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Massive transaction streams present a number of opportunities for data mining techniques. The
transactions in such streams might represent calls on a telephone network, commercial credit card
purchases, stock market trades, or HTTP requests to a web server. While historically such data
have been collected for billing or security purposes, they are now being used to discover how the
transactors, for example, credit-card numbers or IP addresses, use the associated services.

Over the past 5 years, we have computed evolving profiles (called signatures) of transactors in
several very large data streams. The signature for each transactor captures the salient features
of his or her behavior through time. Programs for processing signatures must be highly optimized
because of the size of the data stream (several gigabytes per day) and the number of signatures to
maintain (hundreds of millions). Originally, we wrote such programs directly in C, but because these
programs often sacrificed readability for performance, they were difficult to verify and maintain.

Hancock is a domain-specific language we created to express computationally efficient signature
programs cleanly. In this paper, we describe the obstacles to computing signatures from massive
streams and explain how Hancock addresses these problems. For expository purposes, we present
Hancock using a running example from the telecommunications industry; however, the language
itself is general and applies equally well to other data sources.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Classifica-
tions—Specialized application languages; H.2.8 [Database Management]: Database Applica-
tions—Data mining; I.5.1 [Pattern Recognition]: Models—Statistical

General Terms: Languages, Performance

Additional Key Words and Phrases: Domain-specific languages, data mining, statistical models

1. INTRODUCTION

A transactional data stream is a sequence of records that log interactions be-
tween entities. For example, a stream of stock market transactions consists of
buy or sell orders for particular securities from individual investors. A stream
of credit card transactions contains records of purchases by consumers from
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Fig. 1. Typical use of a fraud signature.

merchants. A stream of call-detail transactions contains records of telephone
calls from an originating phone number to a dialed phone number. If such
transactional data simply flow into a data warehouse, discovering the entities
that are interesting can be difficult because of the sheer volume of data. Where
should data analysts focus their attention?

One solution to this problem, which AT&T has used very effectively [Cortes
and Pregibon 1998; Cortes et al. 2000], is to tap the transactional stream as
it flows into the data warehouse and use the resulting information to build
and maintain signatures, which are small profiles of the entities in the stream
[Burge and Shawe-Taylor 1996; Cortes and Pregibon 1999; Denning 1987;
Fawcett and Provost 1997]. Typically, the stream is processed in batches, the
length of which often has some semantic meaning, for example, a day or an
hour. As each batch is processed, the signatures for the entities mentioned in
the transactions are updated. Analysts design these signatures to capture the
essence of the entities present in the stream along desired dimensions with the
hope that the features of the signatures will be general enough to support both
important known applications and anticipated future interests. These signa-
tures serve as a high-level summary of the contents of a transaction warehouse
and allow analysts to focus their attention on finding interesting patterns in
the signatures.

The space and time constraints in computing and using signatures are quite
challenging. The volume of data is typically large in two dimensions: the num-
ber of transactions in a single batch and the number of entities to track over
time. For example, in telecommunications data, a daily batch often describes
hundreds of millions of calls involving tens of millions of distinct telephone
numbers. Over time, such a data stream yields hundreds of millions of tele-
phone numbers with signatures. The size of these signatures is bounded by the
resources available to compute them. As more resources become available, data
analysts revise their applications to store larger signatures.

Various uses of signature data impose strict time constraints. The first
such use is in batch processing. During processing, the signatures for entities
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mentioned in the batch are retrieved and updated. All the transactions within
a single batch must be processed within less than half the batch window time to
permit recovery in the case of failures (disks fail fairly frequently). Hence read-
ing and writing all the necessary signatures must take less than this amount
of time. In the telecommunications case, typically over 100M signatures must
be updated daily. A second use is in viewing signatures through a web inter-
face. Data analysts must be able to access the signature associated with a given
entity within web-time, typically under a second.

The original signature programs were C programs carefully engineered to
achieve the necessary performance. Data analysts wrote the original programs
in C because they were comfortable with the language, it supported their per-
formance goals, and it allowed them to manage the space usage of their ap-
plications through its support for user-control of data representation. In C,
the performance requirements forced the analysts to structure their programs
around managing the scale. The bulk of the code involved ensuring good locality
of access to the signatures stored on disk to overcome the I/O bottleneck.

Although these original signature programs were very useful to AT&T, the
data analysts were reluctant to work on new signatures. The programs were
tedious to write in the first place because the “interesting” part, the per-entity
code, was a small fraction of the required code, the bulk of which was dedicated
to ensuring good performance. Once written, the programs were hard to main-
tain because it was difficult to see what was being computed through all the
code specifying how to compute it.1 Finally, despite significant engineering ef-
forts, the data analysts were able to compute only 2-byte signatures2 within the
available resources. They desperately needed an easier way to write signature
programs and to compute larger signatures.

At this point, we hypothesized that a domain-specific language for writing
signature programs might be a possible solution. By designing appropriate
abstractions, we could allow signature programs to be structured around the
per-entity computations and hide issues of scale. The scaffolding code that dom-
inated the earlier programs could be generated by the compiler, allowing the
data analysts to focus on the part of the computation that interests them. The
resulting programs would be easy to write and maintain, but still have good
performance.

With this thesis, we undertook the design and implementation of Hancock,
a domain-specific language for signature processing. We viewed this project
as a case study in practical language design. Our evaluation criteria for the
language was simple: did the data analysts use it? To succeed, we had to work
closely with the analysts to ensure that we produced something that met all
their constraints and that they were comfortable with. We had to generate
programs that were no less efficient than the C programs they were already

1Maintenance is a particularly important aspect of signature programs in telecommunications
because the federal government regulates how AT&T uses such transactional data. Periodically,
the data analysts must review the programs to ensure that they comply with current federal
regulations involving the uses of such data.
2Signature sizes are defined to be the size of the payload not the size of the payload plus the size
of the key.
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using. We also had to produce a working system quickly, as new signatures were
desperately needed. Finally, we had limited resources to apply to the problem,
both in terms of people to design and build the system (roughly two researchers
and two summer students) and in terms of equipment, i.e., existing machines,
disks, and memory.

Because of our success criteria and resource constraints, we adopted a
bottom-up and iterative design philosophy. We added only those features and
abstractions to Hancock that seemed essential, that is, those for which we had
several motivating examples and that we knew we could implement efficiently.
By adopting an iterative strategy, we ensured that from very early on we al-
ways had something working. We did not try to design the whole language
before implementing it.

At the start of the project, we made a number of basic design decisions.

—Not using a database. Our users had had previous experience loading
databases with transaction data and using database facilities to compute
signatures. But because the patterns of usage of signature applications (high
percentages of updates) did not match those for which databases are typically
tuned (large numbers of concurrent reads) [Belanger et al. 1999], this ap-
proach did not yield acceptable performance. Consequently, the data analysts
adopted a programmatic approach. We took this choice as a given, although
subsequent experimental results have supported their preference [Fisher
et al. 2002; Sullivan and Heybey 1998; Babcock et al. 2002; Carney et al.
2002; Hellerstein et al. 2000].

—Designing a language. Although portions of our design might have been
amenable to a library-based design, we believed that overall the benefits of a
language outweighed the learning-curve overhead and the lack of supporting
tools (e.g., debugger, etc.). The primary benefit of a language over a library
is that a language presents the user with a world view. Because Hancock
is designed for a specific domain, the world view it presents makes it much
easier to write efficient programs for that domain. In addition, the control-
flow abstraction that is at the heart of batch processing (see Section 3.3) is
awkward to express in a library.

—Extending C. We knew we wanted to extend a language in designing Hancock
so we would not have to replicate the fundamental structures provided by
every programming language. We chose C because it was already familiar to
our target users and it has low run-time overhead.

—Static and dynamic checking. Finding bugs in signature programs can be
very difficult: how do you determine that the seven gigabytes worth of data
in a signature collection are the right seven gigabytes? It is impossible for a
human being to look at a more than a tiny fraction of the data. To help prevent
bugs, we chose to provide both static and dynamic checking to the extent
possible in a C-based framework and given the all-important performance
constraints.

—Supporting parallelism. An obvious way to parallelize a signature program
is to divide the transaction stream into substreams containing ranges of
entities and then to assign the task of computing the signatures for each
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range of entities to a separate processor. Although we may provide support
for this strategy in the future, we have not yet done so because in practice,
the parallelism achieved by running each signature program on a separate
processor was sufficient to obtain acceptable performance.

We designed and implemented the first version of Hancock in 1998. This ver-
sion was specific to a particular form of call-detail transactional data [Bonachea
et al. 1999]. Using this version of the language, data analysts designed a new
signature program; shortly after, all existing signature programs were ported
to Hancock. We then generalized the language to support arbitrary fixed-width
transactional streams [Cortes et al. 2000], in the process improving various as-
pects of the implementation to support larger signatures. In response, the data
analysts designed two new signature programs with signatures over 100 bytes
per entity. All of these Hancock programs, and many supporting programs, have
been running in production for several years. Thus, according to our evaluation
criteria, the Hancock project has been a tremendous success.

This paper describes the design of Hancock. It expands upon Cortes et al.
[2000] and incorporates recent additions to the design. We have structured the
rest of the paper as follows. In Section 2, we describe the environment in which
Hancock programs run and introduce a signature application that we use as
a running example to motivate and explain the various features of Hancock.
In the following sections, we present Hancock’s various domain-specific ab-
stractions, starting with abstractions related to transaction streams (streams,
multi-unions, and the iterate statement) and then moving on to abstractions
related to storing signatures persistently (maps, pickles, and directories). In
Section 5, we describe how we extended our design with a parameterization
mechanism to provide better support for some of the new signatures written
in Hancock. We then give an implementation overview (Section 6), describe
our experiences using Hancock in practice (Section 7), sketch some future di-
rections for the language (Section 8), and end with some concluding thoughts
(Section 9).

