
Optimal-Time Multipliers and C-Testability

Bernd Becker Joachim Hartmann
Fachbereich 20 - Informatik Lehrstuhl Prof. Hotz

Johann Wolfgang Goethe-UniversitZt Fachbereich 14 - Informatik
D-6000 Frankfurt/Main

West Germany

Abstract

After a brief review on testability aspects of parallel
arithmetical units we focus on n-bit multipliers and
especially consider a class of Wallace tree multipliers
made suitable for VLSI design by Vuillemin and Luk
[VULU].

It is shown that for these circuits both optimal run-
ning time and optimal test complexity can be obtained.
A complete test set according to the single cellular fault
model is presented. (In this case, the single cellular
fault model is superior to the classical single stuck-at
model.) The proposed test only consists of 17 pattern8
for all n. Hence, the multiplier is C-testable, i.e. it can
be tested by a number of input combination8 which is
independent of the number of cells in the circuit.

The extra test hardware is very small. Only two ad-
ditional ports and n - 2 internal connections are neces-
sary.

Keywords: Testability of regular structures, paral-
lel multipliers, test complexity, C-testability.

1 Introduction

Many parallel architectures result in regular designs,
since they often consist of a large number of similiar
subcircuits with small, simple interfaces. Moreover, re-
gular structures have become more and more attractive
with the advent of very large scale integration (VLSI).
In many cases their geometrical regularity facilitates
placement and routing problems, and their hierarchy
may allow a reduction in the immense number of data
that occur during the design process of a large circuit.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Universitit des Saarlandes
D-6600 Saarbriicken

West Germany

As indicated above regularity offers a lot of advan-
tages in designing circuits. We now turn to the que-
stion how it can be used for testing. The examination
of this issue yields test strategies for whole classes of
circuits instead of some patterns for one special imple-
mentation as is the case in usual automatic test pattern
generation. Well-known examples for regular structu-
res are iterative logic arrays (ILAs), programmable lo-
gic arrays (PLAs), and arithmetic units. For these of-
ten used circuits testability aspects have been conside-
red in [fi,SrHa,ChPa] (1LA8), [Fu,RoRa] (PLAs), and
[FeSh,BhHa,Be,BeSp,ChAb,Ho] (arithmetic units).

Here, we are interested in parallel architectures re-
alizing arithmetic functions. For these circuits two im-
portant quality meaSures are performance and test size.
In previous papers, efforts were made to optimize one
of these measures, but optimality in both was not ob-
tained. So the question arises whether this trade off
between running time and number of test patterns is
inherent or is caused by “unskillful” implementations.
As we will see in this paper, it is possible to combine op-
timal running time with optimal test size for a parallel
multiplier.

Good testability for adders and multipliers can be
achieved by combining full-adder8 to ILA8. In this case,
the known test techniques for ILAs can easily be ap-
plied. By this strategy, Ferguson and Shen have succee-
ded in constructing a C-test for a n-bit array multiplier
([FeSh]). That means, the number of test patterns is a
constant independent of n.

Other examples of circuits that are C-testable and
have time delays linear in n are given in [ChAb].

Hong has also proposed a multiplier with running
time 0(n) ([Ho]). Th’ IS circuit requires 3n + 60 test
pattern8 while it manage8 with the minimum number of
adder cell8 if the extra test hardware is not considered.

However, the major disadvantage of these structures
is the suboptimal running time that is at least linear
with the operands’ bit width n.

High-speed realizations of arithmetic functions take
time O(log n). Battacharya and Hayes have introduced

0 1990 ACM 089791-370-1/90/0007/0146 $1.50 146

http://crossmark.crossref.org/dialog/?doi=10.1145%2F97444.97680&domain=pdf&date_stamp=1990-05-01

fast and easily testable arithmetic units that are based
on tree-like structures ([BhHa]). By providing extra
test hardware in each basic cell they have been able to
apply a level-by-level test strategy that results iu tests
of size O(log n).

In a previous paper ([Be]), a fast n-bit multiplier has
been examined. It is a modified Wallace tree ([Wa]),
which has been adapted for VLSI design by Vuille-
min and Luk ([VuLu]). The test presented consists of
4 log n + 3 input combinations and only requires slight
hardware modifications.

