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Abstract. We introduce a new preconditioner for solving 
a symmetric Toeplitz system of equations by the conjugate 
gradient method. This choice leads to an algorithm which 
is particularly suitable for parallel computations and, com- 
pared to the circulant preconditioner of [C33, has a better 
asymptotic convergence rate and a lower arithmetic cost 
per iteration. 

1. Introduction. Let A, = (ai-j), ~;,j = ali-j\ be 
an ?z x n real symmetric Toeplitz matrix, that is a matrix 
having constant entries down each diagonal. The solution 
of Toeplitz linear systems has many applications in sci- 
entific and engineering problems. Effective sequential al- 
gorithms for the solution of the system A,x = b with 
0( 1% log’ ?a) arithmetic operations have been devised in 
[BGY],[DH). Despite their arithmetic efficiency, all these 
algorithms are intrinsecally sequential and no implementa- 
tion in the PRAM model requiring less than 0( rz j parallel 
steps is known. In the PRAM model of parallel computa- 
tion we assume that at each step each processor can perform 
a single arithmetic operation. 

In [pR],cP], iterative methods for the parallel solution 
of Toeplitz systems have been considered. Such methods 
require 0(log2 ~1) parallel steps and O(rz*) processors, and 
have a quadratic convergence. 

Recently the preconditioned conjugate gradient method 
with circulant preconditioning has been proposed by Strang 
and Chart [S] , [C 11. Each iteration of this algorithm can be 
executed in O(log n) parallel steps with only 0(9x) proces- 
sors, since solving circulant systems, as well as comput- 
ing Toeplitz matrix-vector product, can be performed by 
means of F’FT. Under some additional hypothesis on the 
matrix A,, the convergence is proved with a superlinear 
rate. This makes preconditioned conjugate gradient meth- 
ods particularly suitable for the effective parallel solution 
of Toeplitz systems. 

In this paper we propose a new class of preconditioners. 
Instead of the class of circulant matrices as in [S],[Cll, i.e., 
the algebra generated by the unit circular-it matrix 
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we consider the class f defined in [BC] as the algebra 
generated by 

Since 7 systems can be solved by means of a sine transform 
[BC], the arithmetic cost of each iteration is reduced by a 
constant factor. Moreover, under the same assumptions on 
the matrix A, of [C3], we can prove a better convergence 
rate. 

Suppose that the matrices A,, n 2 1 are finite sections 
of a singly infinite symmetric mamx A,, generated by 
the real-valued function *f(z) = C~=~oc ujrj defined on 
the unit circle in the complex plane. Moreover, assume 
that f belongs to the Wiener class, that is CTzEbc ICLjl < 
+co; if the function f is positive, then all the matrices 
A, are positive definite [GS]. In [CSI the preconditioner 
is chosen as the circulant matrix C, copying the cen- 
tral diagonals of the Toeplitz matrix A,; for instance, if 
12 = 2172 then the first column of C, contains the entries 
ao,a1,...,am,a,-l,...,Ul. 

Our preconditioner is the T matrix T,, = A, -H,, where 
H, = (ki.,i) is a Hankel matrix whose antidiagonals are 
constant and equal to CQ,. . . ,~,-~,O,O,fl,a,-~, . . . ,u2, 
i.e., ki..i = h;+j-l, hk = ~~--(~-kl+l, h,+l = hn+2 = 

= 0. The circulant preconditioner C,, has the fol- 
kk%g properties (see [CS],[C3]): 
1) for any e > 0, the spectrum of C, lies on the interval 

[fmin - E, fmaz +e] for a sufficiently large 12, where fmin 
and .fmaz are the (positive) extremal values of f on the 
unit circle; hence, each iteration requires the solution of a 
circulant system whose condition number is independent 
of tz; 

2) the spectrum of Cql.4, is clustered around 1, so that 
the conjugate gradient method converges to the solution; 
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3) 

4) if the (1+ 1)-st derivative off exists and is continuous on 
the unit circle, then the error on the solution is reduced 

after 2q iterations by a factor of (q _cl)!W where c 
depends only on f and I. 
In the next section we will prove analogous properties _. . - 

for tne 7 precondlhoner Yr,: 

each iteration requires about $12 log n complex opera- 
tions; 

1’) 

;:; 

4’) 

for any E > 0, the spe&um of T, lies on the interval 
[fmjn - e, fnaz + ~1 for a sufficiently large 71,; 
the spectrum of T; A, is clustered around 1; 
each iteration requires about j$n log 72 complex opera- 
tions: 
under the assumptions on f as in 4), the error is reduced 

after 2q iterations by an asymptotical factor of c, c 

being the same constant as in 4). 
q!2’ 

Comparing the theoretical bounds of 4) and 4’), we have 
that, after 2q iterations, the bound on the error obtained by 
the T preconditioner is less than the bound of the circulant 

1 
preconditioner by the factor of ‘. For instance, for large 

q2’ 
values of 72, the theoretical estimate of the error given for 
the new preconditioner after 8 iterations is about 16’ times 
less than the analogous estimate proved in [C3]. 

