. by attaching upward (almost vertical) ra&sandri to \. andp,, respectively. We assume that
the rays are chosen sufficiently steep so that a downward (resp., upward) ray intersects a pseudo-
disk of C' only if it lies vertically below (resp., above) the apex of the ray.zi€oordinates of
the left (or right) endpoints are are not all distinct, then we draw the rays as earlier, but they have
slightly different slopes. For example, we draw the rayss follows. We sort the left endpoints of
all the curves inC' in nondecreasing order of theircoordinates. If two endpoints have the same
z-coordinates, then we sort them in nonincreasing order of hewordinates. If two curves have
the same left endpoint, i.e., they are tangent at their left endpoints and one of the curves lies inside
the other, then the left endpoint of the outer curve appears firstA Ldte the resulting sequence of
left endpoints. We choose a sufficiently large slepas above, and a sufficiently small parameter
§. For theith left endpoint). in A, we draw a downward rai of slopec + ie. The interiors of
these rays are pairwise disjoint, and they are parallel for all practical purposes. We do the same for
the other three types of rays to handle degeneracies. We now prove that the resulting curves form a
family of pseudo-parabolas.
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Lemma 4.2 LetC be a finite family of--monotone pseudo-circles. ThEn= {v,~v; | c € C}is
a family of pseudo-parabolas.

Proof: For simplcity we prove the lemma for the case in which theoordinates of the extremal
points on the curves af are all distinct. With a little care, the proof can be extended to the general
case. Let: andb be two pseudo-circles i@¥. We first prove that, andy,jr intersect in at most two
points. For simplicity, for a curve € C', we will usel., r. to denote the ray& andrt, respectively.
Without loss of generality assume thatlies to the left ofA,; then the ray, does not interseoﬁ,j“.
There are three cases to consider:

Case (A):)\, lies to the right ofp,: In this case the only intersection betwegh and 7,;* is
between the rayg andr, (see Figure 18 (A)).

pt
(B.2)
bt + at ot
a
S m m
(B.3) (C1) (C2 (C.3)

Figure 18. Two extended upper arcs intersect at most twice: gAJies to the left of),; (B) A, lies aboves™: (B.1)
a™, bT intersect at two points or they intersect at one pointdyutes to the right ofp,; (B.2) a* andb™ intersect at one
point andp; lies to the left ofp,; (B.3)a™ andb™ do not intersect. (C), lies belowa™: (C.1)a™ andb™ intersect at
two points andp, lies to the left ofp.; (C.2)a™ andb™ intersect at one point; (C.3)" andb™ do not intersect.

Case (B):)\, lies abovea™. In this casd), intersectsz™, so we show that there is at most one
additional intersection point betweeg and~,". If «™ andb™ intersect at two points or i and
bT intersect at one point buyt, lies to the right ofp,, thena andb intersect in at least four points
(see Figure 18 (B.1)), contradicting the assumption has a family of pseudo-circles. ™ and
bT intersect at one point ang, lies to the left ofp, (and, necessarily, below"), then neither-,
intersectsy,” (r, lies to the right o ™) norr; intersectsy,” (ry lies belowa™); see Figure 18 (B.2).
Hence, there are only two intersection points betwg;érandy,j.

If ™ andbt do not intersect, then, cannot intersect/;’, as it lies belowb™. Hence, onlyr,
may intersecty,” (if p, lies to the right ofy,), thereby showing that there are at most two intersection
points betweery,; and-,"; see Figure 18 (B.3).

Case (C):)\, lies belowa™. In this casd, does not interseat™. If a™ intersectsh™ at two
points andpy lies to the right ofp,, thena andb intersect in at least four points, a contradiction (the
situation is similar to that shown in Figure 18 (B.1)). If they intersect at two pointgplies to
the left ofp,, then neither, intersect$* norry, intersects: ™, so there are at most two intersection
points betweery,", 7,;*; see Figure 18 (C.1).

a

If «™ andb™ intersect at one point, ther, cannot intersec’ﬁ/;r (see Figure 18 (C.2)), so the
number of intersection points betweefi and'yb+ is easily seen to be at most two. Finallyaif
andb™ do not intersect, then there is at most one intersection betwgeamd-y,", namely between
ro, andb™ (if p, lies to the right ofp,); see Figure 18 (C.3).

Hence, in all cases, there are at most two intersection points betygeand'yb+ . A symmetric
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argument shows that; and~,” also intersect at most twice. Finally, a similar case analysis, de-
picted in Figure 19, shows thaf and'yb+ also intersect at most twice. We leave it to the reader to
fill in the fairly straightforward details, similar to those given above. |

(cy) (€.2) (C.3)

Figure 19. An extended upper arc and an extended lower arc intersect at most twicg; (&8 to the left of\,; (B)
Xy lies abover™: (B.1) o™, b~ intersect at two points; (B.2)" andb™ intersect at one point; (B.3)" andb™ do not
intersect. (C)\, lies belowa™: (C.1)a™ andb™ intersect at two points (an impossible configuration); (G.2)andb™
intersect at one point; (C.3)" andb™ do not intersect.

Theorem 4.3 Let C' be an arbitrary family ofn. z-monotone pseudo-circles in the plane. Then
X(C) = O(n®P).

Proof: Assume first that the curves (@ are in general position. Lat be a family of pairwise-
nonoverlapping lenses ii. We convertC' into a familyT' = {v},~. | ¢ € C} of 2n pseudo-
parabolas, as described above. There are at Paosinses inl that contain\., p. of a curvec € C

on its boundary, as the lenseslirare nonoverlapping. Any remaining lens lies on the upper or the
lower arc of a pseudo-circle i@, and therefore it lies in the transformed collectiBrof pseudo-
parabolas. By Theorem 4.1, the number of such lenséX:ig/>). Hence,|L| = O(n®/%), which

implies the claim for curves in general position. The case of degenerate position is handled exactly
as in Section 2.5. O

5 Curves with 3-Parameter Algebraic Representation

In this section we further improve the bound obtained in the previous section, and derive a bound
close ton3/2 for a few important special cases, in which the curves possess what we term as a
3-parameter algebraic representatioAs in Sections 2 and 4, we first prove the bound for pseudo-
parabolas and then reduce the case of pseudo-circles to that of pseudo-parabolas.

5.1 The case of pseudo-parabolas

LetT" be a family ofn pseudo-parabolas. We say tliahas a3-parameter algebraic representation
if " is a finite subset of some infinite family of curves so that each curgec P can be represented
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by a triple of real parameter, », ¢), which we regard as a point: € R?, so that the following
three conditions are satisfied.

(AP1) For each poing in the plane, the locus of all curves I that pass through is, under the
assumed parametrization, a 2-dimensional surface pat@h,iwhich is a semialgebraic set
of constant description complexjtie., it is defined as a Boolean combination of a constant
number of polynomial equations and inequalities of constant maximum degree. For any two
distinct pointsp and ¢ in the plane, the locus of all curves I that pass through both
andq is, under the assumed parametrizatiohsdimensional semialgebraic curve of constant
description complexity.

