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Abstract 

After a brief review on testability aspects of parallel 
arithmetical units we focus on n-bit multipliers and 
especially consider a class of Wallace tree multipliers 
made suitable for VLSI design by Vuillemin and Luk 
[VULU]. 

It is shown that for these circuits both optimal run- 
ning time and optimal test complexity can be obtained. 
A complete test set according to the single cellular fault 
model is presented. (In this case, the single cellular 
fault model is superior to the classical single stuck-at 
model.) The proposed test only consists of 17 pattern8 
for all n. Hence, the multiplier is C-testable, i.e. it can 
be tested by a number of input combination8 which is 
independent of the number of cells in the circuit. 

The extra test hardware is very small. Only two ad- 
ditional ports and n - 2 internal connections are neces- 
sary. 

Keywords: Testability of regular structures, paral- 
lel multipliers, test complexity, C-testability. 

1 Introduction 

Many parallel architectures result in regular designs, 
since they often consist of a large number of similiar 
subcircuits with small, simple interfaces. Moreover, re- 
gular structures have become more and more attractive 
with the advent of very large scale integration (VLSI). 
In many cases their geometrical regularity facilitates 
placement and routing problems, and their hierarchy 
may allow a reduction in the immense number of data 
that occur during the design process of a large circuit. 
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As indicated above regularity offers a lot of advan- 
tages in designing circuits. We now turn to the que- 
stion how it can be used for testing. The examination 
of this issue yields test strategies for whole classes of 
circuits instead of some patterns for one special imple- 
mentation as is the case in usual automatic test pattern 
generation. Well-known examples for regular structu- 
res are iterative logic arrays (ILAs), programmable lo- 
gic arrays (PLAs), and arithmetic units. For these of- 
ten used circuits testability aspects have been conside- 
red in [fi,SrHa,ChPa] (1LA8), [Fu,RoRa] (PLAs), and 
[FeSh,BhHa,Be,BeSp,ChAb,Ho] (arithmetic units). 

Here, we are interested in parallel architectures re- 
alizing arithmetic functions. For these circuits two im- 
portant quality meaSures are performance and test size. 
In previous papers, efforts were made to optimize one 
of these measures, but optimality in both was not ob- 
tained. So the question arises whether this trade off 
between running time and number of test patterns is 
inherent or is caused by “unskillful” implementations. 
As we will see in this paper, it is possible to combine op- 
timal running time with optimal test size for a parallel 
multiplier. 

Good testability for adders and multipliers can be 
achieved by combining full-adder8 to ILA8. In this case, 
the known test techniques for ILAs can easily be ap- 
plied. By this strategy, Ferguson and Shen have succee- 
ded in constructing a C-test for a n-bit array multiplier 
([FeSh]). That means, the number of test patterns is a 
constant independent of n. 

Other examples of circuits that are C-testable and 
have time delays linear in n are given in [ChAb]. 

Hong has also proposed a multiplier with running 
time 0(n) ([Ho]). Th’ IS circuit requires 3n + 60 test 
pattern8 while it manage8 with the minimum number of 
adder cell8 if the extra test hardware is not considered. 

However, the major disadvantage of these structures 
is the suboptimal running time that is at least linear 
with the operands’ bit width n. 

High-speed realizations of arithmetic functions take 
time O(log n). Battacharya and Hayes have introduced 
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fast and easily testable arithmetic units that are based 
on tree-like structures ([BhHa]). By providing extra 
test hardware in each basic cell they have been able to 
apply a level-by-level test strategy that results iu tests 
of size O(log n). 

In a previous paper ([Be]), a fast n-bit multiplier has 
been examined. It is a modified Wallace tree ([Wa]), 
which has been adapted for VLSI design by Vuille- 
min and Luk ([VuLu]). The test presented consists of 
4 log n + 3 input combinations and only requires slight 
hardware modifications. 

In this paper, we propose a C-test for this multi- 
plier. 17 patterns form a complete test according to 
the single cellular fault model (which iz superior to the 
single stuck-at fault model in this case [Be]). Thus we 
succeed in combining (asymptotically) optimal running 
tilne with C-testability in the case of a multiplier. 