In this paper, we propose a C-test for this multi-
plier. 17 patterns form a complete test according to
the single cellular fault model (which iz superior to the
single stuck-at fault model in this case [Be]). Thus we
succeed in combining (asymptotically) optimal running
tilne with C-testability in the case of a multiplier.

The very regular design of the multiplier in [VuLu]
is achieved by introducing redundant parts with redun-
dant primary inputs. The C-test is developed under
the assumption that these redundant inputs and cer-
tain carry inputs are accessible. During normal ope-
ration these inputs have to be set to zero. Thus in a
design that need not supply testability they could be
connected to ground. An analysis of the employed pat-
terns reveals that it is possible to dispense with all but
two of these inputs if n - 2 internal connections are
provided. This test overhead is very small compared to
other easily testable multipliers ([FeSh]: n full-adders
and 7 extra inputs, [ChAb]: n - 1 XOR gates and 5 ex-
tra inputs, [Ho]: n OR gates, n2 transfer gates, and 1
extra input, [BhHa]: extra hardware in each basic cell).

This paper is structured in the following way:
In section 2, the logic design of the tree multiplier is

considered.

Section 3 defines the fault model and gives the main
ideas for the construction of the test. (The detailed
discussion of the test patterns can be found in the ap
pendix.) One of the key *ideas is to use a sufficient
criterion for C-testability in tree-like structures which
is developed in Section 3.2.

2 The multiplier

2.1 Logical structure

For the construction of the tests knowledge of the multi-
plier’s structure is necessary. So we start with a logical
description of the circuit.

Let a, ... al and b, . a. b1 be the binary representa-
tions’ of the two numbers a and b. For simplicity we
assume n to be a power of 2. The product of a and b is

ia,, and b, are the most significant bita

Figure 1: Reduction part of a 16bit multiplier

equivalent to the sum of the partial products pi,. . . ,pn,
which are given by pi = a-bi .2”‘. Fast multiplication is
accomplizhed by summing up the partial products by
tree-like structures. For this we use &o&reductions2
which receive four 2n-bit numbers as inputs and com-
pute two 2n-bit numbers such that the sum of the in-
puts is equal to the sum of the outputs. They are ar-
ranged as a binary tree of depth log,(n) - 1, which is
fed with the partial products (Figure 1). Thus the cir-
cuit computes two Prz-bit numbers whose sum equals
the product a . b. In the sequel, the subcircuit con-
taining the 4to2-reductions iz said to be the reduction
part. Since the delay of a 4toZreduction is indepen-
dent of n and the computation of the partial products
can be performed in constant time, the circuit takes
the (asymptotically) optimal time O(log(n)). We will
investigate its testability in section 3.

A final Pn-bit adder has to be connected to the mul-
tiplier to deliver the result of the multiplication repre-
sented as one number. This should be a fast adder with
running time O(logn) (see e.g. [BrKu], [LaFi],]BeKo],
[BeSp]) in order to preserve the asymptotically optimal
delay of the multiplier.

To make the multiplier’s construction clearer, we will
describe in the next two sections how the partial pro-
ducts are generated and how the reduction part is built

up.

2.2 Generation of the partial products

Figure 2 gives the detailed structure of the part that ge-
nerates the partial products. In the diagram the bullets
represent the logical AND of the signals encountering
there. The binary representation of pi can be found in
the ith row of the AND array, it is pi,, . - . pi,l. For-
mally, pi,i is given by pi,i = bi . oi-i+l. The a-inputs
aan,. . . , a,+1 and ao, a-l,. . . , a-,+2 are so-called re-
dundant inputs, which are set to zero during normal
operation. They are introduced to allow a very regu-
lar design that can easily be adapted to a generator
for VLSI design systems, az it waz done for CADIC
([HBKMO]) and VENUS ([HNS]).

“A 4to2-reduction consists of two carry nave adders.