2. SETTING THE STAGE

The analysis done with Hancock on call-detail records at AT&T is only one
part of a complex system. In this section, we sketch the pieces of that system
that surround the Hancock programs to give the reader more context. We then
introduce an example signature program that we will use throughout the paper
to motivate and explain the design of Hancock.

2.1 Collecting Raw Data

Switches in the telephone network collect information about the calls they
handle as part of normal call processing. They store this information in AMA
records, a highly complex, industry-standard format. These records contain
information needed for call signatures, such as the originating telephone num-
ber, as well as information not needed for signatures, such as how the call was
routed through the network. As calls are completed, the switches transmit the
corresponding AMA records to a collection machine, where a program extracts
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fixed-width call-detail records from the AMA records. The extracted call-detail
records are then sent on to a system called “the streamer.” This system uses
registered filters to create special-purpose buckets of records. All Hancock ap-
plications share the same filter, which accepts almost all records.

Once an hour, the records in the Hancock bucket are sorted in two different
ways to produce two different files: one sorted primarily by the originating
number and secondarily by the dialed number, the other sorted by the dialed
and then by the originating number. Once a day, each of the two collections of
sorted files are merged and fed to a suite of Hancock programs that update a
family of signature collections.

These signature collections are accessed in several ways. Fraud represen-
tatives query them through a web interface using canned selection programs
written in Hancock. Data analysts use a standard suite of Hancock selection
programs to retrieve lists of signatures corresponding to given phone numbers.
Finally, researchers (largely statisticians) use their own Hancock programs to
explore the data and to develop new signatures.

With the exception of the Hancock programs, most parts of this system are
either C programs or UNIX shell programs. Many systems geared toward an-
alyzing stream data, Aurora [Carney et al. 2002], Telegraph [Hellerstein et al.
2000] and STREAMS [Babcock et al. 2002], to name a few, are designed to
build architectures similar to the one described above, up to and including the
streamer. That is, they solve the problem of how to get the records to the right
application. Hancock solves a different problem: what to do with all the data
once you have it.

2.2 Running Example: The Cell Tower Signature

In the rest of this section, we introduce an example signature program that
we use throughout the paper to motivate and explain the design of Hancock.
This example, called the Cell Tower application, mines information from a wire-
less call-detail stream. In particular, the application measures the mobility or
“diameter” of mobile phone numbers (MPNs). Phone numbers that are used
exclusively in one or a few neighboring cells have small diameters, while those
used in larger regions have larger diameters. Such information is useful for
fraud detection and for developing new location-based services.

The wireless call-detail stream consists of a sequence of records, each one of
which describes a call made on the wireless network. Although these records
contain many fields, only the following few are relevant for our purposes:

—originating phone number,
—dialed phone number,
—first cell tower (originating),
— last cell tower (originating),
—first cell tower (dialed), and
— last cell tower (dialed).

Either one (or both) of the originating and dialed phone numbers correspond to
a mobile phone number (MPN). Information related to mobility appears in the
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cell tower fields. If the originating phone number belongs to a mobile phone,
then the first originating tower captures the first tower used to carry the call.
If the phone moved significantly, then the last tower captures the final tower
used during the call. The dialed towers carry the same information for the
dialed phone number.

The Cell Tower application tracks for each MPN the five most frequently (and
most recently) used cell towers and another value that captures the frequency
with which calls placed to/from the MPN do not involve the top five cell towers.
As one might expect, the top five list is dynamic, so the signature computation
includes a probabilistic bumping algorithm that allows a new cell tower to enter
the top five list as its frequency of use increases. More concretely, we will use
the following C struct:

#define TOPN 5
typedef struct {
unsigned int tower[TOPN];
float count[TOPN];
float other;

} profile_t;

as the type of the signature for each mobile phone number. The tower array
stores the five most frequently used cell towers, while the parallel array count
measures the frequency with which the corresponding tower is used. Field other
measures how many calls are not reflected in the list of the top five towers.

In the Cell Tower application, we want to track such profiles over time; con-
sequently, we must associate each mobile phone number with its profile persis-
tently. This type of association is central to the applications in Hancock’s target
domain. As a result, Hancock includes an abstraction, called maps, for defining
and managing such associations.

In the profile t struct, we use an unsigned integer to represent cell tow-
ers. In the wireless call-detail stream, however, cell towers are represented as
variable-length strings. Because types with fixed size are much more conve-
nient for both computation and storage, we use a hash table to associate an
(unsigned) integer hash key with each string and store the hash key in the
profile instead of the string. Because the profile data is persistent, the mapping
between a given hash key and a given cell tower name must be persistent as
well. While this persistent data structure is important for this application, it is
not a core part of most Hancock applications. As a result, Hancock does not pro-
vide persistent hash tables directly. Instead, Hancock provides an abstraction,
called pickles, that allow users to define their own persistent data structures.
The Cell Tower application uses this construct to define a persistent hash table.

We want to reflect the close semantic coupling between the signature collec-
tion and the persistent hash table in the application program to ensure that we
use the two kinds of persistent data properly. This issue of persistently group-
ing various data arises in many Hancock applications. Consequently, Hancock
provides a construct, called directories, for this purpose. We will use a direc-
tory to group the signature collection and the persistent hash table. In addition,
to help identify and preserve the integrity of the application data, we will add a
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Fig. 2. High-level architecture of signature computations. The processing typically consists of
several phases, each sorting the data in a different order and updating a different part of the
signatures.

field to the directory tagging the data with the date of its most recent update. To
support this kind of usage, Hancock directories provide automatic persistence
for statically-sized C types and C strings.

The Cell Tower application uses a process flow typical for signature appli-
cations to compute the desired persistent information. Figure 2 depicts this
flow: transaction records are collected for some time period, the length of which
depends on the application (e.g., a day for marketing but just a few minutes
for fraud detection). At the end of the time period, the records are processed
to update the signatures. Before processing, the old signature data is copied
to preserve a back-up for error-recovery purposes. During processing, several
passes are made over the data to perform the updates.

Each pass over the stream of records has a standard structure as well. First,
a user-supplied function translates each physical record into a logical repre-
sentation, discarding invalid records in the process. During this translation,
we convert cell tower names into their associated hash keys. Second, a user-
supplied filter function discards valid records that are not interesting for our
current purposes. In our sample application, we remove calls that do not in-
volve a cell tower. Next, the records are sorted in some order, for example,
according to the originating phone number for one pass and according to the
dialed phone number for another.3 Finally, the portion of each signature rele-
vant to the given sort is retrieved from disk, updated, and then written back to
disk. For example, after sorting by the originating phone number, the portion
of a signature that tracks out-bound calling is updated; after sorting by the
dialed number, the portion that tracks in-bound calling is modified. Sorting the
stream ensures good locality for accesses to the signatures on disk and groups
the information relevant to each phone number into a contiguous segment of the
stream. Hancock’s stream abstraction and iterate statement allow a program-
mer to describe and process transactional data streams using this structure
easily.

3If the records have already been sorted, as in the streamer architecture described in Section 2.1,
this step can be omitted.
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Fig. 3. Sample wireless call stream running from left to right. Each box represents a call from an
originating phone number (for example, the first call was placed by O0). Each box is labeled with a
call number (c1, for example). Light gray/yellow boxes represent calls that originated from mobile
phone numbers. Dark gray/purple boxes represent calls that originated from land lines.

To improve the readability of code fragments in the remainder of the paper,
we adopt the following naming convention: map types end with the m suffix,
pickles with p, directories with d, and streams with s.

In summary, this application requires three abstractions for representing
persistent data: one to associate signatures with keys (cf. Section 4.5), a second
to describe the persistent hash table (cf. Section 4.7), and a third to group the
most-recent-processing date, the signature collection, and the persistent hash
table (cf. Section 4.6). It also needs abstractions for describing and processing
stream data (cf. Section 3). We discuss how Hancock provides the abstractions
necessary for this application in the next few sections.

3. STREAMS

Hancock’s core abstractions include mechanisms for describing and computing
with streams of transactions. In this section, we present Hancock’s mechanism
for defining stream types, its model of stream events, and its mechanism for
consuming streams.

3.1 Describing Streams

The design of Hancock’s stream abstraction arose directly from examining
the original signature programs, which consumed streams of highly-encoded
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call-detail records. These programs interleaved code for decoding the represen-
tation of stream records with signature processing code, which made it difficult
to update the programs when the stream representation changed.

We designed Hancock’s stream abstraction to separate the description of a
stream type from its use and thereby encourage good programming practices.
We also designed it to encourage the programmer to specify a separate logi-
cal representation of the stream records that is suitable for computation, as
opposed to a physical representation that is suitable for storage. Separating
the physical and logical representations allows one person to understand the
physical representation (the expert on that data source) but many people to
use the logical representation (the consumers of that data source). This divi-
sion facilitates maintenance: if the physical representation changes, only the
translation from the physical to the logical representation must be modified,
presumably by the expert on that data source. The consumers need not modify
their programs.