(AP2) For each curve € P, the set of all curveg € P that intersecty maps to &-dimensional
semialgebraic sek’, of constant description complexity. The boundaryrof, denoted by
7,, is the locus of all curves i that are tangent tg (and, being pseudo-parabolas, do not
meety at any other point)r,, partitionsR? into two regions, one of which &, and the other
consists of points representing curves that are disjoint from

(AP3) Each curve irP is a semialgebraic set of constant description complexity in the plane, and
the family P is closed under translations.

We remark that condition (AP1) is not needed for obtaining bounds(dn and x(T'). Itis
used for obtaining improved bounds for the number of incidences between points and the curves in
', and for the complexity of many faces #(I"); see Section 6 for details. The classveftical
parabolas, given by equations of the foym= az? + bz + ¢, is an example of pseudo-parabolas
having a3-parameter algebraic representation, where each parabola is represented by the triple of
its coefficients.

Suppose then th& is a fixed collection of pseudo-parabolas that have a 3-parameter algebraic
representation, and 1€t C P be a family ofn pseudo-parabolas.

Our plan of attack, similar to those employed in [7, 8], is to decomposatiesection graphd
of I (whose edges represent all intersecting pairs of curvE$ into a union of complete bipartite
graphs{4; x B;};, so that, for eacla € A;, b € B;, a intersects. We then use Theorem 3.4 to
derive an upper bound on the number of cuts needed to eliminate all bichromatic leAses .
We repeat this process for each complete bipartite grgpk B;, and add up the numbers of cuts
to derive the overall bound op(T").

In more detail, we proceed as follows. Lt = {y* | v € T}, andl’ = {r, | y € ['}. We
describe arecursive scheme to generate the desired bipartite decomposition of the intersection graph
of I'. At each step, we have two families B C I', of sizem andn, respectively. Let (A, B)
denote the minimum number of cuts needed to eliminate all bichromatic lenggsdi B). Set
x(m,n) = max x(A, B) where the maximum is taken over all families f andn pseudo-
parabolas oP, respectively. Set(m) = x(m,m). We need to introduce a few concepts before
beginning with the analysis af(m).

For any constant integey, let \,(r) denote the maximum length of Davenport-Schinzel se-
quences of ordeg composed of- symbols [26]. Pui3,(r) = X,(r)/r. In what follows, we
sometimes drop the parametgrand writej, () simply asg(r). Assumingg to be even, we have
B,(r) = 20 "27) \wherea(r) is the extremely slowly growing inverse Ackermann function.
See [26] for more details. Let C R? be a simply connected region of constant description com-
plexity. For a setG' of surfaces inR?, we define the conflict list, C G with respect taG to be
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the set of surfaces that intersecbut do not contairr. Each surface iid7; either crosses, or it is
tangent tor.

Lemma 5.1 For anym, n and for any given parametédr < r < min{m'/?,n},

m n

x(m,n) < er®B,(r) [X (r_?” ;) +O((m+ n)4/3)] , 2

whereq is a constant that depends on the fanilyandc is an absolute constant.

Proof: Let A, B C P be two families ofm andn pseudo-parabolas, respectively. [t= {m |

b € B}. For a parameter < r < n, a(1/r)-cutting = of the arrangement (B) is a decomposition

of R? into relatively open and simply connected cells of dimensitris2, 3, each having constant
description complexity, so that the size of the conflict list of each cell with respdgtisoat most
n/r. Since each, is a two-dimensional algebraic set of constant description complexity, it follows
from the results in [2, 3] that there exist{§/r)-cutting = of size O(r*3,(r)), wheregq is 2 plus

the maximum numbes’ = s'(y1,72,73,74), over all quadruples of curves, y2,vs3,v4 in P, of
vertical lines/ that pass through both intersection curvesn 7,, andr,, N 7,, in R3. More
precisely,s’(y1, v2,v3,74) is the number of connected components of the union of all these vertical
lines; equivalently, it is the number of connected components of the intersection of the vertical
projections ofr,, N7, andr,, N 7,,.

We construct such €l /r)-cutting = of B. For each celA € B, let Ay = {y € A | v* € A}.
If |Axn| > m/r3, we cutA further into subcells (e.g., by planes parallel to some generic direction),
each containing at most /> points. The number of cells remain asymptoticallyr®3,(r)). For
each (new) cellA, let B = {b€ B| A C K}, i.e., any curve iB A intersects all curves ol o
(if A C 0Ky, thenb is tangent to all curves id ), and letBa be the set of curves corresponding
to the conflict list ofA with respect taB.

It follows by construction that

X(4,B) <> [x(Aa, Ba) + x(Aa, Ba)l.
Aez

Since every pair of pseudo-parabolasAn, x Ba intersect, by Theorem 3.4¢(Aa, Ba) =
O((JAa| + |Ba))¥?) = O((m + n)*/3). Since|Aa| < m/r® and|Ba| < n/r (the latter in-
equality holds for the original cells &, before any cell with two many points af* has been split,
and it thus also holds for each split cell), we haxela, Ba) < x(m/r®,n/r). This completes the
proof of the lemma. O

Flipping the roles ofd and B, i.e., mappingB to a set of points and\ to a set of surfaces in
R3, and applying the same decomposition scheme, we obtain

x(m,n) < crdB,(r) [X (%, :—3> +O((m + n)4/3) . (3)

Substituting (3) into the right-hand side of (2), we obtain
m
x(m) < OB r)x (57) + Om* 08 (r).
Choosingr = m!/3%, we obtain

x(m) < eym'/SB2(m)) - x(m®?) + cm®? 2 (m) (4)
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for an appropriate constant > 1. We claim that the solution of this recurrence is
x(m) < m*?(log m) 18 Falm) (5)

wherec > 1 is a sufficiently large constant. This can be proved by inductiomoas follows. We
may assume that (5) holds for all < mg, wheremy is a sufficiently large constant that satisfies
(log )< 28 8a(m) > 2¢, 32(m) for all m > my. Plugging (5) into (4), we obtain, fon > my,

c'log B4(m)

x(m) < clml/Gﬂg(m)m4/3 (log(m8/9)> +C1m3/253(m)

) 8  log Bq(m)
< c1m3/2(10g m)° logﬁq(m)ﬁg(m) <§> + C1m3/2ﬁ§(m)

IN

m3/2 (log m)c’ log B4(m) (Clﬂngc’ log(8/9) (m) + %)

< eym®/?(log m)< 108 fa(m)

provided that the constanrt is chosen sufficiently large. This establishes the induction step and
thus proves (5). Recall tha (n) = 20(¢*() wherea(n) is the inverse Ackermann function and
s = [(q — 2)/2] is a constant. Putting

rs(n) = (logn) @)

and using the fact that, initiallyA|, | B| < n, we obtain the following main result of this section:

Theorem 5.2 LetP be a collection of pseudo-parabolas that admits a 3-parameter algebraic repre-
sentation. Thery(T') = O(n?/2k,(n)), for any subserl of n elements oP, and for some constant
parameters that depends on the algebraic representation of the curv@s. in

Remark. In what follows, we will sometimes raise;(n) to some fixed power, or multiply it by

a polylogarithmic factor, or replace by some fixed power afi. These operations do not change

the asymptotic form of the expression—they merely affect the constant of proportionality in the
exponent. For the sake of simplicity, we use the notatigm.) to denote these modified expressions

as well. We allow ourselves this freedom because we strongly believe that thedggidris just

an esoteric artifact of our analysis, and has nothing to do with the real bound, which we conjecture
to beo(n?/?).