147

bz

Figure 2: Generation part

2.3 The reduction part

We build 4to2-reductions for k-bit numbers using l-bit
reductions which take carries into account. These basic
cells are called #t&cells and consist of two full-adders
each (Figure 3). A full-adder (FA) produces a sum
bit and a carry bit of three input bits. We call FA1
in Figure 3 the upper full-adder and FA2 the lower
one. If we arrange k 4to2-cells as a chain by linking
the carries, the result will be a k-bit 4toZreduction.
We call the primary carry inputs of a 4to2-reduction
initial and the primary carry outputs terminal carry
lines. When the initial carries are set to zero, the circuit
reduces four numbers to two. Note that each signal
at most passes two full-adders. Thus the computation
performed by a k-bit 4to2-reduction takes the time of
two full-adder delays and does not depend on k. As
was already mentioned in section 2.1, we construct the
multiplier’s complete reduction part by arranging 2n-
bit 4to2-reductions as a tree. From the view of bit slices,
there are 2n cascaded single trees (reduction trees) of
depth log,(n) - 1. A reduction tree of depth 1 consists
of one 4to2-cell. Inductively, a reduction tree of depth
k + 1 is defined as follows: its root is a 4to2-cell whose
left and right input bit pairs are fed by the output bit
pair of a reduction tree of depth k each. The output
bit pair of a reduction tree is the output bit pair of
its root. In the sequel, we look upon the root’s level
as the lowest one and the leaves’ level as the highest
one. Figure 4 shows the cascadation of the reduction
trees in a perspective manner. The horizontal (carry)
leads are omitted. The last tree (which produces the
terminal carries) computes the most significant bits of
both output numbers. We denote it by treep, and,
analogeously, the tree for the jth output bit pair by
treej for j = l,.. ., 2n. The values of the reduction
trees’ vertical inputs can also be seen in Figure 4. The
input bits pi,j correspond to the entries pi,j in the array
of Figure 2. Identification of the signals shows that the
‘th 3 column of the AND array computes the input vector

of treei.

A planar design can be accomplished by projecting
this ‘three dimensional structure’ in a plain. Figure 5
shows the result. Each column (bit slice) corresponds
to a reduction tree augmented by the AND gates that
produce its input vector. The square cells are the AND
gates while the other ones are the full-adders (for a
formal description of the layout see [Be]).

3 Construction of a C-test

3.1 The fault model

We assume that a single basic cell (AND cell or full-
adder) in the circuit can permanently fail in an arbi-
trary manner as long as its behavior remains combina-
tional (single cellular fault model). With regard to this
assumption, it iz necessary to apply all possible input
combinations to each cell and to propagate any faulty
signal produced at the cell’s outputs to a primary out-
put of the multiplier.

It can be shown (see]Be]) that in the case of the
presented multiplier the single cellular fault model is
more general than the often used single stuck-at fault
model.

inputs

out-
w-
ing

car-
ries

I I [I

f t
outputs

Figure 3: 4to2-cell

in-
co-
ming
car-
ries

148

3.2 Construction of the test

The next two sections give the main ideas for the con-
struction of the C-test. In the appendix there is a de-
tailed description of the patterns.

We will proceed in the following way:
First of all, we show that fault propagation is very

simple for the multiplier. By investigating constant te-
sting in tree structures we succeed in constructing a
C-test for the multiplier’s reduction part. This test,
however, cannot be applied by setting the primary in-
puts. Therefore, we examine how to modify the test to
get an applicable one.

We concentrate on tests for the full-adders because
the AND gates can easily be controlled by setting the
multiplier’s inputs.

Now we start with the details:

Lemma 1 ([Be]) If exactly one basic cell jails for any
input combination of the circuit, then at least one faulty
signal is propagated to a primary output of the multi-
plier on applying this input pattern.

Proof: We only give a sketch of the proof. When a
full-adder receives exactly one faulty signal, it propaga-
tes this fault by its sum output (s) which computes the
parity of the three inputs. The circuit’s wiring ensures,
in fact, that for every wrong behavior of a basic cell,
there exists a full-adder in the next level which gets ex-
actly one faulty input. Inductively, it follows that the
fault propagates until it reaches a primary output. n

Lemma 1 is very useful. It asserts that to test a basic
cell for any assignment to its inputs, it suffices to choose
any pattern that applies this assignment to the cell. It
is not necessary to take a special input combination for
propagating the fault to a primary output.