The very regular design of the multiplier in [VuLu] 
is achieved by introducing redundant parts with redun- 
dant primary inputs. The C-test is developed under 
the assumption that these redundant inputs and cer- 
tain carry inputs are accessible. During normal ope- 
ration these inputs have to be set to zero. Thus in a 
design that need not supply testability they could be 
connected to ground. An analysis of the employed pat- 
terns reveals that it is possible to dispense with all but 
two of these inputs if n - 2 internal connections are 
provided. This test overhead is very small compared to 
other easily testable multipliers ([FeSh]: n full-adders 
and 7 extra inputs, [ChAb]: n - 1 XOR gates and 5 ex- 
tra inputs, [Ho]: n OR gates, n2 transfer gates, and 1 
extra input, [BhHa]: extra hardware in each basic cell). 

This paper is structured in the following way: 
In section 2, the logic design of the tree multiplier is 

considered. 

Section 3 defines the fault model and gives the main 
ideas for the construction of the test. (The detailed 
discussion of the test patterns can be found in the ap 
pendix.) One of the key *ideas is to use a sufficient 
criterion for C-testability in tree-like structures which 
is developed in Section 3.2. 

2 The multiplier 

2.1 Logical structure 

For the construction of the tests knowledge of the multi- 
plier’s structure is necessary. So we start with a logical 
description of the circuit. 

Let a, ... al and b, . a. b1 be the binary representa- 
tions’ of the two numbers a and b. For simplicity we 
assume n to be a power of 2. The product of a and b is 

ia,, and b, are the most significant bita 

Figure 1: Reduction part of a 16bit multiplier 

equivalent to the sum of the partial products pi,. . . ,pn, 
which are given by pi = a-bi .2”‘. Fast multiplication is 
accomplizhed by summing up the partial products by 
tree-like structures. For this we use &o&reductions2 
which receive four 2n-bit numbers as inputs and com- 
pute two 2n-bit numbers such that the sum of the in- 
puts is equal to the sum of the outputs. They are ar- 
ranged as a binary tree of depth log,(n) - 1, which is 
fed with the partial products (Figure 1). Thus the cir- 
cuit computes two Prz-bit numbers whose sum equals 
the product a . b. In the sequel, the subcircuit con- 
taining the 4to2-reductions iz said to be the reduction 
part. Since the delay of a 4toZreduction is indepen- 
dent of n and the computation of the partial products 
can be performed in constant time, the circuit takes 
the (asymptotically) optimal time O(log(n)). We will 
investigate its testability in section 3. 

A final Pn-bit adder has to be connected to the mul- 
tiplier to deliver the result of the multiplication repre- 
sented as one number. This should be a fast adder with 
running time O(logn) ( see e.g. [BrKu], [LaFi], ]BeKo], 
[BeSp]) in order to preserve the asymptotically optimal 
delay of the multiplier. 

To make the multiplier’s construction clearer, we will 
describe in the next two sections how the partial pro- 
ducts are generated and how the reduction part is built 

up. 

2.2 Generation of the partial products 

Figure 2 gives the detailed structure of the part that ge- 
nerates the partial products. In the diagram the bullets 
represent the logical AND of the signals encountering 
there. The binary representation of pi can be found in 
the ith row of the AND array, it is pi,, . - . pi,l. For- 
mally, pi,i is given by pi,i = bi . oi-i+l. The a-inputs 
aan,. . . , a,+1 and ao, a-l,. . . , a-,+2 are so-called re- 
dundant inputs, which are set to zero during normal 
operation. They are introduced to allow a very regu- 
lar design that can easily be adapted to a generator 
for VLSI design systems, az it waz done for CADIC 
([HBKMO]) and VENUS ([HNS]). 

“A 4to2-reduction consists of two carry nave adders. 
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Figure 2: Generation part 