Another important aspect of Hancock’s stream abstraction is the fact that
during the translation from the physical representation to the logical, the phys-
ical record is validated. A fact of life of large-scale data processing is erroneous
values in the data. Because translation requires examining the physical record,
it easy and efficient to determine at that point if the record is meaningful. Re-
moving buggy data simplifies downstream processing because later code can
assume that all the logical records are meaningful.

Hancock programmers use stream type declarations to describe streams.
Hancock supports two forms of this declaration: a specialized form for streams
whose records are stored on disk in a fixed-width binary format and a general
form for records stored in other formats. We designed the binary form initially
because the call-detail records used by the original signature programs all had
that form. We later extended the design to general records to accommodate a
wider range of data sources. We retained the original form because it is more
convenient to use in the frequently occurring special case of fixed-width binary
data.

The declaration of a binary stream specifies both the physical and the logi-
cal representations for the records in the stream. It also specifies a function to
convert from the encoded physical representation to the expanded logical rep-
resentation, validating the record in the process. The Hancock runtime system
handles all file I/O and calls the specified function once for each binary record
in the stream.

The following declaration introduces the wireless call stream
binaryWireless s:

stream binaryWireless_s {
getvalidWCRbinary : wcrPhy_t => wcrLog_t;

};

For this stream, the C type wcrPhy t serves as the physical representation and
wcrLog t serves as the logical. The identifier getvalidWCRbinary names the
function that validates records and specifies how to convert from the physical
to the logical representation.
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In the general case, the programmer handles the file I/O rather than the
Hancock runtime system. In particular, a general stream declaration specifies
a function that takes a file pointer as an argument, reads data from that file,
and returns a valid logical record.

The records that constitute a stream are stored on disk, historically in col-
lections of files grouped in a directory. To process these records in a Hancock
program, we had to provide a mechanism whereby the programmer could con-
nect this on-disk representation to the appropriate in-memory representation.
We designed Hancock’s initializing declarations to provide such a mechanism.
These declarations extend C’s declaration form with a path that indicates the
location of the on-disk representation. Advantages of this form include familiar-
ity to C programmers and the guarantee that a persistent variable is connected
to its on-disk representation before that variable can be used. For example,
programmers can declare a stream variable calls and connect it to the data
stored in data/call-detail.current using the syntax:

wireless_s calls = "data/call-detail.current";

In the remainder of this paper, we use the term “record” to mean the logical
representation of the elements in a stream, since stream definitions are the
only place where the physical representation is needed.

3.2 Event-Based Programming Model

The original signature programs used an event-based programming model to
process their data streams. The events were triggered by value changes in the
telephone number fields in successive records in the data stream. For example,
typical events included seeing a new area code (npa begin), a new exchange
(nxx begin),4 a new phone number (line begin), an individual call record (call),
the last record for a phone number (line end), etc. Depending on the intended
application, a given program would take different actions in response to these
events. For example, when a program detects an npa begin event in a stream,
it may retrieve the time zone for the triggering area code. In response to an
nxx begin event, it may age5 the signature values stored for the phone numbers
in that newly seen exchange. For a line begin event, it may initialize counters
that it later increments in response to call events. The program may store the
final values for these counters when a line end event occurs.

This computational model is well suited to processing transactional streams,
but C does not provide much help in realizing this program structure. Hence,
although the original programs used this model, the underlying structure was
not readily apparent in the C implementations, making the heart of each such
program very difficult to code and maintain. In particular, the programs had
no explicit notion of event and no event-detection code identified as such. The
event-response code was intermingled with the event-detection code and buried

4An exchange is the first six digits of a 10-digit telephone number.
5Aging is a process that allows new information to replace old information gradually. It is typically
implemented by multiplying old values by a small constant λ. New values are then multiplied 1−λ

before merging them with old values.
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in the scaffolding code necessary to sequence the various events. This scaffold-
ing code was particularly difficult to read because it involved deeply nested and
inverted loops. The nesting arises from the hierarchical nature of the events:
within a given area code, one must detect the exchanges; within an exchange,
one must detect the lines, within a line, one must detect the calls. The inversion
of these loops occurs because when one detects a “begin” event, that is, a new
area code, a new exchange, etc., one has also detected an “end” event, that is,
the last call for the previous area code, exchange, etc. Hence each loop starts
with the response code for the “end” event, followed by the response code for
the “begin” event. This structure makes the loops hard to read because the code
to clean up a piece of the computation precedes the related set-up code in the
program text.

Our primary goal in designing Hancock was to make the stream process-
ing code as transparent as possible; hence we added various abstractions to
provide explicit support for the event-based computational model used in sig-
nature programs. To that end, we reified the notion of an event and introduced
the iterate control-flow abstraction that separates event detection from event
response and makes the scaffolding code implicit. As a result, the Hancock ver-
sions of the original signature programs are much shorter and the control-flow
is very clear. The effect is to highlight the event-response code, which corre-
sponds to the per-entity code that interests the data analysts.

In the following sections, we introduce our abstractions for events, event
detection, and event response.

3.2.1 Describing Events: Multi-Unions. Originally, Hancock included
hard-coded call-detail events. Each piece of a phone number (fields with names
npa, nxx, line) in the logical representation of a call record automatically “came
with” beginning and ending events. The events were triggered by changes in
the field’s values as the computation moved from record to record in the stream.
This model worked well for our original data source. It was expressive enough
to code the original signature programs, it required little work on the part of
the programmer, and it allowed us to get the original applications working in
Hancock very quickly.

As a general solution, however, this model was clearly lacking since it meant
that Hancock programs could manipulate only one type of data. To address
this problem, we introduced a way for programmers to describe the events
associated with each record in a data stream. Because the events of interest for
a given data source are essentially fixed, it made sense to have a declaration
form in which programmers could give names to the various events and specify
the type of value that those events would carry. For example, in the call-detail
case, the line begin event carries the phone number for which the given record
is the first call, while the call event carries the entirety of the call record.
Because each record in the data stream may trigger any subset of the possible
events, we needed to provide values that were collections of events. To allow
such event collections to be computed modularly, we required a way to merge
event collections. Finally, we had to have a way to test if a particular event
belonged to an event collection and if so, to extract the associated value.
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With these properties in mind, we designed Hancock’s multi-union abstrac-
tion. A multi-union declares a set of labels and associated types. Because of
their common usage in Hancock programs, we often refer to these labels as
events.6 As an example, consider the declaration:

munion line_e {: long long line_begin,
wcrLog_t call,
long long line_end :};

This code creates a multi-union type line e to describe the events we need for
the Cell Tower application. A value with this type contains any subset of the
declared labels, including the empty set, which we write {: :}. Each label in
the set carries a value of the indicated type. If l is the current mobile phone
number and c the current wcrLog t call record in a stream, then the expression

{: line_begin = l, call = c :};

creates a value with type line e. This value would describe the events that
occur when the first (but not the last) call record for mobile phone number l
appears in the stream.

Hancock supports a variety of munion operators. For example, if e1 and e2
are multi-union values with the same type, then expression e1:+:e2 produces
a new value that contains the union7 of the labels of e1 and e2. If both e1 and
e2 contain a given label, then e2’s value takes precedence. In addition to the
union operator, Hancock also supports operations for membership test (@), value
access (“.”), difference (:-:), and removal (:\:).

To maintain consistency with C’s general philosophy, we allow program-
mers to access the value associated with a label in a multi-union without first
checking that that label carries a value in the multi-union. In practice, de-
constructing multi-union values with the value-access operator does not occur
frequently. Typically multi-unions are deconstructed within the context of an
iterate statement (cf. Section 3.3), which uses a pattern-matching-like con-
struct to extract only the values actually present in the given multi-union.

3.2.2 Detecting Events. Allowing programmers to separate the events of
interest from the logical representation meant that we had to provide a way for
programmers to describe how to produce those events from the data stream. In
studying the events used in signature programs, it was clear that the events to
be associated with a single record could not be determined by examining the
record in isolation. Some events required looking at the current record and the
one that preceded it, while others required looking at the current record and
the one that follows it. Typically “beginning” events require looking back, while
“ending” events require looking forward. Depending on the events needed for
an application, a program might have to look both ahead and back, or only
ahead, or only back, or in some cases only at the current record. None of our

6Although we designed multi-unions to describe events, they are in fact a general construct, suitable
for many purposes; hence we named their constituents labels instead of events.
7Merge might have been a better name for this operation, since the value associated with a label
in e1 will be lost if the same label appears in e2.
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Fig. 4. Stream with window of type*wcrLog t[3:1]. See Figure 3 for a description of the stream
notation.

sample applications required looking forward or backward an arbitrary number
of records, however.

To allow programmers to calculate the events to associate with the “current”
record from a fixed segment of a data stream, we added the notion of an event-
detection function. Such a function takes as a parameter a window onto the
stream and returns a multi-union that describes the events detected for the
current record in that window (see Figure 4).

A window type allows the programmer to specify statically both how many
records in the stream can be viewed at once and the position of the “current”
record. We chose not to support more dynamic window specifications because
such expressiveness would require a more complicated and expensive imple-
mentation without providing any benefit to the desired applications.

Syntactically, a window is like an array with the added notion of a “current”
record. For example, the declaration

wcrLog_t *w[3:1]

specifies that w is a window of size three onto a stream with records of type
wcrLog t. A pointer to the current record appears in the middle slot of the
window, that is, in w[1]. Slots with lower indices (w[0]) store pointers to records
earlier in the stream; slots with higher indices (w[2]) look ahead to records
appearing later in the stream. The window contains pointers to the stream
elements instead of the stream elements themselves so that when the window
overlaps either the beginning or the end of the stream (or both), the slots with
no corresponding record can be set to NULL.