5.2 The case of vertical parabolas

As a first application of Theorem 5.2, consider the fariVilyof vertical parabolas, each of which is
given by an equation of the form= ax?+bz+c. Every vertical parabola has a natural 3-parameter
representation, by the triple, b, ¢) of its coefficients, and/ trivially satisfies (AP3).

For a fixed pointp = («,3) € R?, the set of vertical parabolas = ¢x? + nx + ¢ passing
throughp is the plane
@&+ an+( =,
which is obviously a two-dimensional semialgebraic set of constant description complexity. Sim-

ilarly, the locus of parabolas that pass through two distinct pgintsis either empty or a 1-
dimensional curve of constant description complexity. Thus (AP1) is satisfied.
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Finally, for a fixed paraboly : y = ax? + bz + ¢, another vertical parabola= ¢z% + nx + ¢
is tangent toy if and only if
(n—=0)* —4(¢ —a)({ —¢) =0.

Hence, the surface, is given by the equation
(n? — 4€C) — 2bn + 4ct + 4al + (b* — 4ac) = 0, (6)

which is a quadric ifR?, and thus (AP2) is also satisfied. In order to estimate the value-of
[s'/2], recall thats’ satisfies the following condition: Given any four curves...,v4 € P,
there are at most intersection points between tl§@-projections of the intersection curves, =
Ty, N Ty ANAO34 = Ty, N Ty

It follows from (6) that the intersection curve, of two surfaces.,, andr,, is a planar curve,
whose projection on thé&n-plane ¢ = 0) is a quadric. Hence, the projectionsagf, andos, on the
¢n-plane intersect in at most four points, implying tkaK 4 ands < 2. (These bounds also apply
in case of partial overlap between the projections.) Letting

K(n) = ka(n) = (logn) 7L M),

we obtain the following.

Theorem 5.3 LetT" be a set of vertical parabolas in the plane; thep(T') = O(n3/2k(n)).

5.3 The case of pseudo-circles

We now prove a neat®/2-bound on the maximum number of pairwise-nonoverlapping lenses for
a few special classes of pseudo-circles. In addition to the conditi@apafameter algebraic rep-
resentation, which we define in a slightly different manner, we also require, as in Section 4, that
the pseudo-circles bhe-monotone We say that an infinite famil{C of z-monotone pseudo-circles

has a3-parameter algebraic representatiohevery curvec can be represented by a triple of real
parameters¢, i, ¢), which we regard as a point € R?, so that the following three conditions are
satisfied.

(AC1) For each poing in the plane, the locus of all curves @ that pass through is, under the
assumed parametrization, a 2-dimensional semialgebraig, étconstant description com-
plexity. For any two distinct points andgq in the plane, the locus of all curves @ that pass
through bothp andgq is, under the assumed parametrization-dimensional semialgebraic
curve of constant description complexity.

(AC2) For each curve € C, the locus of all curveg € C whose upper (resp., lower) arc intersects
the upper are™ of ¢ at two points is @-dimensional semialgebraic sKtj+ (resp.,K ;) of
constant description complexity. The same also holds for the lower aof c.

(AC3) Each curve irnC is a semialgebraic set of constant description complexity in the plane, and
the family C is closed under translations.

Let C be a family ofz-monotone pseudo-circles having a 3-parameter algebraic representation,

and letC C C be a subset of, pseudo-circles. We replacg by the collectionl’ = {c¢*,c |
¢ € C}, which by Lemma 4.2, is a collection of pseudo-parabolas. By Theoremy5ld, =
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O(n?/%k4(n)), for an appropriate constant parametetWe now cut the curves if" at the same
points where their top or bottom boundaries have been clit #nd, in addition, cut each curve
¢ € C atthe two extreme points., p.. It follows trivially that the resulting subarcs form a collection
of pseudo-segments. We thus have:

Theorem 5.4 Let C be a collection of pseudo-circles that satisfies (AC1)—(AC3). T€h =
O(n?/%k4(n)), for any subsef’ of n elements o€, and for some constant parametethat depends
onC.

5.4 The case of circles

The most obvious application of Theorem 5.4 is to the fan@ilyof all circles in the plane.C
trivially satisfies condition (AC3). We map each cirele (z — £)? + (y — n)? = ¢? to the point
c* = (£,1,¢) € R3. The set of pointg* = (¢,7,¢) € R? corresponding to circles that pass
through a fixed poinp = («, ) is the region

op={(&:n Q) | (€ =)+ (n—pB)° =,

which is a 2-dimensional cone in 3-space. Moreover, using a standard transformation [14], we can
map these surfaces into planes, without changing the incidence pattern between points and surfaces.
Similarly, the locus of circles that pass through two distinct pgintsis, in the new representation,

the line of intersection of the two corresponding planes. Hence, (AC1) is satisfied.

Concerning condition (AC2), it is straightforward to verify that the set of (point&sirrepre-
senting) circles that satisfy the condition that their upper arc, say, intersect the upper arc of a fixed
given circle at two points, is a semialgebraic set of constant description complexity (an explicit ex-
pression for this set is given in Appendix A). Howevenugatalculations that exploit this condition
to derive a recurrence similar to that in Lemma 5.1, yield (bounds on the) constartd s that
are somewhat high. Using a more sophisticated, but somewhat tedious, analysis, one can lower the
constants ta’ = 4 ands = 2. The details of this analysis are given in Appendix A.

Writing, as aboves(n) for ko (n), we thus obtain:

Theorem 5.5 LetC be a set ofs circles in the plane; then (C) = O(n?/2k(n)).

5.5 The case of homothetic copies of a strictly convex curve

Theorem 5.4 can also be applied to the fan@ilpf homothetic copies of a fixed strictly convex curve
~o having constant description complexity. First, as already noted in 213,indeed a family of
pseudo-circles (this does not necessarily hotgifs not strictly convex). Clearly, condition (AC3)
is satisfied. Each homothetic copy-af has the form

(&n) + Ao = {(&n) + Az, v) | (2,9) €10},

for some triple of real parametefsn € R, A € R™. We represent each copy by the corresponding
triple (¢,m,A) € R3. Condition (AC1) is easy to establish: For a fixed pgintthe condition

p € (§,m) + Ay is equivalent to§ (p — (&,1)) € 70, Which clearly defines a semialgebraic surface
patch of constant description complexity.
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For a pairp, g of distinct points, each homothetic copyyfthat passes throughandg satisfies
+(p—(&n)) € 70, +(g— (&) € 0. Hence(p—q) /A is a chord ofyy. Since), is strictly convex,
for each fixed\ there is auniquechord equal tdp — ¢)/\, so&, n are also uniquely determined.
Hence the locus of copies 6f that pass through andq is a 1-dimensional curves, which clearly
has constant description complexity.

Figure 20. Upper arcs of two homothetic copies-af intersecting at two points.

Establishing condition (AC2) is a bit more technical. For a fixed homothetic gopy (o, 3, 1)
of 7, the condition that another homothetic copy= (£, 71, \) be such that, say, its upper arc meets
the upper arc of; at two points, can be expressed by the following predicate:

There existw, w’ € R? such that{w,w'} = v; N and each ofv, w' lies above both
lines ¢, and/, where/; (resp.,/) is the line connecting the leftmost and rightmost
points ofy; (resp.,y).