To develop a sufficient criterion for C-testability in
tree structures, we consider a cell C realizing a Boolean
function j : B2k + Bk where k E N and B = (0, 1).
The inputs of C are assumed to be separated in k left

Pl,l Pn.1

treezn

Figure 4: Reduction trees forming the multiplier’s re- Figure 6: Cell C and symbolic representation of a tran-
duction part sition t

Figure 5: Layout of a I-bit multiplier

and k right ones. Now it is possible to construct a
binary tree of several cells of type C by connecting the
outputs of cells to left or right inputs of other cells. We
denote a transition of C by t = (L, R, 0) E B” x Bk x
Bk where L (R) is applied to the left (right) inputs,
and 0 is the output implied. For illustration we will
sometimes use a symbolic representation of a transition
as is shown in Figure 6.

We are now able to formulate the next lemma:

Lemma 2 Let 7 = {tl, t2,. . . , tm} with t; =
y,&,Oi) for i = l,..., m be a set of transitions of

If there are permutations 1, r : (1,. . . , m} -+

(1 , . . . , m) which fulfill

Li = Q(i) and & = O,(i) for i = 1,. . . , m

(i.e. the output ualuea permutatedly occur on the left
and right inputs), then the transitions tl,. . . , t, can be
applied to all cells of any binary tree oj cells C by m
patterns.

Proof: First of all, we present a scheme to construct
an assignment to the nodes of the tree that only uses
transitions of 1. We apply any t E T, say tl, to the
tree’s root. In this case, L1 (RI) is the output of the
left (right) subtree over the root. Let z = 1(l) and
y = r(l), then L1 = 0, and RI = 0,. So t, (tv) can
be applied to the root’s left (right) parent node. An
assignment to all nodes can be made by going on in
this way.

Beginning with t2,. . . , t, instead of tl as value of the
root we are able to construct m different assigments to

149

the tree. We show that for any node the m patterns
apply m different transitions. Obviously this is true for
the root. This implies m different output values of the
root’s left and right parent node. Thus it inductively
follows for all nodes that the m patterns imply m dif-
ferent transitions. Since only the transitions tl, . . . , t,
are used, all transitions are applied to each node. n

Example 1: Let C be a cell that computes the I+
gical exclusive OR (XOR) of two bits. For C there
exist the following four transitions: ti = (O,l, l),
t2 = (l,O, l), ts = (O,O,O), and t4 = (l,l,O). The
permutations I and r with 1(l) = 4,1(2) = 2,1(3) =
3, j(4) = l,r(l) = l,r(2) = 4, r(3) = 3 and r(4) = 2
fulfill the conditions of Lemma 2. Since every fault is
propagated to the primary output, a tree of XOR cells
is C-testable by four patterns. The four assignments of
Figure 7, which are constructed according to the proof
of Lemma 2, test every XOR cell in a tree of depth 3
for all input combinations. n

01101101 10110110

Figure 7:

Now we try to apply the above lemma to the mul-
tiplier’s reduction part. Here the cell C is a 4to2-cell.
To denote the carry lines, we define a transition of a
4to2-cell as a tupel t = (L, R, 0, Ci,, Cm,) E (B x B)6
where L, R, and 0 are as introduced before, and Ci”,
C out stand for incoming and outgoing carries (see Fi-
gure 8). It is clear that the last lemma can be applied
to the 4to2-cell if the carry lines are ignored.

To keep the test set’s cardinality low, we want to ap
ply certain transitions not only in one reduction tree
but simultaneously in many trees. This can be done by
(preliminary) confining to such transitions whose inco-

L R

t= Cim

c
Y art

0

Figure 8: Transition of a 4to2-cell

ming and outgoing carries are the same, i.e. transitions
t = (L, R, 0, Ci,, C,t) where Ci, = Gout. They are
called l-repeatable transitions

Example 2: Consider the l-repeatable transitions
given in Figure 9. They satisfy the conditions of
Lemma 2 if the permutation I and r are Z(1) = 1,
Z(2) = 2, r(1) = 2 and r(2) = 1. For the values of L, R,
0, G, and Gut, we use the abbreviations To = (O,O),
Tl = (0, l), Ts = (1,0) and T3 = (1,l) (T; = (z, y) iff
(2, y) is the binary representation of i for i = 0, 1,2,3).

