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ABSTRACT 
CDN (Content Delivery Networks) improves end-user 
performance by replicating web contents on a group of 
geographically distributed content servers. Replication Algorithm 
plays an important role in helping users to retrieve Web objects 
from the content servers. If a user can directly get the requested 
objects from the content server, he need not to contact the remote 
origin server and the user delay can be reduced. However, current 
replica strategies in CDN are to simply and repeatedly keep the 
complete replica of the original object on many content servers. 
This method has some disadvantages, including too much 
consumed server space and a waste of the storage cost. It is more 
serious for replicating some large-sized objects such as streaming 
media, which are being distributed over the Internet more and 
more.  

In this paper, we discuss a replication strategy for scalable video 
streaming in CDN to reduce user response and storage cost. Based 
on theoretical analysis, assuming layered video coding, we 
propose a novel replication algorithm which deals with following 
three problems. (1) How many content servers should be selected 
to replicate a given video content? (2) For a single video content, 
how many layers should be kept in a given content server? (3) 
After selecting a group of content servers for each video content, 
how do we decide the replication priority for each content server? 
Simulation results show that the proposed algorithm can 
efficiently resolve the above problems, and provide much better 
performance than the conventional methods. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Retrieval models.  

General Terms 
Algorithms. 

Keywords 
Content Distribution Networks, Replication Algorithm, Scalable. 
Streaming, Web Performance, Network Traffic  

1. INTRODUCTION 
 
Replication strategies are about how to efficiently store the replica 
of Web objects in some content servers which have limited 
capacity. When a user ‘s requested object can be retrieved and 
provided by keeping its replica in a nearby content server, the user 
need not to contact the remote origin server. Then, the user delay 
can be reduced. Therefore, the appropriate placement of server 
replicas benefits content providers by reducing latency for their 
clients, and benefits ISPs by reducing bandwidth consumption and 
transmission cost. 
The current content replication is to simply replicate the whole 
original data into several content servers. Disadvantages of this 
method are as follows: to repeatedly store the same large-sized 
object into different content servers consumes too much server 
space. Also, because some of content servers are not always 
requested by the clients, to keep replicas on these servers causes a 
waste of storage cost. 
These problems become more serious for streaming media, which 
has several inherent properties. (1) The size of streaming media is 
usually larger than non-streaming files by orders of magnitude 
[10]. (2) User access behavior shows quite different characteristics. 
For example, clients often stop watching a stream without 
watching all of the parts [11]. (3) Different from conventional web 
objects, streaming media do not require to be delivered at once. 
Instead, streaming servers continuously send data packets to 
clients in a (quasi) synchronized manner on the Internet. For these 
reasons, the replication mechanisms developed for conventional 
web objects such as HTML files or images can’t be efficiently 
applied to streaming media such as video and audio. 
Recently, researchers found that scalable (layered) video 
streaming is appropriate for the Internet because of its better 
flexibility and functionality. In this paper, we therefore discuss a 
scheme to replicate scalable streaming contents in CDN. Figure 1 
illustrates our CDN architecture, where different layers (quality) 
of streaming media are stored in a group of content servers 
according to stream/server popularity and server location. In this 
paper, our work focuses on how to replicate different layers of 
different streams into different content servers, in order to save 
system resources and improve user response time simultaneously. 
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not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee. 
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We firstly carry out theoretical analysis of storage cost, capacity 
limit and access distribution of scalable video streaming. Based on 
this analysis, we then propose a replication algorithm in which not 
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only popularities of streams and content servers but server 
location are considered. Through simulations, we check the 
performance of our proposal by changing related parameters. 
Simulation results show that our proposal can efficiently minimize 
user response time and network traffic. Our proposal is also stable 
against varying conditions even if access patterns are dynamically 
changed. 
This paper is organized as follows: in Sect.2, related work with 
regard to stream replication algorithms is reviewed. In Sect.3, an 
overview of the proposed system architecture is provided, where 
scalable streaming is applied to replicate streaming media over 
CDN. Sect.4 presents the mathematical analysis of Web access, 
server storage cost and capacity limit, then our proposed algorithm 
is given later. Simulation results are given in Sect.5 and 
conclusions are shown in Sect.6. 