See Figure 20. Using the fact that is a semialgebraic set of constant description complexity, it
follows that the above predicate also defines a semialgebraic set of constant description complexity;
see [9, 10] for properties of real semialgebraic sets that imply this claim. Theorem 5.4 thus implies
the following.

Theorem 5.6 Let, be a convex curve of constant description complexity, an@' le¢ a set o
homothetic copies ofy. Theny(C) = O(n?/2k,(n)), for some constant that depends ory,.

6 Applications

The preceding results have numerous applications to problems involving incidences, many faces,
levels, distinct distances, and results of the Gallai-Sylvester type, which extend (and also slightly
improve) similar applications obtained for the case of circles in [1, 7, 8].

6.1 Levels

Given a collectiorC of curves, théevelof a pointp € R? is defined to be the number of intersection
points between the relatively-open downward vertical ray emanating framd the curves of’.
Thekth levelof A(C), for a fixed parametek;, is the (closure of the) locus of all points on the curves
of C, whose level is exactly. Thek-level consists of portions of edges.4{C'), delimited either
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at vertices ofA(C) or at points that lie above arrextremal point of some curve. The complexity
of the k-level is the number of edge portions that constitute the level.

The main tool for establishing bounds on the complexity of levels in arrangements of curves is
an upper bound, given by Chan [11, Theorem 2.1], on the complexity of a level in an arrangement
of extendiblepseudo-segments, which is a collectionzeionotone bounded curves, each of which
is contained in some unboundeemonotone curve, so that the collection of these extensions is a
family of pseudo-lines (in particular, each pair of the original curves intersect at most once).

Chan showed that the complexity of a level in an arrangemennt @ftendible pseudo-segments
with ¢ intersecting pairs i) (m +m?/3¢1/3). Chan also showed that a collectionofz-monotone
pseudo-segments can be turned, by further cutting the given pseudo-segments into subsegments,
into a collection ofO(m log m) extendible pseudo-segments.

Thus, the bounds og(n) lead to the following result (where, in part (b), the extra logarithmic
factor incurred in turning our pseudo-segments into extendible pseudo-segments, as well as the
power2/3 to which we raise the number of pseudo-segments, are absorbed in the:fdetgr

Theorem 6.1 (a) LetC be a set of» pseudo-parabolas ot z-monotone pseudo-circles. Then the
maximum complexity of a level #(C') is O(n26/15 10g2/3 n).

(b) If, in addition, C' admits a 3-parameter algebraic representation that satisfies (AP1)—(AP3)
for the case of pseudo-parabolas, or (AC1)—(AC3) for the case of pseudo-circles, then the maximum
complexity of a single level i9(n°/3k,(n)), wheres is a constant that depends on the algebraic
representation of the curves @; s = 2 for circles and vertical parabolas.

(c) If all curves inC' are pairwise intersecting, then the bound improve®i@'*/* log?/? n)
(with no further assumption on these curves).

Remark. Recently, Chan [11] has studied the complexity of levels in arrangements of graphs of
polynomials of constant maximum degree> 3. His bound relies on cutting the given graphs into
subarcs that constitute a collection of pseudo-segments, which is achieved by repeated differenti-
ation of the given polynomials, eventually reducing to the problem of cutting an arrangement of
pseudo-parabolas (actually, of pseudo-parabolic arcs) into pseudo-segments. In the earlier confer-
ence version of his paper, the bound on the number of the desired cuts was obtained by applying
the Tamaki-Tokuyama result as a “black box.” In the new version Chan uses a more sophisticated
variant of the Tamaki-Tokuyama technique, which leads to improved bounds on the number of cuts.
It is not clear whether our new bounds can be used to further improve his new bounds.

The above theorem implies the following result in the area of kinetic geometry, which improves
upon an earlier bound given in [27]. This problem was one of the motivations for the initial study
of Tamaki and Tokuyama [27].

Corollary 6.2 Let P be a set of points in the plane, each moving along some line with a fixed
velocity. For each time, let p(¢) and ¢(¢) be the pair of points o> whose distance is the median
distance at time. The number of times in which this median pair change@(is'%/?x(n)). The
same bound applies to any fixed quantile.
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6.2 Incidences and marked faces

LetC be a set of: curves in the plane, and |€&tbe a set ofn. points in the plane. Two closely related
and widely studied problems concern two kinds of interaction betwi&and P: (i) Assuming that
the points ofP lie on curves ofC, let I(C, P) denote the number aficidencesbetweenP andC,
i.e., the number of pair&:, p) € C x P such thap € c. (ii) Assuming that no point of’ lies on
any curve ofC, let K(C, P) denote the sum of the complexities of the facegl6f’) that contain
at least one point oP; the complexity of a face is the number of edgesAdt”) on its boundary.
The results in [1, 8] imply the following bounds.

Lemma 6.3 Let C be a set ofz curves in the plane, and |gf be a set ofn points in the plane.
Then

I(C,P) = O(m**n®3 + m 4 x(C)),  K(C,P)=0(m**n?? 4+ x(C)log?n).
Hence, Theorems 3.4, 4.3, 5.2, and 5.4 imply the following.

Theorem 6.4 (a) LetC' be a set oh pairwise-intersecting pseudo-circles, afda set ofm points
in the plane. Then

I(C,P) = O(m?*n?3 + m +n*?),  K(C,P)=0m*3n?? + n*31og?n).

(b) LetC be a set oh pseudo-parabolas at z-monotone pseudo-circles, atitia set ofm points
in the plane. Then

I(C, P) = O(m**n*? + m + n8/®), K(C,P) = O(m*3n*3 + n8"log?n).

We note that these bounds are worst-case tight when the first term dominates the last term, which is
the case whem: is larger tham or n log® n in part (a), and larger than™/5 or n”/5log® n in part

(b).

Similarly, if C is a set ofn pseudo-parabolas or z-monotone pseudo-circles that are not
pairwise intersecting but admit a 3-parameter algebraic representation with corresponding param-
eters, as above, then we can obtain the following bounds by plugging Theorems 3.4 and 4.3 into
Lemma 6.3.

I1(C,P) = O(m?*n?3 + m 4+ n3%k,(n)),  K(C,P)=0m**n??+n3%5,n)). (7)

As above, these bounds are worst-case tight whés sufficiently large (larger than roughty’/4)

[1, 8]. We can improve these bounds for smaller valuespby exploiting properties (AP1) or

(AC1) of the definition of 3-parameter algebraic representation, following the approaches in [1, 8].
We describe the argument for the case of incidences and briefly discuss how to handle the case of
marked faces.

We map the pseudo-circlese C to pointsy* in R?, and the points irP to surfacesr, in R?,
so that incidences between points and curves correspond to incidences between the dual surfaces
and points, and so that one halfspace bounded by the surfam@responds to pseudo-circles that
contain the poinp in their interior. LetP* be the resulting set of surfaceslii, and letC* be the
resulting set of points ifR?.