The method presented in the proof of Lemma 2 allows
applying the transitions tl and t2 to all 4to2-cells of one
single tree by two patterns. n

l-1 T2
t1 = Tl

Y Tl
T1 T2

Figure 9:

On condition that the initial carry lines are conveni-
ently set, the same assignment can simultaneously be
applied to all reduction trees by means of l-repeatable
transitions. In this way, we succeed in generating some
but not ail input combinations to the full-adders by
a number of patterns independent of the multiplier’s
sire. It can be proven that f2(logn) patterns will be
necessary to test a n-bit multiplier if only l-repeatable
transitons are used (see [Ha]).

In [Be], 4Iog(n)+3 patterns are shown to be sufficient
for a complete test. For this a level-by-level strategy is
used. That means, all full-adders of one level are tested
by applying the same transition to all 4to2-cells of this
level. This is done for each level.

To eliminate the test size’s dependence on n, we con-
sider g-repeatable transitions. These are pairs of tran-
sitions having the property that the outgoing carries of
one transition are the same as the other’s incoming ones
and vice versa, i.e. transitions t = (L, R, 0, Gin, C,,t)
and t’ = (L’, R’, 0’, C,!,, C&J where Ci, = CAUt and
C out = Cl,. ‘L-repeatable transitions can be regarded as
one do&e transition, whose left and right input value
are (L, L’) and (R, R’) respectively and whose output
value is (0,O’).

Example 3: The three double transitions of Fi-
gure 10 again fuRi Lemma 2. Hence, they can be ap-
plied to all the 4to2-cells of two adjacent reduction trees
by three patterns. As the transitions are 2-repeatable,
it is possible to repeat the same assignment in each
second tree. If the assignments in odd and even sub-
scripted reduction trees are exchanged, each single tran-
sition of the double transitions will be brought to all
4to2-cells of the multiplier. n

150

Figure 10:

A detailed analysis shows that for each input combi-
nation of a full-adder, there exists a l- or 2-repeatable
transition that brings this combination to the full-adder
and that belongs to a set of transitions as described in
Lemma 2. But the problem of generating the corre-
sponding patterns via the AND gates remains. This
problem is considered in the next section.

3.3 Generation of the test patterns

For the proofs of the following lemmas, it is necessary to
know which input vectors a reduction tree receives. In
Section 2.3, it was already mentioned that the vertical
inputs of treei are the entries of the ish column in
Figure 2.

In the sequel, we speak of 1- and Speriodic patterns.
These are the values of the reduction trees that will
be caused by applying l- and 2-repeatable transitions
respectively, if the assignment of treei equals that one
oftreei+rfori= l,..., 2n- 1 (l-periodic patterns) and
if the assignments of treei and treei+ are the same for
i=l ,-**, 2n - 2 (2-periodic patterns) respectively.

Lemma 3 ([Be]) Any l-periodic pattern can be achie-
ved by setting the multiplier’s primary inputs.

Proof: l-periodic patterns result in the same as-
signment for all reduction trees. It follows that all co-
lumns of the AND array have the same values. Thus
the binary representation of pi must be either 0. e-0
or l-.. 1 for i = 1,. ..,n. These patterns can be ge-
nerated by setting all a inputs to 1 and bi = 0 if pi’8
representation is 0 f + . 0 and bi = 1 otherwise. n

The generation of 2-periodic patterns is more diffi-
cult. There are even patterns that are not achievable
at all by assigning the primary inputs.

A successful idea is to generate the required tran-
sitions a constant number of levels beneath the leaves.
Then the remaining levels can be tested by the level-by-
level method. To do that, we classify the generatable
P-periodic patterns. In Figure 11, an achievable assi-
gnment of the AND array is depicted. It is obtained
by setting all b inputs to 1 and the a inputs to 0 and 1
alternately. For this input combination, all 4to2-cells in
the highest level receive Tr and T2 resp. as input pairs.

Lemma 4 Given a Speriodic pattern. Let tree and
tree’ be two adjucent trees. If the inputs for the dtot
cells in the highest level of tree are from the set {To, Tl}

J”/l/o/l/oJIJo/l
0 1 1 0 0 1 0 1-1

JO
1010 10 1 0-l

Jl
0 0 1 1 0 1 0 1-1

JO
1 0 1 0 1 0 1 o-1

Figure 11: Generatable values by the AND array

and those of tree’ are from (To, Tz)# then the pattern is
generatable by appropriately Jetting the primary inputs.