2.3 The reduction part 

We build 4to2-reductions for k-bit numbers using l-bit 
reductions which take carries into account. These basic 
cells are called #t&cells and consist of two full-adders 
each (Figure 3). A full-adder (FA) produces a sum 
bit and a carry bit of three input bits. We call FA1 
in Figure 3 the upper full-adder and FA2 the lower 
one. If we arrange k 4to2-cells as a chain by linking 
the carries, the result will be a k-bit 4toZreduction. 
We call the primary carry inputs of a 4to2-reduction 
initial and the primary carry outputs terminal carry 
lines. When the initial carries are set to zero, the circuit 
reduces four numbers to two. Note that each signal 
at most passes two full-adders. Thus the computation 
performed by a k-bit 4to2-reduction takes the time of 
two full-adder delays and does not depend on k. As 
was already mentioned in section 2.1, we construct the 
multiplier’s complete reduction part by arranging 2n- 
bit 4to2-reductions as a tree. From the view of bit slices, 
there are 2n cascaded single trees (reduction trees) of 
depth log,(n) - 1. A reduction tree of depth 1 consists 
of one 4to2-cell. Inductively, a reduction tree of depth 
k + 1 is defined as follows: its root is a 4to2-cell whose 
left and right input bit pairs are fed by the output bit 
pair of a reduction tree of depth k each. The output 
bit pair of a reduction tree is the output bit pair of 
its root. In the sequel, we look upon the root’s level 
as the lowest one and the leaves’ level as the highest 
one. Figure 4 shows the cascadation of the reduction 
trees in a perspective manner. The horizontal (carry) 
leads are omitted. The last tree (which produces the 
terminal carries) computes the most significant bits of 
both output numbers. We denote it by treep, and, 
analogeously, the tree for the jth output bit pair by 
treej for j = l,.. ., 2n. The values of the reduction 
trees’ vertical inputs can also be seen in Figure 4. The 
input bits pi,j correspond to the entries pi,j in the array 
of Figure 2. Identification of the signals shows that the 
‘th 3 column of the AND array computes the input vector 

of treei. 

A planar design can be accomplished by projecting 
this ‘three dimensional structure’ in a plain. Figure 5 
shows the result. Each column (bit slice) corresponds 
to a reduction tree augmented by the AND gates that 
produce its input vector. The square cells are the AND 
gates while the other ones are the full-adders (for a 
formal description of the layout see [Be]). 

3 Construction of a C-test 

3.1 The fault model 

We assume that a single basic cell (AND cell or full- 
adder) in the circuit can permanently fail in an arbi- 
trary manner as long as its behavior remains combina- 
tional (single cellular fault model). With regard to this 
assumption, it iz necessary to apply all possible input 
combinations to each cell and to propagate any faulty 
signal produced at the cell’s outputs to a primary out- 
put of the multiplier. 

It can be shown (see ]Be]) that in the case of the 
presented multiplier the single cellular fault model is 
more general than the often used single stuck-at fault 
model. 

inputs 
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Figure 3: 4to2-cell 
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3.2 Construction of the test 

The next two sections give the main ideas for the con- 
struction of the C-test. In the appendix there is a de- 
tailed description of the patterns. 

We will proceed in the following way: 
First of all, we show that fault propagation is very 

simple for the multiplier. By investigating constant te- 
sting in tree structures we succeed in constructing a 
C-test for the multiplier’s reduction part. This test, 
however, cannot be applied by setting the primary in- 
puts. Therefore, we examine how to modify the test to 
get an applicable one. 

We concentrate on tests for the full-adders because 
the AND gates can easily be controlled by setting the 
multiplier’s inputs. 

Now we start with the details: 

Lemma 1 ([Be]) If exactly one basic cell jails for any 
input combination of the circuit, then at least one faulty 
signal is propagated to a primary output of the multi- 
plier on applying this input pattern. 

Proof: We only give a sketch of the proof. When a 
full-adder receives exactly one faulty signal, it propaga- 
tes this fault by its sum output (s) which computes the 
parity of the three inputs. The circuit’s wiring ensures, 
in fact, that for every wrong behavior of a basic cell, 
there exists a full-adder in the next level which gets ex- 
actly one faulty input. Inductively, it follows that the 
fault propagates until it reaches a primary output. n 

Lemma 1 is very useful. It asserts that to test a basic 
cell for any assignment to its inputs, it suffices to choose 
any pattern that applies this assignment to the cell. It 
is not necessary to take a special input combination for 
propagating the fault to a primary output. 

To develop a sufficient criterion for C-testability in 
tree structures, we consider a cell C realizing a Boolean 
function j : B2k + Bk where k E N and B = (0, 1). 
The inputs of C are assumed to be separated in k left 

Pl,l Pn.1 

treezn 

Figure 4: Reduction trees forming the multiplier’s re- Figure 6: Cell C and symbolic representation of a tran- 
duction part sition t 

Figure 5: Layout of a I-bit multiplier 

and k right ones. Now it is possible to construct a 
binary tree of several cells of type C by connecting the 
outputs of cells to left or right inputs of other cells. We 
denote a transition of C by t = (L, R, 0) E B” x Bk x 
Bk where L (R) is applied to the left (right) inputs, 
and 0 is the output implied. For illustration we will 
sometimes use a symbolic representation of a transition 
as is shown in Figure 6. 

