
SEAVE: A Mechanism for Verifying User
Presuppositions in Query Systems

AMIHAI MOTRO
University of Southern California

Every information system incorporates a database component, and a frequent activity of users of
information systems is to present it with queries. These queries reflect the presuppositions of their
authors about the system and the information it contains. With most query processors, queries that
are based on erroneous presuppositions often result in null answers. These fake nulls are misleading,
since they do not point out the user’s erroneous presuppositions (and can even be interpreted as their
affirmation). This article describes the SEAVE mechanism for extracting presuppositions from
queries and verifying their correctness. The verification is done against three repositories of infor-
mation: the actual data, their integrity constraints, and their completeness assertions. Consequently,
queries that reflect erroneous presuppositions are answered with informative messages instead of null
answers, and user-system communication is thus improved (an aspect that is particularly important
in systems that often are accessed by naive users). First, the principles of SEAVE are described
abstractly. Then, specific algorithms for implementing it with relational databases are presented,
including a new method for storing knowledge and an efficient algorithm for processing queries
against the knowledge.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems-query processing;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval-retrieuul models

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Cooperative user interface, database, database completeness,
database integrity, erroneous presupposition, query failure, query generalization, relational database

1. INTRODUCTION

A basic requirement of any user-system interface is that it be able to reject (with
proper explanation) all improper input. Interfaces differ, however, in their
definition of improper input. Some interfaces check only basic rules of syntax;
others may examine, to varying degrees, the semantics of the input. Clearly, any
system action that is based on input that should have been rejected is bound to
be meaningless and even misleading. Thus, at the risk of oversimplification, one
could state that an interface that rejects more inputs as improper is a “better”
interface.

User interfaces to databases have only limited rejection capabilities. Often, the
only rejections they are capable of (in addition to those that are based on syntax)

This work was supported in part by an Amoco Foundation Engineering Faculty Grant.
Author’s address: Department of Computer Science, University of Southern California, Los Angeles,
CA 90089.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0734-2047/86/1000-0312 $00.75

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986, Pages 312-330.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F9760.9762&domain=pdf&date_stamp=1986-12-01

SEAVE: A Mechanism for Verifying User Presuppositions l 313

are based on the schema. Most database systems employ data models that
distinguish between a generic description of the data, called schema, and the
actual data that populate the schema. In such systems, requests for data usually
must be stated in terms of the schema. For example, to retrieve the names of the
employees who earn $40,000 a year from a relational database, one submits
a query such as “retrieve from relation EMPLOYEE all values of
attribute E-NAME where attribute SALARY has value 40,000.” In this
query, EMPLOYEE, E-NAME, and SALARY are schematic constructs. If there is no
relation EMPLOYEE in the database, or relation EMPLOYEE does not include both
attributes E-NAME and SALARY, the system will reject this query on grounds of
schema errors.

We prefer to think of a user who submitted a query that contained schema
errors as having had erroneous presuppositions regarding the structure of the
database. The user perceived the database as having a particular structure and
formulated a query accordingly; the query then reflected this presupposition.
When processing the query, the system attempted to verify this presupposition
against the actual schema, failed, and notified the user. Thus, schema-based
rejections can be regarded as detections of erroneous presuppositions.

Assume now that relation EMPLOYEE also has an attribute DEPARTMENT, and
consider this query to list the names of the employees in the Shipping Department
who earn $40,000: “retrieve from relation EMPLOYEE all values of
attributeE-NAMEwhere attributeDEPARTMENThas value Shipping
and attribute SALARY has value 40,000.” Assume that there is no Ship-
ping Department (i.e., Shipping is not a value of DEPARTMENT). Most query
processors will simply return a null answer, which may then be interpreted to
mean that no employees in the Shipping Department earn $40,000. However, it
is obvious that this query reflects a presupposition that a Shipping Department
does exist, and a more meaningful reaction would be to reject the query, pointing
out that this presupposition is erroneous.