 

2. PREVIOUS WORK 
 
We briefly discuss previous work as follows:  
How to place replicas on multiple servers assuming a tree 
topology (i.e. a root is an origin server) has been discussed in [13] 
and [14]. Since the actual topology is not limited to be a tree, 
these approaches are not necessarily suitable for CDN. In [15], the 
authors presented an algorithm for placing replicas in a CDN. 
However, they assumed that all replicas act independently and 
cooperative schemes have not been studied. 
In [12], replication decisions on a per-object granularity are 
discussed. A useful cost model for replication is presented. 
However, the replication object is just the normal Web object such 
as HTML and image files. Since the video streaming has distinct 
statistical properties and different user access patterns, their 
strategy cannot be directly applied. Furthermore, they just 
discussed relations between a given object and its related node. 
How to reduce user response time based on relations among CDN-
nodes, nor how to efficiently replicate them among cooperative 
content servers had not been considered. 
There have been many other published studies on streaming media. 
Sen et al showed that storing a prefix (i.e., the initial part) of a 
stream at the proxy can hide the potentially large initial start-up 
delays of work-ahead transmission schedule from the clients [16]. 
Lee et al proposed a scheme that provided users with “video 
summary” (a number of key-frames) before they download 
original stream files [17]. [8] and [18] studied distribution of 
layered encoded video through caches, and [19] discussed how to 
cache MPEG-2 video with a goal of video quality adjustment. 
However, all of these researches focused on how to replace or 
cache streaming contents in a single proxy cache. How to 
efficiently replicate and distribute streaming contents in a group of 
servers has not been mentioned. 
We ourselves proposed an integrated pre-fetching and replacing 
algorithm for the hierarchical (graceful) image based on a 
cooperative proxy-server model, in which efficiency of 
hierarchical image caching was proved [23]. We also presented a 
scheme for stream caching by using hierarchically distributed 
proxies with adaptive segments assignment, in which “segment” 
meant a group of pictures [22]. This method clarified effectiveness 
of “local-scope” server cooperation with per-segment 

management. However, the former did not deal with scalable 
(hierarchical) video streaming, and the latter left the “global-
scope” server cooperation for distributed streaming contents with 
per-layer management, instead of per-segment management, as a 
future work. 
 

3. OVERVIEW OF CDN AND SCALABLE 
STREAMING  

 
3.1 Content Delivery Networks 
 
With the growth in popularity of the Internet and the wide 
availability of high-speed networks, Web content providers find 
that it is difficult to serve all users with low response time, 
especially in the face of high loads. In recent years, how to set up 
contents distribution networks to efficiently distribute stored 
information has become a major concern in the Internet. 
In popular P2P networks, users can determine where different files 
can be downloaded with the help of a directory service [5][6]. 
Similar ideas are expanded as the concept of “overlay network” 
[9], where each connection in the overlay is mapped onto paths in 
the underlying physical network. 
Content delivery networks (CDNs) appeared recently and are 
deploying quite rapidly [1]-[4]. Load balancing by request routing, 
efficient content delivery by locating edge servers near to clients 
and information exchange protocols among different CDN sites 
are developed. However, their concern is mainly placed on 
efficient delivery of static content, i.e. HTML files and images. 
Some CDN companies advocate their streaming caching support, 
but their technical details are not yet clarified nor verified. 
 

3.2 Scalable Streaming 
 
Researchers and engineers have argued that scalable (layered) 
video streaming is appropriate for the Internet because of its better 
flexibility and functionality [8]. Basically, scalable streaming 
assumes scalable coding, in which the original signal is coded into 
several layers, from the lowest (base) to highest (enhancement) 
layers. This scalable coding is supported by some video 
compression standards, such as H.263 and MPEG-2. MPEG-4 
specifies an improved scalable coding method, referred as fine 
granular scalability (FGS) [7]. Then, the scalable streaming 
transmits each layer over different channels (different protocols, 
different error correction codes, or different paths). 
There are some advantages in this scalable streaming. 
Quality adaptive  
The compression ratio of the scalable streaming data can be easily 
changed according to available bandwidth, e.g., when the network 
congestion or delay get worsen, the sender can send few number 
of layers to maintain the continuous playback at a receiver; 
conversely the number of layers can be increased when network 
conditions become better. 
Save server resources 
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If we keep only some layers of the stream instead of the whole 
original one in the content server when this stream is not popular, 
then it can give other popular stream more space. 