We are now able to formulate the next lemma: 

Lemma 2 Let 7 = {tl, t2,. . . , tm} with t; = 
y,&,Oi) for i = l,..., m be a set of transitions of 

If there are permutations 1, r : (1,. . . , m} -+ 

(1 , . . . , m) which fulfill 

Li = Q(i) and & = O,(i) for i = 1,. . . , m 

( i.e. the output ualuea permutatedly occur on the left 
and right inputs), then the transitions tl,. . . , t, can be 
applied to all cells of any binary tree oj cells C by m 
patterns. 

Proof: First of all, we present a scheme to construct 
an assignment to the nodes of the tree that only uses 
transitions of 1. We apply any t E T, say tl, to the 
tree’s root. In this case, L1 (RI) is the output of the 
left (right) subtree over the root. Let z = 1(l) and 
y = r(l), then L1 = 0, and RI = 0,. So t, (tv) can 
be applied to the root’s left (right) parent node. An 
assignment to all nodes can be made by going on in 
this way. 

Beginning with t2,. . . , t, instead of tl as value of the 
root we are able to construct m different assigments to 
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the tree. We show that for any node the m patterns 
apply m different transitions. Obviously this is true for 
the root. This implies m different output values of the 
root’s left and right parent node. Thus it inductively 
follows for all nodes that the m patterns imply m dif- 
ferent transitions. Since only the transitions tl, . . . , t, 
are used, all transitions are applied to each node. n 

Example 1: Let C be a cell that computes the I+ 
gical exclusive OR (XOR) of two bits. For C there 
exist the following four transitions: ti = (O,l, l), 
t2 = (l,O, l), ts = (O,O,O), and t4 = (l,l,O). The 
permutations I and r with 1(l) = 4,1(2) = 2,1(3) = 
3, j(4) = l,r(l) = l,r(2) = 4, r(3) = 3 and r(4) = 2 
fulfill the conditions of Lemma 2. Since every fault is 
propagated to the primary output, a tree of XOR cells 
is C-testable by four patterns. The four assignments of 
Figure 7, which are constructed according to the proof 
of Lemma 2, test every XOR cell in a tree of depth 3 
for all input combinations. n 

01101101 10110110 

Figure 7: 

Now we try to apply the above lemma to the mul- 
tiplier’s reduction part. Here the cell C is a 4to2-cell. 
To denote the carry lines, we define a transition of a 
4to2-cell as a tupel t = (L, R, 0, Ci,, Cm,) E (B x B)6 
where L, R, and 0 are as introduced before, and Ci”, 
C out stand for incoming and outgoing carries (see Fi- 
gure 8). It is clear that the last lemma can be applied 
to the 4to2-cell if the carry lines are ignored. 

To keep the test set’s cardinality low, we want to ap 
ply certain transitions not only in one reduction tree 
but simultaneously in many trees. This can be done by 
(preliminary) confining to such transitions whose inco- 

L R 

t= Cim 

c 
Y art 

0 

Figure 8: Transition of a 4to2-cell 

ming and outgoing carries are the same, i.e. transitions 
t = (L, R, 0, Ci,, C,t) where Ci, = Gout. They are 
called l-repeatable transitions 

Example 2: Consider the l-repeatable transitions 
given in Figure 9. They satisfy the conditions of 
Lemma 2 if the permutation I and r are Z(1) = 1, 
Z(2) = 2, r(1) = 2 and r(2) = 1. For the values of L, R, 
0, G, and Gut, we use the abbreviations To = (O,O), 
Tl = (0, l), Ts = (1,0) and T3 = (1,l) (T; = (z, y) iff 
(2, y) is the binary representation of i for i = 0, 1,2,3). 

The method presented in the proof of Lemma 2 allows 
applying the transitions tl and t2 to all 4to2-cells of one 
single tree by two patterns. n 

l-1 T2 
t1 = Tl 

Y Tl 
T1 T2 

Figure 9: 

On condition that the initial carry lines are conveni- 
ently set, the same assignment can simultaneously be 
applied to all reduction trees by means of l-repeatable 
transitions. In this way, we succeed in generating some 
but not ail input combinations to the full-adders by 
a number of patterns independent of the multiplier’s 
sire. It can be proven that f2(logn) patterns will be 
necessary to test a n-bit multiplier if only l-repeatable 
transitons are used (see [Ha]). 