These two examples demonstrate our approach. Each query submitted to a
database reflects presuppositions of the user who composed it (“There is a relation
EMPLOYEE with attributes E-NAME and SALARY,” “There is a department called
Shipping”). By extracting such presuppositions from the query and attempting
to verify them against the system’s own knowledge, the system can improve its
rejection capabilities. This article describes such a mechanism.

The process of extracting presuppositions and attempting to verify them
involves additional computation. Clearly, if the query is attempted first and
matches some data, we can safely assume that the presuppositions of the user
who submitted it are correct. Therefore, it is only when the query fails to match
any data that we attempt to verify the presuppositions behind it. Thus, null
answers trigger the mechanism.’

There are times when null answers are genuine. Such is the case, for exam-
ple, when the previous database is queried about the employees of the Per-
sonnel Department who earn less than $12,000. If every employee in the
Personnel Department earns more than $12,000, the null answer is appropriate.

’ Actually, the evaluation of a query against the database is considered the first test in the query
verification process. If the query fails this test (returns a null answer), additional tests are performed.

ACM Transactions on Office Information Systems, Vol. 4, NO. 4, October 1986.

314 l Amihai Motro

Unfortunately, the same null answer will be given when that query is repeated
for the employees of the Shipping Department (which does not exist). Indeed,
when asked these two questions, a knowledgeable person would probably respond
differently to each one: The response to the first question would be “There are
no employees in the Personnel Department who earn less than $12,000,” or
simply “There aren’t any”; the response to the second question would be “There
is no Shipping Department,” or simply “You don’t know what you are talking
about.” The latter (somewhat rude) response is quite correct, since the person
who posed the query implied that such a department does exist. In other words,
some null answers can be attributed to an erroneous presupposition on behalf of
the user. These null answers are referred to as fake.

Clearly, a fake null is unsatisfactory, since it may be interpreted by the user
as a genuine null (and consequently also as an affirmation of the user’s presup-
positions). At other times, when the user knows for certain that the query should
have matched some data, the user interprets the fake null as an error message,
indicating that the query did not express the user’s intentions correctly. Such
error messages are too general and not at all informative.

Even genuine null answers are often disturbing, since the information they
provide amounts to a “shrug.” This response contrasts with human behavior in
which a negative answer is usually accompanied by some additional information.
For example, when presented with the first of the above questions, a person
might reply: “But there are some who make less than $15,000.” In general, such
answers are helpful, since they inform the person asking that the question was
indeed meaningful, and that its failure was genuine, not the result of some
erroneous presupposition. More important, such answers tend to delimit the
scope of the failure; in the previous example a negative answer could have been
caused by a more fundamental inability to satisfy the question, and the person
asking could be left wondering about the real cause of the negative answer.
Finally, sometimes such answers anticipate subsequent questions, since often
negative answers trigger follow-up questions.

Efforts to address the problem of null answers that are results of erroneous
presuppositions can be traced back to the system CO-OP, designed by Kaplan
[ll], which implemented some of the conventions of cooperation in human
discourse. These include corrective responses that detect erroneous presupposi-
tions and suggestive responses that anticipate follow-up queries. CO-OP was
designed for natural language interaction and relied on domain-specific knowl-
edge. More recently, Corella et al. [4] and Motro [151 discussed similar techniques
in the environment of a typical database management system, which has only
formal language interfaces and no domain-specific knowledge.

In all these efforts the basic approach is to follow up a query that failed with
several more general queries. If even these fail, then the conclusion is that some
of the presuppositions of the user who composed the original query are erroneous.
The justification for this approach is in a heuristic called minimal uncertainty,
which we define in [15]:

-While users expect that their queries may possibly have null answers, they
tend to be confident that every more general query would not have failed.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions l 315

Under this heuristic, the more general queries become indicators of the presup-
positions of the user. Thus, a query that fails produces a genuine null if and only
if every more general query succeeds. Otherwise, the null is fake, and erroneous
presuppositions are reported back.

However, it is entirely possible that the user’s presuppositions are all correct,
and the database simply does not include any data to satisfy the query and some
of its generalizations. In other words, on more general queries the mechanism
interprets “there are no data” as “there could be no data.” By using additional
information available in databases, such as integrity constraints and complete-
ness information, these methods can be improved so that more erroneous pre-
suppositions can be pointed out with more authority.