   (2) ),,1(,,, IiSXB i
q j

jqijq Λ=≤⋅∑∑

In this paper, our goal is to choose an optimum parameter set 
{Xi,q,j}in order to minimize  user response time under this capacity 
constraint of each server and the cost constraint of whole CDN 
defined in next subsection. 

Efficient for caching 
More kinds of streaming data can be kept in a cache, when 
necessary. Higher layers (enhancement layers) can be discarded 
with keeping lower layers (base layers) instead of removing whole 
data when there is no sufficient space in the cache. 

 

4.2 Definition of Storage Cost  
3.3 Scalable Streaming in CDN  

We then consider a storage cost of streaming contents in a server, 
which is associated with how much and how long the storage is 
used (such a “storage utility” model is in fact being offered by 
some companies, in which one can get storage whenever he needs 
and pays only for what he uses). If we take into consideration the 
cost of data redundancy for fault tolerance (e.g., by means of 
mirroring or error checking/correcting overheads) and the cost of 
server streams (which may be a function of the used storage), the 
storage cost would be higher.  

 
In this paper we discuss scalable streaming in CDN. In our system, 
we assume the original streams are encoded into several layers 
according hierarchical encoding format. The layered streams are 
then replicated into content servers in CDN. When a client 
requests one video stream, he can request either only base layers 
or complete layers (consisting of base layers and enhancement 
layers). The main work in this paper is to propose a hierarchical 
replication algorithm to replicate different layers of different 
streams into different servers in order to improve whole system 
performance of CDN. 

Let us calculate the storage cost when we store the q-th layer of 
stream j in server i . We assume that each stream will be storaged 
in the server for a fixed period, and then cached contents will be 
updated periodically. Let Mi ($/byte) denote storage cost for a 
given server i, and α represent a total expense limit of our CDN. 
Then, we can get:  

 

4. THEORETICAL ANALYSIS 
   (3) ),,1(,,, IiXBM

i q j
jqijqi Λ=≤⋅⋅∑∑∑ α

In this section, we give an analysis of replicating scalable 
streaming media over the Content Delivery Network.  Firstly, the 
theory analysis of storage capacity, storage cost and average hop 
count are presented from Sect.4.1 to Sect.4.3, respectively. Then, 
based on the above results of theory analysis, How to reduce the 
user response time under the same constraints is discussed in 
Sect.4.4. The proposed replication algorithm is introduced in 
Sect.4.5.Finally, how to reduce the computational complexity is 
discussed in Sect.4.6. 

A parameter Mi can be considered as a priority parameter (or 
weighting factor) of each content server. Note that, though Eq.(3) 
can be considered as generalization of storage capacity in Eq.(2), 
it is evaluated for whole CDN, instead of each server. 
 

4.3 Definition of Average Hop Count 
 

4.1 Definition of Storage Capacity Let us define an average hop count Ti(X), that represents a 
traverse of requests from server i to a server having a requested 
content by  

 
We assume that each content server is located in a different 
administrative domain, such as autonomous system (AS). Let Si 
(bytes) denote storage capacity of a server in domain i (i=1,…, I), 
and λi (bytes/second) denote an aggregate request rate from clients 
to the server. We assume that there are J streaming contents in our 
CDN, and each content is encoded by Q layers. Let us define a 
parameter Bq,j as data size of the q-th layer (q=1,…,Q) of stream j 
(j=1,…, J), and define a parameter Pq,j as a request probability for 
the q-th layer of stream j (i.e. stream popularity), respectively. We 
define a parameter Xi,q,j, which takes a binary value of 

∑ ∑ ⋅=
q j

jqsijqi DPT )()( ),(,, XX   (4) 

where a parameter Di,s(q,j)(X) denotes the shortest distance (hop 
count) from domain i to server s(q, j) storing the q-th layer of 
stream j under the placement X. This nearest copy is stored either 
in an origin server of the stream or in other servers where the layer 
has been replicated. We assume that clients are always redirected 
to the nearest copy (i.e. the optimum server) by some “request 
routing” mechanisms, though their details are out of scope of this 
paper. Note also that a parameter Di,s(q,j)(X) may deonote other 
QoS parameters such as delays and throughputs. 

 
Xi,q,j = 1 (if the q-th layer of stream j is stored in server i),          
Xi,q,j = 0 (otherwise).      (1) Let  be the total request rate from all the domains. 