In [Be], 4Iog(n)+3 patterns are shown to be sufficient 
for a complete test. For this a level-by-level strategy is 
used. That means, all full-adders of one level are tested 
by applying the same transition to all 4to2-cells of this 
level. This is done for each level. 

To eliminate the test size’s dependence on n, we con- 
sider g-repeatable transitions. These are pairs of tran- 
sitions having the property that the outgoing carries of 
one transition are the same as the other’s incoming ones 
and vice versa, i.e. transitions t = (L, R, 0, Gin, C,,t) 
and t’ = (L’, R’, 0’, C,!,, C&J where Ci, = CAUt and 
C out = Cl,. ‘L-repeatable transitions can be regarded as 
one do&e transition, whose left and right input value 
are (L, L’) and (R, R’) respectively and whose output 
value is (0,O’). 

Example 3: The three double transitions of Fi- 
gure 10 again fuRi Lemma 2. Hence, they can be ap- 
plied to all the 4to2-cells of two adjacent reduction trees 
by three patterns. As the transitions are 2-repeatable, 
it is possible to repeat the same assignment in each 
second tree. If the assignments in odd and even sub- 
scripted reduction trees are exchanged, each single tran- 
sition of the double transitions will be brought to all 
4to2-cells of the multiplier. n 
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Figure 10: 

A detailed analysis shows that for each input combi- 
nation of a full-adder, there exists a l- or 2-repeatable 
transition that brings this combination to the full-adder 
and that belongs to a set of transitions as described in 
Lemma 2. But the problem of generating the corre- 
sponding patterns via the AND gates remains. This 
problem is considered in the next section. 

3.3 Generation of the test patterns 

For the proofs of the following lemmas, it is necessary to 
know which input vectors a reduction tree receives. In 
Section 2.3, it was already mentioned that the vertical 
inputs of treei are the entries of the ish column in 
Figure 2. 

In the sequel, we speak of 1- and Speriodic patterns. 
These are the values of the reduction trees that will 
be caused by applying l- and 2-repeatable transitions 
respectively, if the assignment of treei equals that one 
oftreei+rfori= l,..., 2n- 1 (l-periodic patterns) and 
if the assignments of treei and treei+ are the same for 
i=l ,-**, 2n - 2 (2-periodic patterns) respectively. 

Lemma 3 ([Be]) Any l-periodic pattern can be achie- 
ved by setting the multiplier’s primary inputs. 

Proof: l-periodic patterns result in the same as- 
signment for all reduction trees. It follows that all co- 
lumns of the AND array have the same values. Thus 
the binary representation of pi must be either 0. e-0 
or l-.. 1 for i = 1,. ..,n. These patterns can be ge- 
nerated by setting all a inputs to 1 and bi = 0 if pi’8 
representation is 0 f + . 0 and bi = 1 otherwise. n 

The generation of 2-periodic patterns is more diffi- 
cult. There are even patterns that are not achievable 
at all by assigning the primary inputs. 

A successful idea is to generate the required tran- 
sitions a constant number of levels beneath the leaves. 
Then the remaining levels can be tested by the level-by- 
level method. To do that, we classify the generatable 
P-periodic patterns. In Figure 11, an achievable assi- 
gnment of the AND array is depicted. It is obtained 
by setting all b inputs to 1 and the a inputs to 0 and 1 
alternately. For this input combination, all 4to2-cells in 
the highest level receive Tr and T2 resp. as input pairs. 

Lemma 4 Given a Speriodic pattern. Let tree and 
tree’ be two adjucent trees. If the inputs for the dtot 
cells in the highest level of tree are from the set {To, Tl} 

J”/l/o/l/oJIJo/l 
0 1 1 0 0 1 0 1-1 

JO 
1010 10 1 0-l 

Jl 
0 0 1 1 0 1 0 1-1 

JO 
1 0 1 0 1 0 1 o-1 

Figure 11: Generatable values by the AND array 

and those of tree’ are from (To, Tz)# then the pattern is 
generatable by appropriately Jetting the primary inputs. 