We fix a parameter > 1. Roughly speaking, as in [1, 8], we wish to computéd Ar)-cutting
of P*. However, since we are dealing with an arrangement of surfaces instead an arrangement of
planes, g1/r)-cutting for P* is not a cell complex and the incidence structure betweeand P*
is more involved. Consequently we rely on a random-sampling argument similar to the one in [13].
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Sampling lemma. For a subseR? C P*, we define a partitiorE = Z(R) of R? into relatively
open and simply connectdd, 1-, 2-, and3-dimensional cells, which is very similar to the verti-
cal decomposition ofi(R) [13, 15]. Specifically, we add all vertices and edgesA¢R) into =.
For each (open2-face f of A(R), we compute the vertical decompositighi of f, as described
in [13], and add the relatively open edges and pseudo-trapezoiis(Tihe newly created vertices,
which lie on the edges of, are not added t&.) Finally, for each (openj-face ¢ of A(R), we
compute its vertical decomposition as described in [13], and we add the vertical 2dgess, and
3-dimensional pseudo-prisms &) none of these cells lie in any surface Bf Let=4 C = be the
set of vertices and edges 4 R), which were added t&, let = C = be the set of -dimensional
cells that lie in exactly one surface &f and let=5 C Z be the set of vertical edges that were added
to = in the last step. Foreachcéll € =, letCa = {c € C | ¢* € A}, PA = {p € P | p* € PL},
where P} is the conflict list of A (with respect toP*), andPy = {p € P | A C p*}. Set
na = |Cal,ma = |Pal, andina = |Pa|. The result in [15] implies thdE| = O(r>3,(r)), where
B,(r) is the function defined in Section 5.1.

Lemma 6.5 For a given parameter > 1, there exists a seR C P* of O(r) surfaces with the
following properties:

0] E ni/?’ =nandma < m log r, forany A € =.
T
Ae=

(i) Yone=, Ma = O(mr?).

i)y A < % log r, for anyA € Ep U =

Proof: We choose a random subgetC P* of sizecr, for a sufficiently large constant parameter

¢, where each subset is chosen with equal probability. Sihizea partition ofR3, >° \ na = n.

By the theory ofz-nets, an appropriate choice efyuarantees that, with high probability;n <
(m/r)logr, for any A € E [19]. This proves part (i). As for (i), observe thatjfe P, for a
vertex or edge\ in A(R), thenA is also a vertex or an edge, respectively, in the arrangement of the
intersection curvegp* Nr* | r* € R}. Since this arrangement héxr?) vertices and edges, the
bound in part (i) follows. A vertical edg& € =5 does not lie in any surface @, therefore by the
theory ofe-nets and with an appropriate choicein < (m/r) logr with high probability, for

all suchA’s. Similarly, one can argue thata < (m/r)logr for each cellA € Zg, as such a cell

lies in exactly one surface @t. See [13, 19] for details. This completes the proof of the lemma.

Bounding incidences. Let R be a subset of* satisfying the conditions of Lemma 6.5. We
compute= as defined above. Then

I(C,P) = Y I(Ca,Pa) +1(Ca, Pa).
A€EE

Since each point iP5 lies on every curve irfCa and two curves irC intersect in at most two
points,ma > 2 implies thatna < 1. Hence,

[(CA, PA) = O(nA + mA),
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Note that) >, na = n, ma = 0 for any 3-dimensional cellA € E, andma < 1 for any 2-
dimensional cellA € = because, by conditions (AC1) and (AP1), two surfaces intersect along a
1-dimensional curve. Hence,

Z I(Ca, Pa) = O(n + mr?B,(r) log ).
A€z

In order to boundy_ , I(Ca, Pa), we refine the cells oE as follows. Ifna > n/(r38,(r)) for
acellA € Z, we split it further so that each new cell contains at me&t-33,(r)) points. The
number of refined cells in the resulting partiti@his still O(r33,(r)). Therefore, using the bound
(7) for I(Ca, Pp), we obtain

Z I(Ca,Pr) = Z O(mzA/?’nQA/3 +ma + ni/Qﬁs(nA))
AeZ’ ANSEH

) <<mlfgr>2/3(ﬁm>2/3+ o (gu)/ <ﬁ>>

= O(m2/3n2/3r1/3ﬂ1/3(7‘) log2/3 r+ mT’Qﬂ(r) logr + (n/r)3/2/$s(n/r3)).

Hence,
1(C, P) = O(m2Pn?3r1 363 (r) 1og?3 r + mr2B(r) logr + (n/r)> 2ks(n/r3) +n).

We chooser = [n/''/m*/1], which is in the rangd < r < m whenn!/3 < m < nd/4. If
m > n®/* we taker = 1, and ifm < n'/? we taker = m. It follows easily, as in [8], that

1(C, P) = O(m?*n?3 4+ m® M Mg (m3 In) + m +n),

wheres is a constant depending on the representatiafi.of

Bounding the complexity of marked faces. We use the approach in [1] to prove an improved
bound on the complexity of marked faces. There is one significant difference in the proof for this
case compared with the case of incidences. Here we niietisachical cutting of A(R). The best
known algorithm for computing such a hierarchi¢afr)-cutting returns a cutting of siz@(r3+¢),

for anye > 0. Plugging this weaker bound on the size of hierarchical cuttings in the analysis of [1],
the bound on the marked faces increases by a fdetot®). We refer the reader to the papers just
cited for further details, and omit the description of the modifications of the analyses given there
that need to be performed.

Putting everything together, we obtain the following results on the number of incidences and the
complexity of marked faces.

Theorem 6.6 Let C' be a set ofy pseudo-parabolas or z-monotone pseudo-circles that admit a
3-parameter algebraic representation, and leébe a set ofn points in the plane.

() I(C, P) = O(m*/*n2/3 + mbMn9 Mg (m3/n) + m + n), wheres is a constant depending
on the representation, and

"For a sefl of surfaces, 41/r)-cutting Z of I is calledhierarchicalif there exist a constant, and a sequence of
cuttings=o, =1, . .., 24 = Z, for u = [log, r], whereZ; is a(1/rg)-cutting of I' and each cell oE; lies inside a cell
of =il1.

35



(i) K(C,P) = O(m?3n2/3 4 mS/11+ep9/11 1 plogn), for anye > 0.

If the pseudo-parabolas or pseudo-circleirare also pairwise intersecting, then (we do not need
to require that the pseudo-circles bemonotone in this case)

(iiiy 1(C, P) = O(m?/*n?3 + m'/?n5/83(n/m) + m + n), and

(iv) K(C, P) = O(m2/3n2/3 + m /21056 1og' /2 4 nlogn), for anye > 0.

For the cases of circles and of vertical parabolas, the relevant surfaces are (or can be transformed
into) planes, so there is no extfdr) factor, and efficient hierarchical cuttings can be constructed
(for the analysis of many faces). Hence, the analysis in [1, 8] yields the following improved bounds.
(The bound in Theorem 6.7(ii) has actually been proven in [1] for the case of circles; we state it
here for the sake of completeness.)

Theorem 6.7 Let C' be a set of circles orn vertical parabolas andP a set ofm points in the
plane. Then

(i) I(C, P) = O(m?3n?/3 4 mSM 2k (m3 /n) + m 4 n), and

(i) K(C, P) = O(m?3n23 4 mS/M 0 k(m? /n) + nlogn).
In addition, if the curves i’ are pairwise intersecting, then

(iiiy 1(C,P) = O(m?/*n?/3 +m!'/?n5/% 4-m 4 n), and

(iv) K (C, P) = O(m?/3n2/3 + m'/?n5/610g'/2 n 4 nlogn).