Given multi-unions and windows, programmers can write event-detection
functions. For example, the Cell Tower application uses the event detection
function shown in Figure 5.

This function compares the previous record with the current one to deter-
mine if a line begin event has occurred. It then compares the next record
with the current one to determine if a line end event has occurred. Function
originDetect then uses the multi-union :+: operation to merge these interme-
diate results with the call event carrying the current record as its value. When
called with the window in Figure 4, the originDetect function generates the
value

{: call = c6, line_end = Oo :}
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line_e originDetect (wcrLog_t *w[3:1]){

wcrLog_t *prev = w[0];

wcrLog_t *current = w[1];

wcrLog_t *next = w[2];

line_e b,e;

if ((prev == NULL) || (prev->origin != current->origin))

b = {: line_begin = current->origin :};

else b = (wline_e){: :};

if ((next == NULL) || (next->origin != current->origin))

e = {: line_end = current->origin :};

else e = (wline_e){: :};

return b :+: {: call = *current :} :+: e;

}

Fig. 5. An event detection function for the Cell Tower application.

The Cell Tower application uses an additional event detection function to pro-
cess incoming calls, called dialedDetect, which is structured similarly, al-
though it reads values from the dialed field of the records in the window.

The runtime overhead of constructing multi-unions and calling event-
detection functions does not significantly contribute to the running time of our
signature programs, whose performance is mostly bounded by I/O and compres-
sion times.

3.3 Consuming a Stream

As in the original signature programs, Hancock’s computation model is built
around the notion of iterating over a stream of transaction records. The code
that implements this computation is the heart of each Hancock signature pro-
gram: it contains the per-entity code that implements the semantics of the sig-
nature. Consequently, it is crucial that this code be clear, concise, and efficient.

Conceptually, this code performs a number of tasks. It must

— identify the transaction stream;
— indicate any desired filter to discard unwanted records;
—specify how to sort the stream;
— indicate the desired event-detection function;
—give the event-response code for all relevant events.

Although it may seem counterintuitive to sort the records in a stream, sort-
ing them is important semantically and crucial to obtaining good performance.
Semantically, sorting by the entity around which signatures are constructed
groups all the data relevant to each entity into a contiguous segment of the
stream. This grouping ensures that events like “the first call for a phone num-
ber” make sense. Performance-wise, sorting by the entity ensures good locality
of access to the persistent data associated with the entities. In practice, the time
required to sort the stream is quickly recovered in reduced stream-processing
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time. In fact, without this locality, signature programs will not run in a timely
fashion [Fisher et al. 2002].

Hancock provides the iterate abstraction to group these pieces into a single
coherent whole with an easily understandable control-flow. This statement has
the following form:

iterate

(over stream expression
filteredby filter predicate
sortedby sorting order
withevents event detection function)

{

body
};

The header specifies the initial stream, a set of transformations to prepare
the stream for computation, and a function to detect events in the trans-
formed stream. The body contains a set of event clauses that specify how to
respond to the detected events. We describe some of these pieces in more detail
below.

The filteredby clause specifies a predicate to remove unneeded records from
the stream. Immediately removing such records improves the efficiency of sort-
ing. It also simplifies event response code since that code can assume that it
will only be given “interesting” records to process. For example, a wireless s
stream may include land-to-cell calls, which are not used to compute signatures
for originating phone numbers in the Cell Tower application. Figure 3(b) shows
a sample wireless call stream after filtering.

The sortedby clause describes a sorting order for the stream by listing the
fields from the records in the stream that constitute the desired sorting key.
For example, the clause

sortedby origin, dialed

produces a stream sorted primarily by the originating telephone number and
secondarily by the dialed phone number. Figure 3(c) shows a sample call stream
after the calls have been filtered and sorted by the originating number. If the
records in the stream do not need to be sorted, as in the architecture described
in Section 2.1, then this clause can be omitted.

The withevents clause specifies an event detection function. Figure 3(d)
shows a sample wireless call stream labeled with events.

The body consists of a sequence of event clauses that specify code to execute
when an event detection function triggers an event. Events that occur simul-
taneously (i.e., in the same multi-union value) are processed in the order they
appear in these event clauses. Given this ordering information, Hancock gen-
erates the control-flow to sequence the response code. The name of each event
clause corresponds to a label in the multi-union returned by the event detec-
tion function. Each event clause takes as a parameter the value carried by the
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void doOrigin(char *streamLoc, cellTower_m m)

{

wireless_s calls = streamLoc;

profile_t p;

iterate

( over calls

filteredby originCellCall

sortedby origin, dialed

withevents originDetect ) {

event line_begin(long long origin) {

initProfile(&p);

}

event call(wcrLog_t c) {

aggregate(&p, c, ORIGIN);

}

event line_end(long long origin) {

profile_t op = m<:origin:>; // Map read operation

m<:origin:> = update(op,p); // Map write operation

}

};

}

Fig. 6. Outgoing phase for the Cell Tower application.

corresponding label. For example, the mobile phone number that triggers the
line begin event is passed to the line begin event clause. The body of each
event clause is a block of Hancock/C code.

As an example, Figure 6 shows the Cell Tower code which processes the calls
made from mobile phone numbers. The function doOrigin, which encapsulates
this pass over the data, contains a single iterate statement that consumes a
wireless call-record stream. It uses the predicate function originCellCall to
remove noncellular calls from the stream. It sorts the filtered stream by the
originating phone number. It uses the function originDetect to detect events
in the sorted stream. The event clauses specify how to respond to the detected
events. Section 4.5 describes the operations that appear in the line end event
response code.

Note that the code in Figure 6 is concise. It is easy to see what calls are
being incorporated into the signatures by looking at the filter function, which
is a key part of ensuring that a given program complies with federal legislation
regarding data use. The control-flow is also easy to understand. The various
events of interest are clearly marked, and for each record, the response code for
each applicable event is executed from top to bottom. Because this structure
highlights event-response code, it allows data analysts to focus on the per-entity
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code when they write new signature programs, which was the primary criterion
in designing both the iterate abstraction and Hancock as a whole.

3.4 Discussion

At various times, we have considered adding more complex stream operations,
such as stream composition, and more sophisticated event processing, such
as selecting only one matching event from each munion, to Hancock. We have
resisted the temptation to add such features because we lack a compelling
application that needs them at this time.

3.5 Related Work

Many systems support operations on streams. We restrict our attention to sys-
tems that either use an event-based model for processing streams or are de-
signed to handle high-volume streams.

3.5.1 Event-Based Processing. Michael Jackson describes a design
methodology similar to the one supported by Hancock’s iterate abstraction
[Jackson 1975]. Using his methodology, COBOL programmers identify the
structure of the input data to an application and then specify the operations to
be performed when processing each piece of that structure. COBOL does not
provide explicit support for this programming model.

AWK [Aho et al. 1979] is a string processing language that is based on
pattern-action pairs. Patterns can be arbitrary boolean combinations of reg-
ular and relational expressions. Although Hancock’s event-detection functions
could be used to implement AWK’s patterns, AWK’s light-weight nature makes
it superior for simple text-file processing. On the other hand, AWK’s string focus
makes it less suitable for processing large amounts of binary data. In addition,
AWK provides little support for managing persistent data over time.

SAX [SAX Project 2002] is an event-based API for processing XML docu-
ments. It converts an XML document into a stream. SAX programmers process
the resulting stream by registering call-back functions for the following set of
events: the beginning/ending of XML documents, the beginning/ending of XML
elements, and groups of characters. SAX also allows programmers to gener-
ate output streams with new events and to build pipelines of event processors.
Unlike tree-based approaches to processing XML, SAX allows programmers to
process XML documents without constructing in-memory data structures for
complete documents. Hancock and SAX share the idea of processing streams
using events, but they proceed in very different ways. SAX provides a light-
weight library that simplifies the process of writing XML applications but does
not provide linguistic support beyond that of the host language. Hancock, on the
other hand, provides much richer programmer support, at the cost of learning
(and using) a new language.

3.5.2 High-Volume Streams. This section describes systems designed
to handle high-volume stream data. The oldest of these systems, Tribeca
[Sullivan and Heybey 1998], predated Hancock. More recently, high-volume
stream processing has become an area of active interest in the database
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community [SIGMOD 2002; VLDB 2002]. Aurora [Carney et al. 2002], Tele-
graph [Hellerstein et al. 2000], and STREAMS [Babcock et al. 2002] are all ex-
amples of systems under development for computing with high-volume streams.
In contrast to Hancock, which has been deployed in production for several years,
these newer systems are in various stages of prototyping. Further experience
is necessary to determine how well these systems will scale. We briefly describe
the focus of each of these projects.

Tribeca [Sullivan and Heybey 1998] is a system for monitoring network traf-
fic. It provides a query language that includes operations for separating and
recombining streams, operations for computing moving-aggregates over win-
dows, and a restricted form of join. The separation and recombination operators
might be used, for example, to convert a packet-level stream into a session-level
stream. This conversion is done by splitting the packet-level data into separate
streams (one for each session), converting each substream into a single record
for a session, and then recombining the session records into one stream. Tribeca
provides much more support for describing and manipulating streams than
Hancock does, but it provides less support for computing with the individual
elements in a stream.

Aurora [Carney et al. 2002] and Hancock are complementary. Aurora is a
system designed to monitor stream data. It provides a general framework for
producing architectures like the one described in Section 2.1. It supports queries
over multiple streams of data and allows queries to join and leave the system
over time. One can view the queries combined with the streams as a graph. At
the end of any path in the graph is an application that consumes the resulting
data; that application could be a Hancock program.