Proof: The case that tree and tree’ have no To as
inputs of 4to2-cells in the highest level is already consi-
dered (see Figure 11). The other cases are constructed
from the above one by setting some hi’s to zero. w

If a a-periodic pattern is not generatable, we can try
to apply a pattern that satisfies the condition of the
above lemma and yields the desired transitions from
some deeper level on.

Example 4: The double transitions of Example 3
have (To, Ta), (Ts,Tz) or (To,Tl) as left and right in-
puts. The double transitions of Figure 12 have these
values as outputs. Thus these transitions “fit” to those
of Example 3 and can be put above them.

Figure 12:

Furthermore, by conveniently setting the initial carry
lines a generatable pattern of period 2 is produced. This
follows from Lemma 4 and the fact that the 4to2-cells
in the highest level of two adjacent trees now have To,
T2 and To, Tl resp. as inputs.

TI TI To TI TI To Tl Tl

Ta To Ta Ta To Ta Ta

To

Figure 13: A generatable L-periodic pattern

151

Figure 13 shows the situation for two reduction trees
where the carries are omitted. The nodes in the two
lower levels are labelled by transitions of Example 3.
The corresponding values are not generatable by the
AND array. Extending by the transitions of Figure 12,
however, results in an achievable a-periodic pattern. n

These strategies allow proving:

Theorem 5 The multiplier is C-testable according to
the single cellular fault model. 17 patterns are suficient
/or a complete teat.

The detailed proof of this theorem is given in the
appendix. The l- and 2-repeatable transitions in the
appendix, which exhaustively test, the full-adders and
fulfill Lemma 2, were found by a computer program.

3.4 Reduction of redundant inputs

So far, we have assumed that the redundant a inputs
and the initial carry lines are controllable. This need
not be required. Since each second a input. gets the
same value during testing, the redundant a inputs with
even subscripts can be connected. This is also possible
for those with odd subscripts. In this way, the redun-
dant a inputs are combined to two new primary inputs,
which are set to zero during normal operation.

The presented test patterns force the terminal carry
lines to have the same assignment as the initial ones
should have. Therefore, it is possible to connect them
without affecting the applicability of the test. This does
not cause an error during normal operation because the
product of two n-bit numbers is a Sn-bit number. Thus
all terminal carries (and the initial ones with them) are
set to zero during normal multiplication.

In a design that need not supply testability the
redundant a inputs and initial carry lines would be
connected to ground.

Corollary 6 Eliminating 3(n - 1) redundant primary
inputs of the multiplier by using n - 2 new inter-
nal connections and 2 additonal ports does not afect
the multiplier’s testability. It remains C-testable with
17 patterns.

The proposed modifications are shown in Figure 14.
In this diagram the new wiring requires more area than
necessary. The picture is given in this way for the sake
of clarity. Compact symbolic designs which were made
for the original and modified version of the multiplier
with the chip design system CADIC (see [HBKMOI)
show that the hardware overhead in chip area is only
about 3%.

Figure 14: Modified 4-bit multiplier (additional
are dashed)

4 Summary and concluding
marks

lines

re-

The testability according to the single cellular fault mo-
del of a fast modified Wallace tree multiplier has been
investigated. A new sufficient criterion for C-testability
in tree structures has been developed and applied to the
multiplier. It has been shown that the multiplier is C-
testable by 17 patterns. Compared to a design that
need not supply testab.ility, only some internal wiring
and two additional ports are provided.

Further work ([Ha]) has been done for constructing
an efficient C-test of 49 patterns for single stuck-open
faults.

5 Appendix: Proof of Theo-
rem 5

It has to be shown that all input combinations can be
brought to all AND gates and all full-adders by 17 pat-
terns. For this we use the transitions given in Table 1.