Remark. Using a standard sampling technique, such as the one used in [1, 8, 11], we can also
obtain versions of these bounds that are sensitive to the number of intersecting pairs of the given
curves (for parts (i) and (ii) of both theorems).

6.3 Distinct distances under arbitrary norms

An interesting application of Theorem 6.6(i) is the following result.

Theorem 6.8 Let () be a compact strictly convex centrally symmetric semi-algebraic region in the
plane, of constant description complexity, which we regard as the unit ball of alpdign Then any

set P of n distinct points in the plane determines at le&t."/? /r(n)) distinct || - ||o-distances,
where s is a constant that depends @p. (If @ is not centrally symmetric, it defines a convex
distance function, and the same lower bound applies in this case too.) This is also a lower bound
on the number of distindf - ||o-distances that can be attained from a single poinPof

Proof: The proof proceeds by considerimg homothetic copies of), shifted to each point oP
and scaled by the possible distinct| - ||-distances that the points iR determine. There are?
incidences between these curves and the point8.ofJsing Theorem 6.6(i), the bound follows
easily (here too the constant in the exponent of the expression foj is changed). O
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Remarks. (1) The proof technique is identical to an older proof for distinct distances under the
Euclidean metric, given in [13, Section 5.4]. Meanwhile, the bound for the Euclidean case has been
substantially improved (see [28] for the current “record”), but, as far as we know, the problem has
not been considered at all for more general metrics.

(2) Theorem 6.8 is false if) is not strictly convex. For example, 1ét be the unit ball of the.; -
norm, and letP be the set of vertices of thg¢n x /n integer lattice. There are onf{/n distinct
L -distances among the points Bf

6.4 A generalized Gallai-Sylvester theorem

Similar to Theorem 4.1 in [7], the following theorem is a consequence of Theorem 2.13.

Theorem 6.9 Let C' be a family ofn pairwise intersecting pseudo-circles in the plane.nlfs
sufficiently large and” is not a pencil, then there exists an intersection point incident to at most
three pseudo-circles @f.

7 Conclusion and Open Problems

In this paper we obtained a variety of results involving lenses in arrangements of pseudo-circles,
with numerous applications to incidences, levels, and complexity of many faces in arrangements of
circles, vertical parabolas, homothetic copies of a fixed convex curve, pairwise intersecting pseudo-
circles, and arbitrary pseudo-parabolas andonotone pseudo-circles. We also obtained a Gallai-
Sylvester result for arrangements of pairwise-intersecting pseudo-circles, and a new lower bound
on the number of distinct distances in the plane under fairly arbitrary norms. The main tool that
facilitated the derivation of all these results is the somewhat surprising property that the tangency
graph in a family of pairwise intersecting pseudo-parabolas is planar (Theorem 2.4).

The paper leaves many problems unanswered. We mention a few of the more significant ones:

(i) Obtain tight (or improved) bounds for the number of pairwise nonoverlapping lenses in an
arrangement af, pairwise intersecting pseudo-circles. We conjecture that the upper bound of
O(n*/3), given in Theorem 2.14, is not tight, and that the correct bouatig or near-linear.

(i) Obtain tight (or improved) bounds for the number of empty lenses in an arrangement of
arbitrary circles or more general classes of pseudo-circles. There is a gap between the lower
boundQ(n*/?), which follows from the construction &t(n*/?) incidences between points
andn lines, and which can be realized by circles, and the upper boufigiof 2x(n)), given
in Theorem 5.2 and Corollary 5.5. Even improving the upper bour@(i¢*/2), for the case
of circles, seems a challenging open problem. A related and harder problem is to obtain
an improved bound for the number of pairwise nonoverlapping lenses (and for the cutting
number) in an arrangement ofarbitrary circles.

(i) One annoying aspect of our analysis is the difference between the analysis of pairwise in-
tersecting pseudo-circles, which is purely topological and requires no further assumptions
concerning the shape of the pseudo-circles, and the analysis of the general case, in which
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we requirez-monotonicity and 3-parameter algebraic representation. (At least for pseudo-
parabolas, the weaker bound@(n8/5) holds in general.) It would be interesting and instruc-
tive to find a purely topological way of tackling the general problem involving pseudo-circles.
For example, can one obtain a bound closé)(@3/2), or even any bound smaller than the
general bound)(n®/?) of [27] (whichis purely topological), for the number of empty lenses

in an arbitrary arrangement of pseudo-circles, without having to make any assumption con-
cerning their shape? Assumingmonotonicity, can the boun@(n%/%) in Theorem 4.1 be
further improved?
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Appendix A: Analysis of the Case of Circles

In this appendix, we show how to refine the upper boung @), in the case of circles, so that
the associated constasitis 4, and thus = 2 andq = 4.
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Lemma A.1 Letc; andc; be two circles in the plane, withf = (a1,b1,r1) andc = (az, b, r2)
andr; > ro. The upper arcg;” andc; intersect at two points if and only if the following condition
holds (see Figure 21 (i)):

(UU) by > by, A, andp,, lie insidec;, andc; intersectse;.

Proof: If ¢ andc; intersect at two points, v then both centers lie below the lidpassing through

u andv. Moreover, the portion of the smaller disk (the disk bounding the smaller circle) kelow

is contained in the corresponding portion of the bigger disk, and the center of the smaller disk is
closer tof. This is easily seen to imply (UU). Conversely, if (UU) holds then both intersection
points lie oncg or both lie onc;, (because the endpoints of both arcs lie insige Translatec,
vertically downward until its center has the sagreoordinate as that af,. In this position\., and

pe, CoNtinue to lie inside;, and the two circles must be disjoint (any intersection point;omust

have a matching symmetric point @1, which would produce at least 4 intersection points). This

is easily seen to imply that the originaJ is also disjoint frome;, so the two intersection points
must lie onc;, and, sincé, > by, they must also lie on;". O

Ao (a2 6b2) Peo

ai,b (a1,b1)
( 0 v (il

Figure 21. (i) lllustration of condition (UU). (ii) lllustration of condition (UL).

Lemma A.2 Letc; andcy be two circles in the plane, withi = (a1, b1,71) andcs = (az, ba, 2).
The arcse]” and ¢, intersect at two points if and only if the following condition holds (see Fig-
ure 21 (ii)):

(UL) b2 > by, A, andp,, lie outsidec;, A., andp,, lie outsidecy, andc; intersectscs.

Proof: Suppose that andc; intersect at two pointa, v. Then the portion of; between, andv

lies insidec,, and the portion of;, between: andwv lies insidec;. This is easily seen to imply that

each of thec-extreme points\.,, p.,, Ac, andp,, lies outside the other circle. Moreover, the center

of ¢; (resp.,c2) lies below (resp., above) the line passing througdndv, implying thatby > b;.