Proof: The case that tree and tree’ have no To as 
inputs of 4to2-cells in the highest level is already consi- 
dered (see Figure 11). The other cases are constructed 
from the above one by setting some hi’s to zero. w 

If a a-periodic pattern is not generatable, we can try 
to apply a pattern that satisfies the condition of the 
above lemma and yields the desired transitions from 
some deeper level on. 

Example 4: The double transitions of Example 3 
have (To, Ta), (Ts,Tz) or (To,Tl) as left and right in- 
puts. The double transitions of Figure 12 have these 
values as outputs. Thus these transitions “fit” to those 
of Example 3 and can be put above them. 

Figure 12: 

Furthermore, by conveniently setting the initial carry 
lines a generatable pattern of period 2 is produced. This 
follows from Lemma 4 and the fact that the 4to2-cells 
in the highest level of two adjacent trees now have To, 
T2 and To, Tl resp. as inputs. 

TI TI To TI TI To Tl Tl 

Ta To Ta Ta To Ta Ta 

To 

Figure 13: A generatable L-periodic pattern 
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Figure 13 shows the situation for two reduction trees 
where the carries are omitted. The nodes in the two 
lower levels are labelled by transitions of Example 3. 
The corresponding values are not generatable by the 
AND array. Extending by the transitions of Figure 12, 
however, results in an achievable a-periodic pattern. n 

These strategies allow proving: 

Theorem 5 The multiplier is C-testable according to 
the single cellular fault model. 17 patterns are suficient 
/or a complete teat. 

The detailed proof of this theorem is given in the 
appendix. The l- and 2-repeatable transitions in the 
appendix, which exhaustively test, the full-adders and 
fulfill Lemma 2, were found by a computer program. 

3.4 Reduction of redundant inputs 

So far, we have assumed that the redundant a inputs 
and the initial carry lines are controllable. This need 
not be required. Since each second a input. gets the 
same value during testing, the redundant a inputs with 
even subscripts can be connected. This is also possible 
for those with odd subscripts. In this way, the redun- 
dant a inputs are combined to two new primary inputs, 
which are set to zero during normal operation. 

The presented test patterns force the terminal carry 
lines to have the same assignment as the initial ones 
should have. Therefore, it is possible to connect them 
without affecting the applicability of the test. This does 
not cause an error during normal operation because the 
product of two n-bit numbers is a Sn-bit number. Thus 
all terminal carries (and the initial ones with them) are 
set to zero during normal multiplication. 

In a design that need not supply testability the 
redundant a inputs and initial carry lines would be 
connected to ground. 

Corollary 6 Eliminating 3(n - 1) redundant primary 
inputs of the multiplier by using n - 2 new inter- 
nal connections and 2 additonal ports does not afect 
the multiplier’s testability. It remains C-testable with 
17 patterns. 

The proposed modifications are shown in Figure 14. 
In this diagram the new wiring requires more area than 
necessary. The picture is given in this way for the sake 
of clarity. Compact symbolic designs which were made 
for the original and modified version of the multiplier 
with the chip design system CADIC (see [HBKMOI) 
show that the hardware overhead in chip area is only 
about 3%. 

Figure 14: Modified 4-bit multiplier (additional 
are dashed) 

4 Summary and concluding 
marks 

lines 

re- 

The testability according to the single cellular fault mo- 
del of a fast modified Wallace tree multiplier has been 
investigated. A new sufficient criterion for C-testability 
in tree structures has been developed and applied to the 
multiplier. It has been shown that the multiplier is C- 
testable by 17 patterns. Compared to a design that 
need not supply testab.ility, only some internal wiring 
and two additional ports are provided. 

Further work ([Ha]) has been done for constructing 
an efficient C-test of 49 patterns for single stuck-open 
faults. 

5 Appendix: Proof of Theo- 
rem 5 

It has to be shown that all input combinations can be 
brought to all AND gates and all full-adders by 17 pat- 
terns. For this we use the transitions given in Table 1. 

The sets Tl = {tl}, T2 = (tz) and T3 = (t3,td) 
consist of l-repeatable transitions and fulfill Lemma 2. 
So it follows along with Lemma 3 that tl, tg, t3 and 
t4 can be applied to all 4to2-cells by four patterns. 
The corresponding assignments to the full-adders can 
be seen in Table 1. These are in the notation (z,v,z) 
(see Figure 3) for the upper full-adders (O,O, 0), (1, 1, l), 
(O,l,O), (l,O, 1) and for the lower full-adders (O,O,O), 
(1, 181)s (1, 1, 01, (O,O, 1). 