In the last section we will consider a different choice of 
the preconditioner, that is the 7 matrix F,, which minimizes 
the Frobenius norm of the difference F,, - A,. We will 
give the explicit expression of F, and we will show that 
T,, and F, yield the same asymptotical convergence rate. 

2. Main results. We give an outline of the proofs of 
the properties displayed in the previous section. 

Concerning l’), we observe that T,, can be diagonal&d 
as follows [BC]: 

D, = Diag(al,. . , ,un), 

From the relation QnTn = D,Q,, we have 

u, _ Cyzl tj sin(jai) 
I- sin cki 

7ri 
where ai = - and (tl,. 

T,. It is eas;“tz Bee that 

. . , t,)T is the first column of 

n-l n-l 

Oi = a0 + 2Ul + 2 1 UjCOS(j,i) = Re( 1 aieii*i), 
.j=2 j=-n+1 

where ai = z. Therefore, since the argument of the 
real part is a $&al sum of the function f evaluated at 
the point eijai and f belongs to the Wiener class, we have 
ai E [fmin - -% fmaz + E], for a sufficiently large rz and 
t: > 0. 

Property 2’) can be proved in the following way. Since 
T;‘A, = I,, + T;IH,, it suffices to show that the eigen- 
values of T;‘H,, are clustered around 0. Let E > 0 be 
fixed; since f belongs to the Wiener class, we can choose 
LY such that Cz$+, 1~1 < E. 

The matrix H, can be split as 

The first matrix agrees with H, in the upper left and lower 
right (N - 1) x (IV - 1) submahices and vanishes in the 
other entries; its rank is not greater than 2(X - I). The 
2-norm of the second matrix can be easily bounded by 2e. 

By Cauchy interlace theorem IJNl, the inequalities 

hold for i = 1 , , , . , ?2., where the eigenvalues are labelled in 
nondecreasing order. Since giN’ has rank not greater than 
2( N - 1 ), for at least 77. - 2N + 2 values of i there exists 
an eigenvalue of H, lying on the interval [A, ( EiNN’) 
X,(EiN,N’)], which is included in [-2~,2e]. Apply& 
Courant-Fischer minimax characterization [WI to the sym- 
metric matrix T,-“2H,T11’2, which is similar to T;l H,, 
we have for large n 

hence, even the spectrum of T;l H, is clustered around 0. 
The clustering of the eigenvalues can be proved also by 

following the technique used in [CS], that is by relating the 
eigenvalue problem at the dimension n to a limiting singly 
infinite problem. For this purpose, the change of variable 

1,=l--1 x brings the initial problem A,x = XT,,x into 
the form Hnx = v&x. If n is even, by a suitable change 
of basis we can split the last problem of size rz into two 
subproblems of size $: 

(K + S.7)x = v+ (CT + R.T)x 

and 
(Ii- - 5-.7)x = v-p - R.7)x. 

The matrices K, R, S, U derive from the partitionings 

andH,= ($ ,J&),whileJis 

the “reflection matrix” . * 

L ) 

. 
1’ 0 

Proving analogous results as Lemma 1 and Theorem 3 
of [CS], it can be shown that each of these subproblems 
tends to the singly infinite problem K,y, = z+,=T,y,, 
where Km is a Hankel matrix with entries ~2, cz3,. . . and 
T, is a symmetric Toeplitz matrix with entries ao, al, . . . . 

Since K, is a compact operator, [CSI show that the 
limits 21~ are clustered around 0, and so are the eigenvalues 
Y for the size 72. We point out that this argument implies 
that every limiting eigenvalue, which the eigenvalues of 
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both subproblems tend to, must have at least multiplicity 
2: we will use this information later. 

Concerning 3) and 3’), at each iteration the computa- 
tional cost is dominated by three real discrete Fourier trans- 
forms for C,,, by three real sine transforms for T’, and by 
a Toeplitz matrix-vector product for both; since the cost of 
sine transform is twice less than Fourier transform, a sim- 
ple operation count gives the result mentioned in the first 
section. 

In order to prove 4’), we note that the assumptions on f I 
imply that IUjl < - I j,Kl 

for all j, where ? is the L’-norm 

on the unit circle of the (1 + l)-st derivative of f [K]. For 
every N, we consider the splitting (1) ; by using the above 
bound for aj as in [C31, for all b > 1 we obtain 

so that the 2-norm of EiN) is not greater than t( $ + 

(,2 _ h + 1)’ ). Asymptotically, this bound approaches 
1 

i: 
-. The difference EiN) - EiN+‘) is a symmetric ma- 
N’ 
trix of rank at most 4; we can express it as $(~&wfy’ + 

T &&qj -T _-m-T - wrJwhr 
the vectors wg, 6;. 

- uN2cN ), for a suitable choice of 
It is easy to prove by induction that 

H,, = Eil) = EiN’ + I,‘$ - 1’; , 

where the matrices 

are positive semidefinite and have rank not greater than 
2N - 2. 