Hence (UL) holds. Conversely, if (UL) holds then both intersection points must lie on the same arc
(upper or lower) of;, and on the same arc (upper or lower}:of However, in view of Lemma A.1,

it cannot be the case that both arcs are upper or that both arcs are lower. Hence one arc is upper and
one is lower, and the conditioly > b, is easily seen to imply that the upper arc iscpfand the

lower arc is ofcs. O

Fix acirclec : (z — a)? + (y — b)* = r%. Then by Lemma A.1, the locus ", of circles whose
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upper arc intersects” at two points is given by<, = KCJSr JUKS o wheré
Ko = {EnQ s Am=2b)AlE£¢— )2+ (n—b)* <7’ A
(6 —a)’+(n—b)°>(r—0)°}
Kl = {EnO =) Am<b)A ANE—a£r)?+ (-2 <A
(€ —a)’+ (n—b)*>(r— ()]}

This implies thatKj+ is a semialgebraic set of constant description complexity. Symmetrically,

it follows that K, and the corresponding regions for are also semialgebraic sets of constant
description complexity. We thus conclude th@t) = O(n?/%k4(n)) for some integes. However,

the surfaces bounding these regions are quadrics, so their intersection curves are in general of degree
four, and a naive bound on the number of intersection points betweén-m®jections of a pair of

such curves is; < 4% = 16, yielding s = 8. For mostly aesthetic reasons, we set out to improve

this bound toy(C') = O(n?/2k(n)), wheres(n) = ka(n).

Let ¢)(A, B) denote the minimum number of cuts needed to eliminate all bichromatic upper-
upper lenses il U B (lenses formed by the upper arcs of one circlediand one inB). Put
Y(A) = (A, A). Fork = 0,1,2, setyy®) (u,v) = max (A, B), where the maximum is taken
over all pairs of families of circlesl and B of sizes at most andw, respectively, so that

e for k = 0, no constraint is imposed o# and B;

e for £k = 1, we require that the radius of each circledrbe greater than or equal to the radius
of each circle inB; and

e for £k = 2, we require the same condition on the radii as#o+ 1, and also that the-
coordinate of the center of each circleArbe smaller than or equal to thyecoordinate of the
center of each circle if3.

We setyp)(*) (m) = ) (m,m), and our task is to bound©® (n).

Sort the circles irC' in increasing order of their radii, and l€Y, C» be the subsets of the circles
with then /2 smallest andw/2 largest radii, respectively. We clearly have

P(C) < p(Cr) +(Ca) + 4(Ca, Ch),

from which we deduce the recurrence

©) () < 2@ (2 (ny (v n
pOm) <2p® (3) +9 (3.5)- (8)
Next we estimate)(1). Let A and B be two sets ofn andn circles, respectively, so that the radius
of each circle inA is greater than or equal to the radius of every circleBin Sort the circles in
C = A U B inincreasing order of thg-coordinate of their centers, and splitinto two subsets
C~,C*, consisting respectively of the circles with the +n)/2 lowest and thém +n) /2 highest

8The condition for the intersection of two circles is that the distance between their centers be larger than the difference
between the radii and smaller than their sum. In what follows, we only use the first inequality, because the second is
implied by the additional condition that one circle contains points of the other in its interior. This simplification does not
hold, though, when we consider intersections between lower and upper arcs.
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y-coordinates. Pul~ = ANC—, ATt = ANC+, B~ =BNC~,andBT™ = BNC™. We clearly
have

(A, B) < (A7, B7) + (AT, BT) + (A", BT);
the fourth termg)(A*, B™), is 0, because all pairs of circles it x B~ violate condition (UU).
Putk = |A~|, ¢ = |B™|. Hence, we obtain the recurrence

O < ma {00 (75 k) 400 (P2 ) 1 0Pm0} . @

k,g§ﬂ+2_n 2

_m-—-n
k—l="5"

where the conditions ok and/ follow from the construction.

We next bound)(?), where a more complex recurrence is needed. Aend B be two sets
of m andn circles, respectively, so that for arffy;,c2) € A x B, with ¢; = (a1,b1,71) and
¢y = (ag, b, r2), the following condition holds:

(CO) 1> T9 andbz > by.

If the upper arc of a circle; = (a1, b1,71) € Aintersects the upper arcof = (az,be,72) € B
at two points, then by Lemma A.1, the following two conditions also hold:

(Cl) )\02 = (a2 — T, bz) andp@ = (a2 + 79, 62) lie insidec;;

(C2) ¢y andes intersect.

Fix a circlec = (a,b,r) in A. The locusK (c) of all circles(¢,n, () € B that satisfy (C1) with
c is the region

{&n O 1 (€E=¢—a)’+ (=0 <r? and (£ +¢—a)’ + (1 —b)* <77},
which is bounded by the pair of surfaces
mi(e): (€= 0% +n” —2a( — () — 2+ a® + 1> —r? =0, (10)
ma(c) : (E+ ) +17° —2a( + () — 2by+a® + 1> —r? = 0. (11)

On the other hand, if we fix a circle = (a,b,r) in B, then the locusk(c’) of all circles
(&,7,¢) € Athat satisfy (C1) with' is the region

{€m 1€~ (a=m)+n-b*<¢* and (€~ (a+7)* + (1 —b)* < *},
which is bounded by the pair of surfaces
() € +n* =% —2(a—r)E—2bn+ (a—1)? + b =0, (12)
To(d) 1 €2 402 — % = 2(a + 7)€ —2bn + (a +7)> +b* = 0. (13)

Finally, for a fixed circlec = (a,b,r) in A or B, the locusK,(c) of all circles (&,n,¢) that
satisfy (C2) withe, given that they already satisfy (C1), is bounded by the surface (as already
remarked, only one of the two inequalities that represent intersection between circles need to be
considered)

(€—a)?+(n—b)?=(-r)? or
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m3(c) 1 €2+ — (% — 2a8 — 2bn 4 2r¢ + a® + 0% — r? = 0. (14)

An important observation is that the bound on the parameigfarge because we consider in-
tersection curves of “mixed” pairs of surfaces from among the possible types (10)—(14). However, if
we only consider pairs of surfaces of the same type, say of type (14), the corresponding intersection
curves arglane quadricsso the number of intersection points between the projections of two such
curves is at most 4, as in the case of vertical parabolas (Section 5.2). Our approach is thus to enforce
the conditions (C1)—(C2) in two stages, where the first stage enforces (C1) and the second enforces
(C2). This will suffice to reduce to 2.

In more detail, we proceed as follows. Hor= 3, 4, sety)(*) (v, v) = max (A, B), where the
maximum is taken over all pairs of families of circldsand B of sizes at most andwv, respectively,
that satisfy (CO)—(Q¢ — 2)). We sety)(¥)(m) = ¥ (m,m). Recall that our task is to bound

p? (m).

Bounding (¥ (m). We first observe thap® (m) = O(m*/?). Indeed, if every pair of circles in

A x B satisfy (C0)—(C2), i.e., the upper arcs of every pair intersect at two points, then the bound
follows by considering the collection of extended upper arcs of the circlgsunB, and applying
Lemma 4.2 and Theorem 3.4, as argued in Section 5.3.