Telegraph [Hellerstein et al. 2000] is an adaptive dataflow system designed
to compute continuous queries over streams of data. PSoup [Chandrasekaran
and Franklin 2002], a system built on top of Telegraph, expands upon this model
to allow the query mix to change over time. This system can be used to compute
aggregates from stream data, such as how many music downloads occurred in
a given subnet within the last hour. Like Aurora, Telegraph is not designed to
provide direct support for integrating stream data into persistent structures,
the essential operation in computing signatures.

The members of the STREAMS project [Babcock et al. 2002] are developing
a system for executing continuous queries over multiple streams. The focus of
this project is to develop fundamental models of stream data systems and effi-
cient methods for managing resources in such systems. At present, their model
explicitly excludes queries that can modify persistent data during computation.
This restriction, which may be removed over time, eliminates signatures as a
possible application for STREAMS.

4. PERSISTENT DATA

Given Hancock’s various stream abstractions, we next had to develop mecha-
nisms to store the computed signatures persistently. We approached this de-
sign problem in the same way we approached designing streams: we met with
the domain experts frequently and studied the existing C-based programs to
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understand precisely what they were computing and why. This process enabled
us to come up with a set of design requirements for persistent data.

The overarching requirements were efficiency of the resulting programs, data
safety, and fast prototyping at scale. This last point deserves further elabora-
tion. Our users want to experiment with their ideas at scale. They are not inter-
ested in writing programs that use only a small amount of data because such
applications may not be feasible on larger data sets. However, they do not want
to waste significant time in coding an application that produces uninteresting
data in the end, either. Hence, they want the ability to put together reason-
ably efficient prototypes for computations at scale with little effort. Once an
idea has proven itself, though, they are willing to invest (some) effort to exploit
application-specific knowledge to tune the performance of their applications
and to craft specialized persistent types if necessary.

As our experience with signature programs grew, the design of Hancock’s
support for persistent data evolved from a single mechanism for supporting
signature collections to a collection of mechanisms, which we call Hancock’s
persistent data system.

In this section, we discuss the persistent data requirements for signature
applications. We then review related work, concluding that none of the exist-
ing solutions adequately meet the application requirements. Next, we describe
the persistent data needed by the Cell Tower application to make the discus-
sion more concrete. Finally, we present the details of Hancock’s persistent data
mechanisms.

4.1 Design Requirements: Maps

The primary data structure used in the original signatures programs persis-
tently associated fixed-sized signatures with telephone-number keys. The per-
formance of these structures was crucial to program performance. Typical ap-
plications stored 2 bytes for each of roughly 400 million keys. On disk these
signature collections required approximately 2 Gbytes. The data analysts very
much wanted to expand the size of the signature associated with each phone
number, but performance considerations prevented them from doing so.

The operations necessary over these structures were quite limited: reading
and writing the values associated with single keys, copying an entire structure,
and iterating over the collection of all keys with values. The single-value read-
ing and writing operations were used during the daily stream processing. The
analysts copied the entire structure once a day and then used the fresh copy
as the basis for that day’s processing. This practice provided a coarse-grained
rollback mechanism. If a failure occurred during processing, they discarded the
modified copy and restarted the computation with (a fresh copy) of the previous
day’s collection. The analysts iterated over all the keys in a collection to “age”
the signatures in the collection, that is, to modify the values to indicate that a
day had passed.

Time constraints on these operations were fairly tight. The structures had
essentially three modes of use: the daily signature computation, worklist selec-
tion, and web-based querying of the values associated with single keys. In the
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daily computation, the signature program consumed a 5- to 10-Gbyte stream
of call-detail records, in the process typically updating roughly 20–30% of the
signature values in the collection, although some applications updated all of
their signature values every day. The daily processing for a single application,
including sorting the stream and copying the persistent structures, could take
no more than a couple of hours so that all the signature programs would have
time to complete (possibly with restarts to handle errors) before the next day’s
data arrived. Achieving this performance required carefully managing disk ac-
cesses to maximize locality of reference. In worklist selection, an analyst feeds
a list of several hundred thousand phone numbers to a selection program and
needs to have the results within a few minutes. Finally, in web-based querying,
an analyst types a phone number into a web page and expects to have the asso-
ciated signature in a few seconds. This requirement precludes course-grained
compression techniques to improve processing performance because it can take
hours to decompress gigabytes worth of data.

Another issue that arose in talking with the data analysts was the question
of data safety. The scale of the data makes data safety crucial because it makes
detecting errors extremely difficult. How does one determine that all the data
in a large signature collection are correct? Because this problem is so difficult,
it is essential that a persistent data system provide mechanisms to prevent
inadvertent data corruption wherever possible and to stop corrupt data from
tainting other data.

In response to these requirements, we designed the Hancock map abstraction,
described in Section 4.5. This abstraction provides the operations described
above, meets the indicated performance constraints, enabled larger signatures
by improving upon the on-disk representation used in the original C programs,
and where possible, supports data safety.

4.2 Design Requirements: Directories and Pickles

After building the first version of Hancock and porting the original production
signatures to the new system, we realized that these programs needed addi-
tional abstractions for persistence. In particular, we needed a way to group
related information persistently and we needed a way to support custom per-
sistent structures that could be split across memory and disk.

Two related observations motivated the persistent grouping mechanism.
First, the names of maps were often used to encode auxiliary information, such
as the date of processing and the source of the data. Second, many applications
involved a collection of maps and other structures that together constituted
the persistent data for the application. An abstraction that permitted users to
manipulate related data as a single unit would allow auxiliary information to
be stored with a map without arcane naming conventions and would reduce the
chance of errors from improperly mixing data from different time windows or
from different applications. Furthermore, providing automatic serialization for
basic C-types would mean that programmers would be able to store the auxil-
iary information quickly and easily. These considerations led us to the Hancock
directory abstraction, described in Section 4.6.
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The need for custom, partially memory-resident persistent structures be-
came apparent in studying the auxiliary structures used in some signature
applications. Some of these structures were quite large and could not fit com-
fortably in memory, but they were not good candidates for the map abstrac-
tion. This consideration led us to the Hancock pickle abstraction, described in
Section 4.7.

4.3 Related Work

Many other languages provide support for persistent data. This support typ-
ically falls into one of three categories: pickle-based approaches, interfaces to
databases, and orthogonal persistence systems. We briefly discuss each of these
approaches.

The notion of pickling data structures dates back at least to Modula-3
[Nelson 1991], which provides pickles as a way to represent a value as a stream
of bytes. Writing a value as a pickle and then reading it back produces a value
“equivalent” to the original value. Similar mechanisms have been developed for
other languages including C++ [Wang 1998], Java [Riggs et al. 1996], Python
[van Rossum 2001], and SML-NJ [Appel 1990]. These byte-stream pickle mech-
anisms provide automatic persistence, but they do not support data structures
that reside partially in-memory and partially on-disk. As a result, byte-stream
pickles cannot be used to implement persistent data structures of the scale
typically found in Hancock applications.

A second common approach to supporting persistence in a programming lan-
guage is to provide an interface to a standard relational or object-oriented
database. We rejected this approach for Hancock because we did not believe
that a traditional database could handle the high-percentage of updates gener-
ated during daily stream processing [Belanger et al. 1999; Fisher et al. 2002;
Sullivan and Heybey 1998; Babcock et al. 2002; Carney et al. 2002; Hellerstein
et al. 2000]. Also, we were concerned that such an approach would not have
integrated cleanly into the rest of Hancock.

Orthogonal persistence systems, such as Oberon-D [Knasmüller 1997],
PJava/PJama system [Atkinson et al. 1996], and Thor [Liskov et al. 1999],
represent a third approach to persistence.8 Persistence in such systems is in-
dependent of the type of the data being preserved (the orthogonality property).
The system automatically determines if a given piece of data must be persis-
tent by starting from a collection of persistent roots and making all reachable
data persistent (the transitivity property). Finally, in such systems there is no
syntactic indication as to whether a given variable is persistent or not (the inde-
pendence property). This approach is akin to automatic memory management,
which can simplify programming, but at some performance cost. Because of
the the tight space and time requirements of our domain and the absence of
evidence that automatic techniques can work on large scale data, we adopted
a more explicit technique for persistence in Hancock.

8M. Knasmüller [1997] discussed a variety of persistent object systems—ODE, GemStone, O2, and
ObjectStore—and how they relate to each other.
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#define TOPN 5

typedef struct {

unsigned int tower[TOPN];

float count[TOPN];

float other;

} profile_t;

Fig. 7. C struct for Cell Tower profiles.

4.4 Cell Tower Application: Persistent Data

In Section 2.2, we introduced the Cell Tower application, which tracks for each
MPN the five most frequently (and most recently) used cell towers and another
value that captures the frequency with which calls placed to/from the MPN do
not involve the top five cell towers. Here we review the data structures needed
to implement this application because we will use them to explain Hancock’s
persistent types in the following sections.

The Cell Tower application tracks profiles of type profile t (cf. Figure 7) over
time. It uses a Hancock map, called cellTower m in the following, to associate
each mobile phone number with its profile persistently.