The sets 74 = {(t6,t6),(t7,ts),(tQ,tlO)~ (Exam- 

ple 3) and Ts = {(t11,t12),(t13,t14), (h6,t16),(h7,t18)} 
of a-repeatable transitions also satisfy the condition 
of Lemma 2. Unfortunately, it is not possible to 
obtain these transitions by setting the primary in- 
puts. So we use the strategy described in Exam- 
ple 4. We put the double transitions of Ts = 
((tlQ,t2O),(t2l,t22),(t23,t24)} above those Of 6. Thus 
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tran- 
sition 

t1 

h 

t3 

tr 

t5 

t6 

t7 

ts 

fo 

t10 

t11 

t1a 

t13 

t14 

t15 

t16 

t17 

t18 

t10 

tso 

tz1 

t22 

t23 

t24 

t2s 

t26 

tn7 

t28 

t29 

t30 

t31 

t32 

t33 

t34 

t35 

t36 

t37 

t38 

t39 

t40 

t41 

t42 

t43 

t44 

:L, R, 0, Ci,, C&t> 
I( 

(To,To,Ts,Ta,To) 
(TI.Ts,T~,To,T~) 

(To,Ta,To,To,Tl) 
(T~,To,TI,TI,T~) 
(To,Tl,To,Ts,Ti) 

(To,T1,TQd'oj 

(To,Tz,Ta,To,To) 

(TI,TI,TI,TI,Ts) 
(T2,To,Ts,Tl,To) 
(To,Ts,To,To,Td 

(Tl;Tdi,Td’aj 
(To,To,T2,Tz,To) 
(Tl,Tl,To,To,T2) 
(T~,To,To,T~,Tl) 

:ombinatione applied to 
apper FA 

Table 1: Used transitions 

lower FA 

the 4toZcells in the highest level receive the transiti- 
ons of Ts while in the remaining levels the transitions 
of 7” are applied. Exchanging the assignments of adja- 
cent reduction trees leads to six patterns that bring 
(among others) (I, l,O), (O,l, I), (l,O,O) to the upper 
full-adders in lower levels, (0, 1, l), (0, 1, 0), (1, 0,l) to 
the lower full-adders in lower levels, (l,O,O), (O,O, I), 
(O,l, 1) to the upper full-adders in the highest level, 
and (0, l,O), (l,O, 0), (l,O, 1) to the lower full-adders in 
the highest level. 

similiau 

iie of T 

way the transitions of 

t2Stt26),(~27,~28),(~29rt30)~(h~32)) are put 

fill Lemma 4:‘ 
The transitions of T7 don’t fuE 
So a further extension is re- 

quired. This is done by the transitions of 7s = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Now 
we get generatable 2-periodic patterns. The assign- 
ments of adjacent trees don’t have to be exchanged 
since the patterns dwd from Tc bring the same set 
of single transitions to adjacent reduction trees. Hence, 
four patterns are sufficient to apply (O,O, 1) to the up- 
per full-adders and (1, 0,O) to the lower ones in all levels 
except the two highest ones. Note that the same four 
patterns also bring the combination (l,O, 0) to all lower 
full-adders in the second highest level by the transitions 
hS Or t28. 

So far, all but the following input combinations are 
brought to the full-adders: (O,O, 1) to the upper full- 
adders in the second highest level, (1, 1,0) to the upper 
full-adders iu the highest level, and (0, 1,1) to the lower 
full-adders in the highest level. 

The remaining assignments for the highest level are 
achieved by simultaneously applying t43 to all 4to2-cells 
in this level (one pattern). This leads to a l-periodic 
pattern that is generatable according to Lemma 3. 

For the laching combination in the second highest 
level, we use tll. This transition in all 4to2-cells of this 
level can be forced by applying tl and t3 resp. to the 
nodes iu the highest level. Again Lemma 3 guarantees 
the generatability. 

We have not yet considered the AND gates. One 
can easily see that 71 applies (0,O) when both a and 
b inputs are set to 0, ?a applies (1, I), and Ta applies 
(l,O). (The first components of the bit pairs stand for 
the a inputs and the second ones for the b inputs of the 
AND cells.) The remaining input (0,l) is obtained by 
one more pattern (set all a inputs to 0 and all b inputs 
to 1). 

So it follows that 17 patterns apply all input combi- 
nations to all basic cells which completes the proof. 
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