Bounding ¢(3) (m). Next, we apply the analysis in the proof of Lemma 5.1 to the arrangement
of the surfacesrs(c), for ¢ € A or ¢ € B. Choosing a parametér < r < m!/4, we obtain the
recurrence

$@(m) < erB2r) (¥ () + 9O m)| < er®B20) [vO (5) +0m)],

with ¢ = 4. Indeed, the overhead term bounds the minimum number of cuts needed to eliminate
all bichromatic upper-upper lenses between pairs of subfamilies of circles that satisfy (C2) (where
one subfamily corresponds to all circles in, sdy,whose representing points lie in some c&ll
of the relevant cutting, and the other subfamily corresponds to all citctes3 whose associated
surfacers(c) fully enclosesA), in addition to (C0)—(C1) which are satisfied, by assumption, by all
pairs of circles inA x B. Hereq = 4, because we are dealing here only with surfaces of the form
m3(c), and, as already remarked, the intersection curve of two such surfaces is a plane quadric, so,
as argued in Section 5.2, the projections of two such intersection curves oi-pene intersect in
at most four points, thereby implying that= 4 and3,(r) = 29(@°(")). The same analysis as in
Section 5.1 now shows that

@ (m) = O(m?*k(m)). (15)

Bounding (%) (m). This is achieved by a similar process of interleaved recursion, in which we
keep flipping the roles afl and B. However, this can be done so that one of the two recursive steps
is performed in the plane (and only one in three dimensions). Specifically, we have:

Lemma A.3 For anym,n and for any parametet < r; < min{m,n'/?},

m n n
PP (m,n) < epry® (H’ ﬁ) + coriyp®) (m, ﬁ) , (16)

1 1

for some positive constans.
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Proof: Let A and B be two families of circles of sizen andn, respectively, so that every pair

in A x B satisfy condition (C0). We need to “enforce” condition (C1), namely, that the leftmost
and rightmost points of a circle iR lie inside a circle inA. This can be done via the following
cutting-based partitioning in the plane, where each cijcte (¢,7,() € B is mapped to the two
respective points, = (£ — ¢,n), pg = (£ + ¢,n), and the circles ofl remain as they are.

We compute d1/r;)-cutting = of A of sizeO(r?). ForeachA € E, let By = {g € B | A, €
Aorp, € A}. If |Ba| > n/r}, we partitionA into subcells, each of which contains at mogt?
points. The number of new cells remainér?). For each new celh, let Ax = {c € A | cNA # 0}
andAx = {c € A| A Cint(c)}. SinceE is a cutting, we havgd | < m/r; for eachA.

To boundy (A, B), we first sum up the recursive terms , ¢(Aa, Ba). Let (¢, g) be a pair
that needs to be counted 4 A, B) but has not been counted in this recursive manner.AL ek’
be the cells of the cutting that contaly, p,, respectively. Then both cells, A" are fully contained
in the interior ofc. This suggests the following approach to completing the count: Take each pair
(A, A") of cells of the cutting, and puBa a1y = {g € B | Ay € A andp, € A}, Aaary = {c €
A | A, A’ Cint(e)}. The number of remaining pairs that need to be counted is thus bounded by

> v (Anaan Baa)-
()

However, every pair of sets in this sum also satisfy (C1), so the sum is atwsp®) (m, n/r?)).
This completes the proof of the lemma. O

We also need a dual partitioning scheme for the “flipped” version of the recursion, in which
the circles ofA are mapped into points and those®finto surfaces. Here, unlike the preceding
partition, we need to use the 3-dimensional representation of the circles:

Lemma A.4 For anym, n and for any parametet < ry < min{m'/3 n},

$® (m,n) < cardf (r2) [z/)@) (% 2—”) + (%nﬂ : (17)

2 T2 2

for some integer constagtand some positive constasy.

Proof: Let A andB be two families of circles of size: andn, respectively, which satisfy condition
(C0). We now map each circlg € A to the pointg* = (£,7,() € R?, using the 3-parameter
representation of’. Let¥ = {7(c), m2(c) | ¢ € B}. We compute d1/ry)-cutting E of X of size
O(r3B,(r2)), for some appropriate constant For each celr € =, setA, = {c€ A | ¢* € 7} and
partitionr further, as needed, to ensure that, for any resulting subicel | < m/r%; this does not
change the asymptotic bound on the number of cellsBSet {c¢ € B | (71 (c) Um2(c)) N1 # B}
andB, = {c € B | 7 C K,(c)}. Hence, we obtain the following recurrence

¢(AvB) = Z[/‘/)(AT?BT) + w(ATaBT)]‘

TEZ

By construction, every pafiei, c;) € A, x B, satisfies (C0)—(C1), which implies thatA-, B,) <
YB)(|A,|,|B;|). Since|A,| < m/r3 and|B,| < 2n/r, for eachr, we thus obtain, summing over

°Curiously, ¢ = 4 for the collection of surfaces (c), @2 (c), which follows by the same reasoning used for the
surfacesrs(c). However, this extra property is not needed in this step of our analysis.
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all cells of the cutting,

¢(2) (man) < CSTS’ﬁq(TZ) |:¢(2) (%a 2_n> +¢(3) (%an>:| )

’)"2 9

as asserted. O

Combining (16) and (17), choosing = r andr; = 2r? for an appropriate parameter>
1, and substituting the bound (15) drﬁ3)(-), we obtain the recurrence for appropriate values of
constants:, ¢’
) + dr8m3 2k (m).

¥ (m) < ey ()@ (55

2
Since the overhead term in the recurrence dominates its homogeneous solution, it can be shown
(by induction onm) that if we choose to be a sufficiently large constant, then the solution to the
recurrence is
@ (m) = O(m**k(m)).

Bounding ") (m) and 4(®) (m). We now return to the first two stages of divide and conquer.
Substituting the bound fap() (+) in (9), we obtain a recurrence in which each instance involving a
total of m + n circles is replaced by two instances, each involving a totéof- n) /2 circles. This
readily implies that the recurrence solves to

¢V (m) = O(m*k(m)).

Substituting this bound into (8), we again obtain a simple recurrenw(?b(-) which also solves
to
PO (m) = O(m**r(m)).

We have thus shown that the minimum number of cuts needed to eliminate all upper-upper lenses
in a set ofn circles isO(n?/2k(n)). A fully symmetric argument yields the same bound for the
number of cuts needed to eliminate all lower-lower lenses, and it remains to bound the number of
cuts needed to eliminate upper-lower lenses. For this we need to carry out a similar analysis, based
on the condition (UL) in Lemma A.2. The analysis is indeed rather similar, and we do not spell it
out in detail. We only comment on several technical differences that arise:

(1) Atthe bottommost recursive stage, we enforce the condition that a pair of cirelés, b, r)
andd = (&,m,¢) intersect. Here we need to enforce both inequalities, that the distance
between the centers be at least the difference between the radii and at most their sum. The
corresponding surfaces, wittfixed andc’ varying, are

m3(c) 1 & +n? = —2a =20 +2r( +a® + b —1* =0
Tac) s € 4n? —(?—2a€ =2y — 2+ a? + b2 —r? =0,

Fortunately, the intersection curve of any pair of these surfaces is still a plane quadric, and
the preceding analysis can be easily adapted to keep the pargreegtsl to 4 (and to 2) in
this case too.

(2) We now need only one stage of a simple divide-and-conquer, to enforce the cobglitian ,
but we need two stages to enforce the conditions concerning the pojnis., , A., andp,,
one stage enforcing that, , p., lie outsidecy, and the other stage enforcing thag, p., lie
outsidec; . Both stages are carried out exactly as above.
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The modified analysis thus yields a bound@fn?/%(n)) for the minimum number of cuts
needed to eliminate all upper-lower lenses in a%ef » circles, showing, at long last, thgtC) =
O(n3?k(n)).
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