In the profile t struct, we use an unsigned integer to represent cell tow-
ers. In the wireless call-detail stream, however, cell towers are represented as
variable-length strings. Because types with fixed size are much more convenient
for both computation and storage, we use a hash table to associate an (unsigned)
integer hash key with each string and store the hash key in the profile instead of
the string. Because the profile data is persistent, the mapping between a given
hash key and a given cell tower name must be persistent as well. Hancock does
not support a built-in persistent hash table type, so the Cell Tower application
uses a user-defined pickle type (pHashTable p) to construct one.

We want to reflect the close semantic coupling between the signature col-
lection and the persistent hash table in the application program to ensure
that we use the two kinds of persistent data properly. We will use a directory
(cellTower d) to group the signature collection and the persistent hash table.
In addition, to help identify and preserve the integrity of the application data,
we will add a field (with type char *) to the directory tagging the data with the
date of its most recent update.

In summary, this application requires three abstractions for representing
persistent data: a map to associate signatures with keys (cf. Section 4.5), a
pickle to describe the persistent hash table (cf. Section 4.7), and a directory to
group the most-recent-update date, the signature collection, and the persistent
hash table (cf. Section 4.6). The rest of this section describes the details of these
data structures.

4.5 Signature Collections

The signature applications that were our original class of applications need a
highly efficient persistent data structure for associating values with keys, so
Hancock provides a persistent data type, called maps, to support these appli-
cations. Hancock maps meet the tight performance requirements in part by
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providing only a limited set of operations: retrieving or updating the value
associated with a key, removing a key from the map, asking if a given key
has an associated value, and iterating over a range of keys with stored val-
ues. Hancock maps do not support transactions, locking, secondary indices, or
declarative querying to avoid the associated overhead. In the remainder of this
section, we describe maps in more detail.

4.5.1 Map Type Declarations. The programmer controls what a map stores
using the map type declaration, while Hancock controls how the map stores its
data by providing the in-memory and on-disk representations. The Cell Tower
application, for example, uses the following declaration:

map cellTower_m {
key 0..9999999999LL;
split (10000, 100);
value profile_t;
default CT_DEFAULT;
compress ctSqueeze;
decompress ctUnsqueeze;

};

This declaration defines the map type named cellTower m. We describe each of
the clauses in this declaration in turn.

Keys typically represent some form of identification number, for example,
telephone numbers, credit card numbers, or IP addresses. All keys are repre-
sented using the C type long long.9 The key clause specifies the range of keys
for the map. The example declaration specifies that valid mobile telephone
numbers fall between 0 and 9999999999.

Important performance issues for accessing map values are I/O and decom-
pression times. The split specification allows programmers to tune these times
by setting the block and stripe sizes. Intuitively, blocks serve as the unit of I/O,
while stripes serve as the unit of compression. The first number in the split
clause indicates the number of keys in a block. The second number specifies
how many keys constitute a stripe. The split clause in the example specifies
that there are 10,000 keys per block and 100 keys per stripe for cellTower m
maps. An earlier paper described the implementation of maps in detail and dis-
cusses efficient key decompositions for different data access patterns [Fisher
et al. 2002].10

The value clause specifies the type of data to be associated with each key.
This type can be any C type of statically known size. The Cell Tower application
uses profile t, the C struct defined in Section 4.4, as its value type. We refer
to a key with a value in a given map as an active key and to an active key and
its associated value as an item.

9We chose to use C’s long long type to represent keys because representing telephone numbers
requires more than 32 bits. The size of the key data type does not effect the size of a map on disk
or in memory.
10Earlier versions of Hancock encoded both the range and split information into the key specifica-
tion. Hancock now separates this information to simplify the specification and reduce errors.
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Thedefault clause specifies a value to be returned when a program requests
data for an inactive key. Such requests are relatively frequent because large
transaction streams often contain data for fresh keys, that is, whenever a new
telephone number, credit card number or IP address is issued. Consequently,
assigning meaningful values to new keys is an important element in Hancock
programs. Isolating the default construction in the map declaration allows code
that queries a map for the value associated with a given key to assume that it
always receives a meaningful value, even for fresh keys. This assurance greatly
simplifies transaction processing code (cf. Section 3.3).

Defaults come in two forms. A default may be a constant, as is the Cell Tower
application, or a function. A constant default must be an expression that has
the value type of the map. For the cellTower m map, the default profile t
CT DEFAULT specifies a constant as the default value for the cell-tower hash
values and zeros for the counts. A function default is specified as the name of
a function that computes a default value given a key as an argument. Such
defaults are often used to query backup data sources.

Hancock allows programmers to specify functions to compress and decom-
press values before they are stored on disk because programmers can often ex-
ploit domain-specific knowledge to produce better compressors than the generic
ones that Hancock supplies. Early prototypes for a given application may use
default compression; once the ideas are validated, analysts may spend time
writing custom compression functions to improve the performance of a proven
application. The optional compress and decompress clauses name functions
that compress (or decompress) a value of the map type.

4.5.2 Map Variable Declarations. Once the programmer has specified
a map type, variables can be declared to have that type using C syntax:
cellTower m cellData. In addition, as noted earlier in Section 3.1, Hancock
provides initializing declarations to allow the programmer to connect program
variables to data on-disk.11 An initializing declaration augments a standard C
declaration with qualifiers and a location. For example, the declaration

new cellTower_m out = "cellData.current/ctOut";

augments the standard C declaration with a string, "cellData.current/
ctOut", which specifies the location of the on-disk representation of the map,
and with a qualifier, new, which indicates that the map should not exist al-
ready on disk. As in stream variable declarations, the location is a UNIX path
expression for the location of the data, in this case the map, on-disk.

Unlike stream data, maps are write-able. To promote data safety, Hancock
provides three qualifiers for maps (and other persistent type declarations):
const, exists, and new. These qualifiers help protect data by conveying the
programmer’s expectations about how a map will be used. The runtime sys-
tem generates an error and halts the program when a property specified by
a qualifier is violated at runtime. The const qualifier indicates that the map

11Hancock also supports a mechanism, called sig main, to use command-line arguments to connect
persistent data structures to their in-memory variable names.
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event line_end(long long origin) {

profile_t op = ct<:origin:>;

ct<:origin:> = update(op,p);

}

Fig. 8. Map operations.

will not be updated during the computation, regardless of the program vari-
able used to manipulate the structure. Unlike the const qualifier of plain C,
the const qualifier in Hancock’s initializing declarations cannot be cast away.
The exists qualifier guards against inadvertently starting a computation from
an empty persistent structure, producing the wrong data and wasting signif-
icant time in the process. Its presence indicates that the specified map must
exist on disk at runtime. The qualifiers const and exists can be combined
to indicate that the map will not be updated and must exist on disk. The new
qualifier protects against inadvertently using data from an existing structure
instead of creating a new one, potentially destroying valuable data. This qual-
ifier indicates that the specified map must not exist at runtime. If the pro-
grammer does not specify either exists or new, then the runtime system as-
sumes that the programmer does not care whether the map exists. In this case,
the runtime system uses the existing map if one exists or creates a new one
otherwise.

Hancock’s qualifiers help programmers protect their data, but the qualifiers
would have been more effective had maps been read-only by default with a
writable qualifier instead of const. This alternative design would have pro-
tected data by default.

4.5.3 Map Operations. Because the signature programs we studied re-
quired only a few operations, Hancock provides only limited operations for
manipulating individual items in maps: read, write, remove, test active key,
and test key range. Hancock’s indexing operator, written <: . . . :>, can be used
as an r-value (for reading) or as an l-value (for writing). Hancock’s map remove
operator, written \<: . . . :>, removes an item from the map. Hancock’s test ac-
tive key operator, written @<: . . . :>, queries a map to determine whether the
key is active, that is, whether the key has a value associated with it in the map.
It is a runtime error to pass an out-of-range key to any of these operations.
To avoid triggering this runtime error, programmers can test if a given key is
within the static key range of a map before performing other operations. In
particular, the test key range operator, written m?<:k :>, returns true if the
key k is within the declared key range for map m.

As an example, Figure 8 contains the code for responding to line end events
in the Outgoing phase of the Cell Tower application. It first reads the value for
the key origin from map m, updates that value, and then writes the updated
value into map m for the key origin.

In addition to the operations that manipulate individual items, Hancock
also provides an operation that converts a map into a transaction stream with
one stream entry for each active key from within a given range. The Hancock
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expression

ct[startKeyExpr..stopKeyExpr]

generates a stream of active keys from map ct that fall between the values of
the expressions startKeyExpr and stopKeyExpr inclusive.

Such map-to-stream expressions make it easy to write programs that update
every value in a map or that evaluate queries that characterize the data. For
example, the Cell Tower application uses map iteration to age each cell tower
count every day, a process that allows new information to replace old infor-
mation gradually. An auxiliary program for the Cell Tower application might
generate a histogram that plots the number of MPNs with each possible num-
ber of recently-used cell towers by iterating over the map and assigning each
active MPN to a histogram bucket based on its profile.

To support the coarse-grained rollback mechanism used to provide fault tol-
erance for signature programs, Hancock supports a generic persistent copy
operator :=: for maps and the other persistent structures. The statement

newCellData :=: oldCellData

replicates the persistent data structure associated with variable oldCellData
and associates newCellData with the copy. The variable newCellData should al-
ready have been connected to an on-disk location. The implementation ensures
that any in-memory changes to oldCellData made prior to the copy operation
are materialized in the copy. Changes made to oldCellData after the copy are
not materialized in the copy.