The sets Tl = {tl}, T2 = (tz) and T3 = (t3,td)
consist of l-repeatable transitions and fulfill Lemma 2.
So it follows along with Lemma 3 that tl, tg, t3 and
t4 can be applied to all 4to2-cells by four patterns.
The corresponding assignments to the full-adders can
be seen in Table 1. These are in the notation (z,v,z)
(see Figure 3) for the upper full-adders (O,O, 0), (1, 1, l),
(O,l,O), (l,O, 1) and for the lower full-adders (O,O,O),
(1, 181)s (1, 1, 01, (O,O, 1).

The sets 74 = {(t6,t6),(t7,ts),(tQ,tlO)~ (Exam-

ple 3) and Ts = {(t11,t12),(t13,t14), (h6,t16),(h7,t18)}
of a-repeatable transitions also satisfy the condition
of Lemma 2. Unfortunately, it is not possible to
obtain these transitions by setting the primary in-
puts. So we use the strategy described in Exam-
ple 4. We put the double transitions of Ts =
((tlQ,t2O),(t2l,t22),(t23,t24)} above those Of 6. Thus

152

tran-
sition

t1

h

t3

tr

t5

t6

t7

ts

fo

t10

t11

t1a

t13

t14

t15

t16

t17

t18

t10

tso

tz1

t22

t23

t24

t2s

t26

tn7

t28

t29

t30

t31

t32

t33

t34

t35

t36

t37

t38

t39

t40

t41

t42

t43

t44

:L, R, 0, Ci,, C&t>
I(

(To,To,Ts,Ta,To)
(TI.Ts,T~,To,T~)

(To,Ta,To,To,Tl)
(T~,To,TI,TI,T~)
(To,Tl,To,Ts,Ti)

(To,T1,TQd'oj

(To,Tz,Ta,To,To)

(TI,TI,TI,TI,Ts)
(T2,To,Ts,Tl,To)
(To,Ts,To,To,Td

(Tl;Tdi,Td’aj
(To,To,T2,Tz,To)
(Tl,Tl,To,To,T2)
(T~,To,To,T~,Tl)

:ombinatione applied to
apper FA

Table 1: Used transitions

lower FA

the 4toZcells in the highest level receive the transiti-
ons of Ts while in the remaining levels the transitions
of 7” are applied. Exchanging the assignments of adja-
cent reduction trees leads to six patterns that bring
(among others) (I, l,O), (O,l, I), (l,O,O) to the upper
full-adders in lower levels, (0, 1, l), (0, 1, 0), (1, 0,l) to
the lower full-adders in lower levels, (l,O,O), (O,O, I),
(O,l, 1) to the upper full-adders in the highest level,
and (0, l,O), (l,O, 0), (l,O, 1) to the lower full-adders in
the highest level.

similiau

iie of T

way the transitions of

t2Stt26),(~27,~28),(~29rt30)~(h~32)) are put

fill Lemma 4:‘
The transitions of T7 don’t fuE
So a further extension is re-

quired. This is done by the transitions of 7s =
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Now 
we get generatable 2-periodic patterns. The assign- 
ments of adjacent trees don’t have to be exchanged 
since the patterns dwd from Tc bring the same set 
of single transitions to adjacent reduction trees. Hence, 
four patterns are sufficient to apply (O,O, 1) to the up- 
per full-adders and (1, 0,O) to the lower ones in all levels 
except the two highest ones. Note that the same four 
patterns also bring the combination (l,O, 0) to all lower 
full-adders in the second highest level by the transitions 
hS Or t28. 

So far, all but the following input combinations are 
brought to the full-adders: (O,O, 1) to the upper full- 
adders in the second highest level, (1, 1,0) to the upper 
full-adders iu the highest level, and (0, 1,1) to the lower 
full-adders in the highest level. 

The remaining assignments for the highest level are 
achieved by simultaneously applying t43 to all 4to2-cells 
in this level (one pattern). This leads to a l-periodic 
pattern that is generatable according to Lemma 3. 

For the laching combination in the second highest 
level, we use tll. This transition in all 4to2-cells of this 
level can be forced by applying tl and t3 resp. to the 
nodes iu the highest level. Again Lemma 3 guarantees 
the generatability. 

We have not yet considered the AND gates. One 
can easily see that 71 applies (0,O) when both a and 
b inputs are set to 0, ?a applies (1, I), and Ta applies 
(l,O). (The first components of the bit pairs stand for 
the a inputs and the second ones for the b inputs of the 
AND cells.) The remaining input (0,l) is obtained by 
one more pattern (set all a inputs to 0 and all b inputs 
to 1). 