Let T(X) be the average number of hops from all the domains 
weighted by “server popularity” λ . This is given by 

∑=Λ
i

iλ

Λ/i

 
We also define a three-dimensional matrix X of which element is 
Xi,q,j, that represents a placement pattern of streaming contents. 
Storage capacity Si is then constrained by defined parameters, 
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1) For a given streaming content with layered representation (the 
q-th layer of stream j), ∆Ti,q,j in Eq.(7) is calculated. This is also 
provided to each content server as a “replication priority”. 

∑∑∑ ⋅=
i q
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j

jqi DS )(),(,,, X

  (5) 

jq
i

jqi PS ,,, ⋅
Λ

=
λ

∑∑∑

∑

Λ
=

Λ
=

i q
jqsi

i
ii

D

T

)(1

)(1)

),(, X

Xλ

⋅
j

jqi P ,λ

T (X

2) A “layer-server pair” which has the highest ∆Ti,q,j is picked up 
and a layer (q, j) is stored in server i. This action results in a new 
placement X. ∆Ti,q,j is recalculated under this new placement and a 
new layer-server pair with the highest ∆Ti,q,j is selected. 

where  3) The above process is iteratively carried out until either server 
capacity constraint in Eq.(2) or storage cost constraint in Eq.(3) 
exceeds its limit. .  (6) 
Here, we give some explanation about our algorithm. Because the 
replication priority ∆Ti,q,j represents how many hop counts can be 
reduced after storing a layer in a server, the average hop count can 
be minimized if we decide the replication order according to 
Eq.(7). Because the system selects the layer-server pair under the 
constraint of storage capacity and storage cost, higher priority 
layers of streams will be firstly stored. Higher priority servers will 
be also given a priority to store layers. When the constraint 
exceeds the limit, content replication will be stopped. At that time, 
for a given streaming content, how many layers should be 
replicated and how many content servers should be selected are 
decided simultaneously. 

Eq.(6) represents a request probability weighted by aggregation 
ratio to server i (i.e. joint probability of stream popularity and 
server popularity). Here, the placement X should be subjected to 
two constraints. One constraint is capacity limitation specified in 
Eq.(2), and another constraint is storage cost defined in Eq.(3). 
 

4.4 Minimization of Traversed Hop Count  
 
An average hop count that a request must traverse almost reflects 
the download time of an object and can be used as an indicator of 
user perceived latency. Some papers utilize this traversed hop 
count as an important and stable criterion to evaluate the 
performance of CDN or P2P networks [6] [14]. In this paper, our 
goal is to optimally choose the Xi,q,j to provide requested streams 
to clients as quickly as possible under the constraints of node 
capacity and storage cost. For these constraints, we already 
formulated Eq.(2) and Eq.(3). Then, the main problem is how to 
actually reduce hop counts under these constraints. 

 

4.6 Consideration on Computational 
Complexity 
 

If the q-th layer of stream j is replicated in server i, we can obtain 
the averagely reduced hop count ∆Ti,q,j as follows: 

{ }∑ −⋅⋅⋅
∆

=∆
k

ikojqokkjqjqi DDPT )()(1
,),(,,,, XXλ

• 

• 

Computational complexity of our replication algorithm mainly 
depends on the size of three-dimensional matrix X, that is given 
by I×Q×J. Therefore, when there are numerous streams in a server 
(when J is large), it is unrealistic to manage all streams’ 
replication to other servers. Also, since the scale of CDN is being 
increased recently (since I becomes larger), to manage all content 
servers’ replication will cause a great amount of computational 
complexity in our CDN.  

,  (7) 

where X0 is an initial placement of streaming contents, in which 
all the streams are stored in their origin servers only, that are 
denoted by o(q, j), and X is their current placement after keeping a 
replica of the q-th layer of stream j into server i. A parameter 
Dk,o(q,j)(X0) represents the shortest distance from server k to the 
origin server o(q, j) under placement X0, and a parameter Dk,i(X) 
does the shortest distance from server k to server i having 
replication under placement X, respectively. The proof of Eq.(7) is 
given in Appendix. 