4.6 Groups of Persistent Data

Conceptually, Hancock’s directories correspond to Unix directories on disk and
to (pointers to) C structs in memory. Each field corresponds to a file on disk
(or a subdirectory in the case of a field that is itself a Hancock directory) and
to a field in a C struct in memory. This structure allows us to use Unix tools
to manipulate and examine the various components of a Hancock directory
on disk, while using familiar C syntax to manipulate them in memory. The
in-memory structure is initialized whenever an initializing declaration for the
directory is executed. The in-memory representation is initialized from the on-
disk representation if one exists, or from default values if not. Changes to the
in-memory structure are propagated automatically to disk before the associated
program terminates (precisely when is unspecified).

The following declaration defines the directory type cellTower d used in the
Cell Tower application:

directory cellTower_d {
pHashTable_p ctHashTable;
compressionTable_p ctab;
cellTower_m ctOut;
cellTower_m ctIn;
char *lastUpdated default "never";

};
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This declaration introduces a new type cellTower d that groups together a
persistent hash table (the type pHashTable p is a pickle defined in Section 4.7),
a compression table, two cell tower maps (one for outgoing calls, another for
incoming calls),12 and a string denoting the date of the last update to the data
in the directory. It also introduces names for the group members (ctHashTable,
ctab, ctOut, ctIn, and lastUpdated).

For each Hancock directory type, the Hancock compiler generates the C struct
to store the in-memory representation of the directory. For the cellTower d
example, each value is represented as a pointer to a C struct defined as follows:

struct cellTowerDirectoryRep {
pHashTable_p ctHashTable;
compressionTable_p ctab;
cellTower_m ctOut;
cellTower_m ctIn;
char *lastUpdated;

};

In general, directory fields may have Hancock map, pickle, or directory types
or almost any C type of statically known size, including arrays and structs.13

Hancock also permits fields with type char *, which it treats as strings.
Each field has its own in-memory and on-disk representation, which is deter-

mined by the type of the field. The representations used for fields with Hancock
map, pickle, and directory types are determined by the underlying type. For
fields with standard C types, Hancock determines the representations. In mem-
ory, Hancock uses the standard C representations; on disk, it uses an ASCII-
based representation, which allows programmers to inspect the values easily.
If Hancock’s representation is not efficient enough for a particular field, say
for a large integer vector, then programmers can use a pickle to customize the
representation. This flexibility allows programmers to build their applications
quickly using Hancock’s built-in persistent types, while making it easy to switch
to a more efficient representation later.

Fields with standard C types can specify an optional default value, which
Hancock uses to initialize the field when creating a new directory. The type of
the default must match the type of the field. For example, the lastUpdated field
is declared to use the string "never" as a default.

4.6.1 Discussion. The design of Hancock’s directory mechanism is a com-
promise between efficiency and flexibility. UNIX directories provided a conve-
nient grouping and naming mechanism that was familiar to Hancock program-
mers and easy to manipulate using standard tools. Using one file per field makes
it easy to integrate other Hancock types, such as maps and pickles, into directo-
ries because the implementation of those types need not understand anything
about directories. Finally, providing an ASCII representation for standard C

12Separating the inbound and outbound cell usage into two maps is a design decision. An alternative
design might have one map with an array of two profile t’s as its signature type.
13Hancock does not support long doubles.
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typedef struct {

hashTable *ht;

char readOnly;

char updated;

} pht_rep;

int initPHT(Sfio_t *fp, pht_rep *data, char readOnly);

int flushPHT(Sfio_t *fp, pht_rep *data, char close);

pickle pHashTable_p {initPHT => pht_rep => flushPHT};

Fig. 9. Pickle type for persistent hash tables.

types allows programmers to add extra information to their data easily and
quickly, while retaining the flexibility to use a more efficient representation
should that be required.

4.7 User-Defined Persistent Data

Directories provide a simple form of persistence for standard C types, while
maps provide an efficient mechanism for associating data with keys. But as we
noted earlier, it is impossible to know in advance all the persistent data struc-
tures that might be needed by Hancock applications. We designed Hancock’s
pickle mechanism to provide programmers with a way to design custom persis-
tent data structures that integrate smoothly with the rest of Hancock’s persis-
tent data system, in particular, with directories and initializing declarations.
We also designed pickles to support large structures, which requires that they
permit data structures that reside partially in-memory and partially on-disk
and that they introduce minimal overhead. To ensure that pickles were suf-
ficiently expressive, we set as a goal that programmers could code maps as
pickles.

To define a pickle, the programmer uses the pickle declaration to specify
the name of the new pickle type, the in-memory representation of the type,
and a pair of functions: one for initializing the in-memory representation from
the on-disk representation and another for writing in-memory changes back
out to disk. Figure 9 shows the code for the pHashTable p persistent hash
table.

The initialization function fills the in-memory representation from the con-
tents of the file containing the on-disk representation. The runtime system
opens the file and verifies any qualifiers that were specified in the declaration.
The initialization function is responsible for verifying that the contents of the
file have the expected format and raising an error if they do not. If the file is
empty, the function must either generate initial values or raise an error, as
appropriate.

To permit the programmer to define partially memory-resident structures,
the runtime system does not close the file associated with a pickle until it
deallocates the pickle. Consequently, the initialization function for the pickle
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can save the file pointer in the in-memory representation of the pickle.
Whenever an operation on the pickle requires data not currently in mem-
ory, the pickle implementation can use the file pointer to load the appropriate
data.

The write function flushes in-memory data to disk so that this data may
be preserved across program executions. In general, the runtime system calls
this function when closing the pickle prior to program termination. To protect
persistent data, however, the runtime system never calls this function when
the associated pickle is declared to be const in its initializing declaration.

Hancock provides only the copy operation on pickles, which it implements by
calling the write function of the source pickle to flush any in-memory changes
to disk, copying the associated file on disk, and then using the read operation
to initialize the destination pickle from the data on-disk.

The pickle designer is responsible for providing all other operations on the
pickle by writing functions that take values of the pickle type (i.e., pointers to
pht rep structs) as arguments. For example, the code

int insertPHT(pHashTable_p pht, char *s, unsigned int *h){
if (!pht->readOnly){
pht->updated = 1;
return hashInsert(pht->ht, s, h);

} else
return READ_ONLY_ERROR;

}

inserts a new value into a persistent hash table and stores the associated hash
code in variable h.

4.7.1 Discussion. Hancock’s pickle model is very lightweight. It simply
provides a mechanism to guarantee that a data structure is initialized before
the first use and flushed back to disk on program termination. These guaran-
tees along with the ability to package pickles in directories make them quite
useful while introducing minimal overhead.

Hancock’s pickles were designed to allow programmers to implement data
structures, such as maps, that should not be materialized completely in-memory
upon initialization. This approach allows applications that use only a small
part of a data structure to avoid paying the cost of rebuilding the whole data
structure in memory. Byte-stream pickles have no provision for partially mate-
rializing a data structure.

5. PARAMETERIZED TYPES

We implemented and used for several years the streams, maps, directories, and
pickles described in the previous sections. While working with these programs,
we identified several problems with the design described thus far.

First, it was not uncommon for the function constituents of the various types
to rely on global variables to access and update information. For example, the
stream declaration that maintains a hash table mapping between cell tower
names and fixed-width representations of those names had to access the hash

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 2, March 2004.



Hancock: A Language For Analyzing Transactional Data Streams • 331

table as a global variable. Similarly, default functions for maps used global vari-
ables to access their back-up data sources; compression functions used global
compression tables. This practice suffered from the usual weaknesses of abus-
ing global variables.

Second, we saw a proliferation of types that differed only in small ways. For
example, as data analysts designed larger signatures in Hancock, it became
desirable to parallelize some applications by partitioning the maps into smaller
maps with contiguous key ranges. These partitioned maps might be accessed
separately, for updating for example, or they might be accessed as a group, for
selection purposes.

Because key ranges are a part of map types, this practice led to a number
of map type declarations that differed only in their key ranges. Figure 10 con-
tains a collection of map types (part0 m through part3 m) that illustrates this
problem. The programmer could choose to use a single type for the partitions,
such as the type part overlay m, but this approach has two problems. First, it
would waste space because the map representation contains an index that uses
space proportional to the size of the key range. Second, it would lose some of
the benefits of Hancock’s dynamic key range checks because keys that are valid
for the full range would pass the check even though the intended range for a
given partition might not include the key. A simple bug that miscalculated the
partition associated with a key would be difficult to detect.

A related problem is that the programmer had to choose between replicating
auxiliary functions that manipulated the partitioned map type or using an
overlay type and casting to work around the limits of our type system.

In response to these observations, we added a parameterization mechanism
to Hancock’s stream, map, directory, and pickle abstractions. When declaring
these types, programmers can specify a list of formal parameters that are in
scope throughout the type declaration. The corresponding actual parameters
are supplied in initializing declarations.

For example, the following refinement of the wireless s stream takes a per-
sistent hash table as a parameter:

stream wireless_s(pHashTable_p pht) {
getValidCall(: pht :) : Sfio_t => wcrLog_t;

};

The notation “(: pht :)”14 indicates that expression pht should be passed to
the function getValidCall.

Assuming that my pht has type pHashTable p, the following initializing dec-
laration connects my pht with the stream calls:

wireless_s calls(: my_pht :) = "data/call-detail.current"

All invocations of the translation function getValidCall for the stream calls
receive as a parameter the persistent hash table my pht. The translation func-
tion uses this table to convert the variable-width cell tower names into integers
instead of making a reference to a global variable.