So it follows that 17 patterns apply all input combi- 
nations to all basic cells which completes the proof. 

153 



6 References 

(BhHa] D. Bhattacharya, J.P. Hayes: ‘Fast and 
Easily Testable Implementation of Arith- 
metic Functions’, Proc. 1986 Int. Symp. 
Fault-Tolerant Computing, pp. 324-329 

[Be] B. Becker: ‘An Easily Testable Optimal- 
Time VLSI-Multiplier’, Acta Informatica 
24, 1987, pp. 363-380 

[BeKo] B. Becker, R. Kolla: ‘On the Construction 
of Optimal Time Adders’, Proc. of the 5th 
STACS, 1988, Lecture Notes in Computer 
Science 294, Springer, pp. 18-28 

[BeSp] B. Becker, U. Sparmann: ‘A Uniform Test 
Approach for RCC-Adders’, Proc. of the 
3rd Aegean Workshop of Computing, 1988 

[BrKu] R.P. Brent, H.T. Kung: ‘A Regular Layout 
for Parallel Adders’, IEEE Tkans. on 
Comp., Vol. C-31, 1 

[ChAb] A. Chatterjee, J.A. i 

2, pp. 260-264 

braham: ‘Test Gene- 
ration for Arithmetic Units by Graph Label- 
ling’, Proc. 1987 Int. Symp. Fault-Tolerant 
Computing, pp. 284-289 

[ChPa] Wu-Tung Cheng, J.P. Patel: ‘Multiple- 
Fault Detection in Iterative Logic Arrays’, 
Proc. 1985 Int. Test Conf., pp. 493-499 

[FeSh] J. Ferguson, J.P. Shen: ‘The Design of 
Easily-Testable Array Multipliers’, IEEE 
‘IYans. on Comp., Vol. C-33, 1984, pp. 554- 
560 

[Fr] A.D. Friedman: ‘Easily Testable Iterative 
Systems’, IEEE Trans. on Comp., Vol. C- 
22, 1973, pp. 320-323 

[Fn] H. Fujiwara: ‘A New PLA Design for Uni- 
versal Testability’, IEEE Trans. on Comp., 
Vol. C-33, 1984, pp. 745-750 

[Ha] J. Hartmann: ‘Ein C-Test fiir einen schnel- 
len Multiplizierer’, T.R., 2/1988, SFB 124, 
Saarbriicken 1988 

[Ho] Sung Je Hong: ‘An Easily Testable Parallel 
Multiplier’, Proc. 1988 Int. Symp. Fault- 
Tolerant Computing, pp. 214-219 

[HBKMO] G. Hotz, B. Becker, R. Kolla, P. Molitor, 
H.G. Osthof: ‘Hierarchical design based on 
a calculus of nets’, Proc. 24th Design Au- 
tomation Conference, 1987, pp. 649-653 

IHNS] E. Hijrbst, M.Nett, H. Schwktsel: ‘VE 
NUS: Entwurf von VLSI-Schaltungen’, 
Springer Verlag, 1986 

[LaFi] R.E. Ladner, M.J. Fischer: ‘Parallel Prefix 
Computation’, J. Ass. Comp. Mach., Vol. 
27, 1980, pp. 839-849 

[RoRa] M. Robinson, J. Rajski: ‘An Algorithmic 
Branch and Bound Method For PLA Test 
Pattern Generation’, Proc. 1988 Int. Test 
Conf., pp. 784-795 

[SrHa] T. Sridhar, J.P. Hayes: ‘Design of Easily 
Testable Bit-Sliced Systems’, IEEE Trans. 
on Comp., Vol. C-30, 1981, pp. 324-336 

[VuLu] J. Vuillemin, W.K. Luk: ‘Recursive Imple- 
mentation of Optimal Time VLSI Integer 
Multipliers’, IFIP Proc. VLSI’83, 1983, pp. 
155-168 

\Wa] C.S. Wallace: ‘A Suggestion for a Fast Mul- 
tiplier’, IEEE Trans. on Electronic Com- 
puters, EC-13, 1964, pp. 14-17 

154 