Fortunately, previous researches showed that the distribution of 
web requests from a fixed group of users follows a Zipf-like 
distribution. It has been proved that most web requests to a server 
are for a very small set of objects, for example top 10 %. Because 
of this property, it is enough to only manage the aforesaid set of 
streams. Other recent studies also showed that client load is 
heavily skewed towards popular servers. In [1], it had been found 
that 80% of the requests to streaming media were served by only 
top 4% most popular servers. Therefore, to reduce computation 
complexity of our CDN, it is suggested that we only need to care 
about popular servers and popular streams.  

 

4.5 Proposed Algorithm  Let Fi and Fj represent access frequency of server i and stream j in 
last period, respectively. Then we apply  

Here, we present a replication algorithm to resolve following three 
problems: (1) How do we decide a replication priority of each 
streaming content which needs to be replicated? (2) How many 
servers should be selected to replicate a given streaming content? 
(3) For a given streaming content, how many layers should be 
selected for it to be replicated? We fomulated these problems into 
an optimization problem: under the constraint of Eq.(2) and Eq.(3), 
minimize the averaged hop count of Eq.(7). To solve this, we give 
an iterative algorithm as follows. 

If Fi or Fj exceeds a pre-specified threshold, the system will 
execute the iterative replication algorithm (matrix 
operation) for the coming period.  

If not, the system just keeps access records and does not 
carry out any calculation. 

The threshold is an access frequency of the stream (or the server) 
of which ranking is Top 10, for example. Accordingly, the system 
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only needs to manage a very small set of streams and servers, 
leading to reduction of computation complexity. 
 

5. PERFORMANCE EVALUATION 
 
In this section numerical results will be presented by simulation 
experiments to validate the proposed algorithm. 

5.1 Simulation Conditions 
 
In simulation experiments, we assume following conditions as an 
example. There are 21 nodes (servers) in our network simulator. 
Among these nodes, there are 15 original servers and 6 content 
cache servers, respectively. Physical distances among nodes are 
decided at random. As for the streaming contents, there are 1000 
different streams with the rate of 384kbps. The length of each 
stream is uniformly distributed from one minute to ten minutes. 
Each stream is encoded into 2 constant bit rate layers [3]. In our 
simulation, clients often stop watching a streaming content after 
playback. The position where a client stops watching a stream is 
decided at random. Several researchers have observed that the 
distribution of web request from a fixed group of users follows a 
Zipf distribution, which states that the relative probability of a 
request for the i'th most popular page is proportional to Ώ/ri

α. 
Besides, the value of α , a parameter of Zipf distribution, varies 
from trace to trace, ranging from 0.64 to 0.83 [20][21]. Client 
requests arrive according to a Poisson process. For each stream, a 
client requests either a base layer only or a complete video 
consisting of a base layer and an enhancement layer. All clients 
are always redirected to the closest server without failure of 
request routing. The total request times in the simulations are 
10000. 
 
There are four replication algorithms we will study: 

• 

• 

• 

• 

LRU (Least Recently Used) Policy  

LFU (Least Frequently Used) Policy  

Hierarchical Caching  [12] 

Proposal 
 
The former two are conventional ones, in which we assigned LRU 
or LFU to one whole stream, corresponding to conventional CDN. 
Note that LRU and LFU can also be utilized for other content 
management such as cache replacement. The Hierarchical 
Caching [12], which can be used for scalable stream replication, 
was firstly proposed for hierarchical image databases. The original 
idea of this algorithm is to store the most accessed layer of 
different images (streams) in a cache server based on client’s 
different access patterns. Then, we compared these four 
algorithms. 
 

5.2 Simulation Results 
 
In Figure 1, average hop counts are used to evaluate system 
performance. We define the average hop counts as a ratio of the 