14We use the “(:. . . :)” notation for type parameter actuals to avoid a parsing ambiguity.
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#define PARTSIZE MAXKEY/4

map part0_m {

key (0..PARTSIZE);

value int;

default 0;

}

map part1_m {

key (PARTSIZE+1..2*PARTSIZE);

value int;

default 0;

}

map part2_m {

key (2*PARTSIZE+1..3*PARTSIZE);

value int;

default 0;

}

map part3_m {

key (3*PARTSIZE+1..MAXKEY);

value int;

default 0;

}

int countActive0(part1_m m) { ... }

int countActive1(part2_m m) { ... }

int countActive2(part3_m m) { ... }

int countActive3(part4_m m) { ... }

(a) Example of partitioned map types and auxiliary functions.

map part_overlay_m {

key (0..MAXKEY)

value int;

default 0;

}

int countActive(part_overlay_m m) { ... }

(b) Example overlay type and auxiliary function.

Fig. 10. Partitioned map types and auxiliary functions.

Using the same notation, programmers can parameterize maps, directories,
and pickles. For example, the following map is parameterized by a compression
table pickle and a pair of long long values that specify the upper and lower
bounds for the key space for the map:
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map cellTower_m(compressionTable_p ctab,
long long minKey, long long maxKey) {

key (minKey .. maxKey);
split (10000, 100);
value profile_t;
default CTM_DEFAULT;
compress ctSqueeze(:ctab:);
decompress ctUnsqueeze(:ctab:);

};

In general, parameters may be used in the expressions specifying the key
ranges, the splits, and expression defaults. They may also be passed as extra ar-
guments to default functions and to compression and decompression functions.

Because directories serve to connect related elements, we allow earlier fields
in a directory to be in-scope for later fields. This cascading means we can tightly
couple related persistent structures. For example, the following directory passes
its compression table ctab to the cell tower maps:

directory cellTower_d(char * defaultString) {
pHashTable_p ctHashTable;
compressionTable_p ctab;
cellTower_m outMap(:ctab, MINKEY, MAXKEY:);
cellTower_m inMap(:ctab, MINKEY, MAXKEY:);
char * lastUpdated default defaultString;

};

This coupling ensures that after an initializing declaration such as

cellTower_d cellTowerData(:"never":) = "data/cellTower.current";

the compression table ctab has been initialized and passed to the two maps.
Type parameters are associated with program variables using initializing

declarations, but once data on disk has been connected to a program variable,
the runtime system supplies the parameters when needed. As a result, the pro-
grammer uses the unparameterized version of the type for function argument
types. For example, a function that takes a cell tower directory as an argument
simply uses the type cellTower d. This design allows Hancock programmers
to get the benefit of the parameters—tighter dynamic checks and fewer global
variables—without having to define multiple instances of the same function.

Hancock’s type parameters share some properties with statically sized arrays
in C. In C, a programmer can declare an integer array of size 10 and then pass
the array to a function that expects a pointer to an integer. This allows the
programmer to use one function for many different array sizes just as using
the unparameterized version of the Hancock type allows the programmer to
pass maps with many different key ranges to a single function. One major
difference between this mechanism in C and Hancock’s type parameters is that
type parameters in Hancock are sticky, that is, a map does not lose its key-range
information when it is passed to a function.

To summarize, Hancock’s type parameters allow a programmer to associate
information with data dynamically when program variables are initialized.
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Once the connection between a variable and data is made, the programmer can
use the unparameterized version of the type because this information “sticks”
with the data and is passed by the runtime system to the appropriate dynamic
checks or user-supplied functions as needed.

6. IMPLEMENTATION

In this section, we give a brief overview of our implementation of Hancock.
The Hancock compiler translates Hancock code into C. It invokes a platform-
dependent C compiler to convert the resulting C code into machine code. Finally,
it links this code to the Hancock runtime system to produce an executable.

To implement the translation, we modified CKIT [Chandra et al. 1999], a C-to-
C translator written in ML that was designed to facilitate the implementation of
C-based domain-specific languages. Our modifications include extending CKIT’s
YACC-based grammar with Hancock-related productions, using hooks in CKIT’s
parse-tree representation to specify representations for Hancock forms, and
providing implementations for call-back functions that translate the extended
parse tree into CKIT’s abstract-syntax for C. Currently, we do not use CKIT’s hooks
for extending its abstract syntax. During the translation from the extended
parse tree to the abstract syntax, we typecheck the various Hancock forms.
After translation, we use CKIT’s pretty-printer to produce C code.

The Hancock runtime system, which is written in C, manages the runtime as-
pects of Hancock’s pickles, maps, directories, and streams. It locates and opens
each of the files and directories associated with such values. It allocates the
space to hold their in-memory representations. It calls type-specific read func-
tions to initialize these representations and write functions to flush changes
to disk. For pickles, the programmer supplies these read and write functions.
For maps, the runtime system itself provides them. For directories, the compiler
constructs them from directory declarations. For streams, the programmer sup-
plies the read function, but no write function is necessary because streams are
(currently) read-only.

In addition to the above roles, the runtime system provides the implemen-
tation for maps, which are essentially multilevel tables [Gupta et al. 1998;
Lampson et al. 1999; Huang et al. 1999]. The compiler translates the source-
level map operations described in Section 4.5.3 into the corresponding opera-
tions in the runtime system. An earlier paper provides a more detailed discus-
sion of Hancock’s map implementation [Fisher et al. 2002].

7. EXPERIENCES

In this section, we describe our experiences with Hancock programs in practice.
We rewrote the original domestic long-distance signature programs in Hancock.
These Hancock programs have been running every day in production for the
past four years. Unlike the original C programs, the Hancock versions are easy
to check periodically to ensure that they are compliant with current federal
legislation because the Hancock programs are shorter and better organized.
The Hancock programs are also easy to update in response to changes in the
transaction data. For example, updating the programs to make them aware
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that area codes 866 and 877 had become toll-free required changing only two
lines of one header file and recompiling the programs. Currently, all of AT&T’s
domestic long-distance signatures are written in Hancock.

In addition to supporting the original applications better, Hancock’s domain-
specific abstractions and improved performance15 enabled data analysts to craft
new kinds of signatures. When analysts used C directly, they were able to
store only two- to four-byte signatures. Because of this limited space, they
had to make very rough approximations. Although this rough data was very
useful for certain kinds of marketing applications, it was not suitable for many
other kinds of applications, notably fraud detection. Hancock’s abstractions and
their efficient performance enabled analysts to build signatures containing over
100 bytes. With that level of detail, analysts could store sufficiently precise in-
formation to enable new applications previously thought to be infeasible.

Most existing Hancock programs manipulate long-distance call-detail data
because the data analysts we work with focus on that domain. However, nothing
in Hancock is specific to this domain; Hancock gives programmers full control
over the description of their data sources. People have used Hancock to ana-
lyze data from various sources: wireless call records, calling-card call records,
telephone numbers, TCPDUMP data, IP addresses, and even referee reports.

8. FUTURE WORK

Although the current design of Hancock works well for the most part, there are
three areas that we would like to improve:

—Variable-width data. We would like to extend the design of Hancock to fa-
cilitate signature computations over variable-width data sources. For exam-
ple, we would like to be able to build applications that process a stream of
variable-width web-log records to compute signatures for the URLs men-
tioned in the stream. Currently, we can program these applications by using
parameterization and a persistent hash table to convert the variable-width
data into a fixed-width representation, but the resulting program structure
is not as clean as we would like. A further goal would be to support variable-
width signatures within maps. This problem seems harder, as it raises the
question of memory management. Is the programmer or the runtime sys-
tem responsible for managing the memory returned in response to map read
operations?

—Built-in compression. Currently, Hancock’s built-in compression functions do
not provide good compression. They are fast, but do nothing beyond putting
the data into a machine-independent format. Conversely, the programmer
can supply compression functions with a much better compression ratio, but
writing such functions is difficult and error-prone. We would like to investi-
gate techniques for providing better automatic compression.

—Declarative stream descriptions. One of the most tedious parts of writing a
Hancock application is in writing the stream description (if one does not

15Isolating the map implementation from its uses allowed us to experiment with various imple-
mentations. This experimentation led to a more compact representation.
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already exist), particularly if the stream is in ASCII. The parsing code typi-
cally uses C’s scanf function, with its %c, %d, %u, etc. conversion operations.
Such code is slow and difficult to get right, and often contains errors that are
machine-dependent, for example, errors that manifest themselves only on
big-endian machines, or only when word sizes are 64-bits. Also, it is tedious
to handle all the error cases, so often the programs only handle “correct” data,
evolving over time to handle the error cases that have been seen. We would
like to provide a way for programmers to describe the data declaratively and
then use a tool to generate a Hancock stream description (and potentially a
multi-union and an event detection function).

9. CONCLUSIONS

The volume of data in many transactional data streams is overwhelming. But
this challenge provides an opportunity for data mining research to enter a new
area. We believe that Hancock is a valuable tool for exploiting this opportunity.

Hancock has allowed us to improve our application base by replacing hard-to-
maintain, hand-written C code with disciplined Hancock code. Because Hancock
provides high-level, domain-specific abstractions, Hancock programs are eas-
ier to read and maintain than the earlier C programs. By careful design, these
abstractions have efficient implementations, which allow Hancock programs
to preserve the execution speed and data efficiency of the earlier C programs.
Hancock gave domain experts the confidence to attack more challenging prob-
lems because it allowed them to concentrate on what to compute without wor-
rying about how to manage the volume of data.

Hancock is publicly available for noncommercial use at

www.research.att.com/projects/hancock

We hope that others will join us in exploring the language and its functionality.
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