Now we have to study the spectrum of the matrix Z’;l H, 

which is similar to Tc * H,,T[); this matrix can be ex- 
pressed as lZiN’ 

-1 -1 
+ v: - vi, where $$ = T,, z li’,fTn z 

has the same properties of 17; and the 2-norm of fiiN’ = 

TT *EiN’TL * can be asymptotically bounded by the quan- * 
tity L- ,yll’ E = &¶ by using Courant-Fischer minimax 

characterization. 
If the eigenvalues are labelled in nondecreasing order, 

Cauchy interlace theorem can be used to show that, for 
every i, 

&(T;‘H,) 2 -Xn--i+l(t’J + X,(fi;N,N,) 

1 -A n-i+1PJ - $- 1’ 

since X1( ri,‘) is nonnegative. Since v$ has low rank 
for at most the first and last 2X - 2 values of i the cor- 
responding eigenvalues of T;* H,, lie outside the interval 

[- $, + s]. If we label the eigenvalues of T;‘H, as 

p; 5 ~1 _< . , . 5 p? 5 p$, we get for alI N the inequal- 
ity 

(2) 

We recall from [GV] that the error Q of the conjugate 
gradient method, after q iterations, is reduced by a fac- 
tor which is not greater than the maximum value ]P,fx)], 
reached by an arbitrary polynomial P,r of degree Q and con- 
stant term equal to 1, over the spectrum of T;lH,. We 
will make a suitable choice of P, in order to estimate this 
factor under our assumptions. 

ForL=O,...,q- 1 let Pi be the quadratic polyno- 
mial, of consyt term l,*hat vanishes at the eigenvalues 
AZk (where X, = 1 + p, ); using (2), a simple count as 
in [C33 shows that the maximum value of IPI; 1 on the 
interval [A,‘, , A$J is bounded by 

(k :Q2” 
where c is the 

same constant of [C3], depending on f and 1. 
As we have seen in the proof of 2’), the eigenvalues 

of T,ylHn are double at the limit, so, asymptotically, we 
have that pzk vanishes even at X&+,; hence, the product 
p2q = POP1 * ” pq-r, of degree 2q, vanishes at the first and 
the last 2q eigenvalues. Its maximum value on the whole 
spectrum is bounded by the quantity 

c C 
q-p’...‘7 

9 

this proves the asymptotical superlinear rate of convergence 
shown at the point 4’). 

3. Another T preconditioner. 
There exist other possible choices of the preconditioner 

in the T class, whose numerical behaviour may be the same 
as T,,, or perhaps better. For example, in analogy with 
[Cl], we discuss the r matrix F, such that 

where ] ] . ]I p is the Frobenius matrix norm. 
Taking as unknowns the entries +r , . . . , & of the first 

column of F,, writing down the gradient of IIF,, - A,,]]$ 
and solving the related system gives us the following solu- 
tion: 

n-2 
qi1 = a0 - - 

n-3 

n+l 
‘22, $2 = a1 - n + 1% since X,(-p; ) is nonpositive, and 
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4; = n-i+3 n-i-l 
lb + 1 

q-1 - 
n+l 

ai+1, i=n,...,n-2; 

h-1 = 
4 

-h-2, b = 
3 

n+l 
-a,-]. 
1-t + 1 

The study of the spectrum of F;l& is more difficult 
than that of Z’;l A,; hence, to compare the two rates of 
convergence we will follow the same argument of [C2], by 
showing that 

lim p( T, - Fn) = 0. 
I2-Oc (3) 

In fact, such relation implies the following corollaries: 
i) Since the spectra of Z’, and F,, are asymptotically 

equal, the property 1’) of section 1 holds for F, too; in 
particular, even F, is positive definite. 

ii) Since the spectrum of $‘;‘A, approaches that of 
T;’ A,, for large values of n the rate of convergence of 
the conjugate gradient method is the same for both the pre- 
conditioners. 

In order to prove (3), note that the matrix & = F, - T,, 
is symmetric and it still belongs to the 7 class. By recall- 
ing the proof of 1 ‘), we can express the i-th eigenvalue 

ai of An as C&l 4 sin(jai) , where a. = 
sin ai ‘t 

12 + 1 
(4, . , , , d,)T is the first column of &. A simple count 
shows that 

(4) 
Since f belongs to the Wiener class, for all e there exists 
&f such that Cy$+, lajl < i. To show that the first 
sum of (4) tends to 0 as n grows, it suffices to write it as 

M . n-l 

C$bjI + 2 &I%, 
j=2 j=M+l 

5 

this is less than e if 72 > ZEJ Iail. 
c 

j=2 
In order to bound the second term of (4), we recall that 

Icotgal < i if 0 < Q I t and Icotgal < & if 
T 
~<01I.lr. 

Hence, if I 5 i 5 n t 1 2 then 0 < ai 5 
second term of (4) is less than 

5 and the 

7-t + 1 
If - 

2 
<isn,theni < ai < ?T, SO that the second 

term of (4) is less than 

cn +zljp. 2 b.il I sinb - jL%)l 
t J=2 

= (,% +21j$, g Iail Isin(j9ii)l 
’ j=2 

with /3i = ?r - ai; now the proof CZUI be carried out as in 
the previous case. 

We have also proved that any eigenvalue of A,, tends to 
0 as n increases, and this completes the proof of (3). 
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