number of traversed hop counts to the number of total request 
times. Average hop counts reflect content delivery time and thus 
can be used as an indicator of user perceived latency. 
From this figure, we can find that the proposed algorithm achieved 
the fewest hop counts than the other ones.  Although the 
Hierarchical Caching shows better performance than LRU and 
LFU, its hop counts are still fewer than our proposal because it 
doesn’t exploit server location (hop counts between servers). We 
can also find that the proposed method substantially reduces the 
average hop counts by almost 50% compared with LFU. The 
reason is because the proposal decides whether a layer of one 
stream should be replicated in a content server by considering 
many aspects such as server popularity, stream request frequency 
(stream popularity) and server location (hop counts).  However, 
LFU only considers stream request frequency. This reason also 
results in an effective utilization of system resources when the 
parameter of Zipf distribution is increased. For our proposal, the 
number of hop counts keeps being decreased with the parameter 
of Zipf distribution increased. 
In Figure 2, since network traffic reflects bandwidth consumption 
and transmission cost, which is related to user perceived latency, 
we evaluate the effect of network traffic among different servers 
when the parameter of Zipf distribution is changed. From this 
figure, we can find that the proposed algorithm performs best and 
reduces network traffic most since this algorithm takes both 
content popularity and server location into consideration. It also 
verifies that algorithms with low hop counts lead to reduction of 
network traffics. 
In Figure 4, a hit ratio is shown with respect to the parameter of 
Zipf distribution. We define the hit ratio in CDN as a usual 
manner; when a client requests a content and the content is 
available in a server which is located near to the client, this client 
needs not to wait for the requested content to be delivered from 
the original server, so called a hit. Under this measure, the 
proposed algorithm also performs best against the other three 
methods; LRU, LFU and Hierarchical Caching. 
 

 
 
Fig. 1: Average As Hops under Different Zipf Parameters 

 

259



 
 
Fig. 2: Network Traffic under Different Zipf Parameters 
 
 

 
 
Fig. 3: Hit Ratio under Different Zipf Parameters 

 
In conclusions from these figures, it is proved that the proposed 
algorithm achieves the best performance under various measures; 
hop counts, network traffic and cache hit ratio.  
 

6. CONCLUSIONS 
 
This paper discussed how to optimally replicate scalable 
streaming contents onto CDN servers and presented an efficient 
scheme to replicate them without wasting content servers’ 
resources. Based on mathematical analysis, we proposed a novel 
algorithm to minimize average hop counts over traversed domains 
where the scalable streams are delivered. Our proposal dealt with 
not only popularities of streams and servers but also server 
location. We then compared our proposal with other conventional 
methods using computer simulations. Simulation results showed 
that the proposed method substantially reduced average number of 
hop counts by 50% compared with the conventional ones. The 
network traffic could be also efficiently reduced at the same time. 
It was also verified that our proposal was robust against varying 
conditions even if client access patterns are dynamically changed. 
There are a number of works to be done as further researches. 
Precise design of control packets exchanged among servers and its 
quantitative overhead evaluation should be carried out from the 
practical viewpoint. Furthermore, theoretical modeling and 

replication algorithms should be expanded and sophisticated, in 
order to lead us to a new content delivery paradigm including P2P 
(peer-to-peer) architecture, multicasting (IP-multicast and 
application-layer multicast) and multiple description coding 
instead of layered coding. 
 

Appendix 
 
In this appendix, we give a mathematical formulation of Eq.(7). 
Firstly, assume that the q-th layer of stream j is originally stored in 
server o(q, j). When a client sends a request for this layer (q, j) to 
server o(q, j) via a certain server k, the hop counts during the 
delivery from server k to server o(q, j) is given by 

)(1)( 0),(,,0,),,(, XX jqokjqkjqjqok DPT ⋅⋅
Λ

= λ  (A-1) 

which is an element of Eq.(5) when X = X0. Dk,o(q,j)(X0) is the 
shortest distance from server k to server o(q, j) under the initial 
placement pattern X0 (no cache) and Λ  is the total 

request rate from all the domains. This sums up to the total hop 
counts of requests to the q-th layer of stream j from all servers, 
given by 

∑=
i

iλ

)(1)()( 0),(,,0,),,(,0,),,( XXX jqok
k

jqk
k

jqjqokjqjqo DPTT ∑∑ ⋅⋅
Λ

== λ  (A-2) 

Similarly, when the layer (q, j) is replicated onto a certain content 
server i which is not its original server, the total hop counts to 
layer (q, j) is given by  

)(1)( ,,,, XX ik
k

jqkjqi DPT ∑ ⋅⋅
Λ

= λ   (A-3) 

where X is the placement pattern after replication to the content 
server i. Dk,i(X) means the shortest distance from server k to server 
i under the placement pattern X. Finally, we can calculate the 
reduced hop counts (i.e. replication priority) ∆Ti,q,j by taking a 
difference of Eq.(A-2) and Eq.(A-3), then Eq.(7) is achieved. 
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