This article is divided into two parts. The first part describes the principles of
a new mechanism called SEAVE (Supposition Extraction And VErification) for
detecting erroneous presuppositions. These principles are discussed abstractly
and are independent of any particular database model. The second part focuses
on the relational database model. It presents specific algorithms for implement-
ing SEAVE in relational systems, including a new method for storing data-
base knowledge and an efficient algorithm for processing queries against the
knowledge.

2. THE PRINCIPLES OF SEAVE

The process of extracting presuppositions from queries and verifying them against
the database knowledge involves three principal issues: how to determine the
presuppositions of the user, what knowledge does a database system have, and
how to verify effectively the presuppositions against the knowledge. These issues
are discussed below.

2.1 User Presuppositions

The standard interaction between users and databases is an iterative process in
which users present queries and the database management system returns an-
swers (and/or messages). Since queries are the only input users contribute, they
are the only source from which the system may infer their presuppositions.

Queries are requests to retrieve from the database a particular set of facts.
Obviously, a user who submits a query believes that possibly this set is nonempty
(otherwise, why ask). This leads to the following simple method for inferring
presuppositions from queries:

_Each query reflects a presupposition that the condition it expresses is plausible
(will possibly succeed).

Thus, given the query”retrieve all facts that satisfy condition,” we
infer the presupposition “there may be facts that satisfy condition,”
or simply, “condition i s p 1 aus i bl e.” Because of this tight correspondence
between queries and presuppositions, these terms will sometimes be used inter-
changeably. The presuppositions we extract are based on a single user input. In
this connection we note that there are systems for understanding natural language
that gather information from earlier inputs (e.g., [9]); some even maintain

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

316 l Amihai Motro

a model of the user’s world (e.g., [l], [13], and [22]). However, these kinds
of models are outside the scope of this work.

Consider now a query about all the boys who have an older sister. It reflects a
presupposition of the user that there may be boys who have an older sister.
However, it also reflects some additional presuppositions, such as: there may be
boys who have a sister; there may be boys who have a female relative; there may
be children who have relatives; and so on. Compared with the original presup-
position (which was inferred from the query), these presuppositions are more
general (i.e., weaker) and can be inferred from the original presupposition by an
appropriate procedure. Hence:

--From each presupposition more general presuppositions may be inferred.

A presupposition may be generalized in different directions and to varying
levels. Recall the previous presupposition that there are boys who have an older
sister. One direction is to substitute for “boys” a more general concept, such as
“children”; this direction can be pursued further, and “children” may be replaced
by “persons.” Another direction is to substitute “older female relative,” or even
“older relative,” for “older sister.” In effect, the generalizations of a given
presupposition form a Boolean lattice.

We have emphasized that a user who submits a query believes that it is
plausible. But how strong is this belief? In other words, how confident is the user
about such presuppositions? Although it is impossible to answer this question
directly, it is safe to assume that users are more confident about more general
presuppositions:

-Given two presuppositions (inferred from a query), the user is more confident
about the more general presupposition.

2.2 Database Knowledge
To test presuppositions, the database management system applies its knowledge
about the concepts mentioned in the presupposition. This knowledge may be
available in various forms. We consider here three different kinds of knowledge
available in databases: facts, integrity constraints, and completeness assertions.

Facts constitute the bulk of the database, and the main purpose of a database
system is to provide access to these facts. Facts are a low-level description of the
environment, since the information encapsulated in each fact applies only to the
individual real-world objects named in the fact.

Integrity constraints [6] describe relationships that must be maintained among
the facts. Usually, these constraints are used to monitor the consistency of the
database and reject all updates that would violate them. In general, integrity
constraints are template statements (i.e., they make use of variables), and the
information encapsulated in each constraint usually applies to a multitude of
facts.

Completeness assertions, introduced in [16], describe the subsets of the data-
base that include a representation of every real-world occurrence (subsets that
are “closed world”). With completeness information a database system can
determine whether each answer to a user query is complete (i.e., whether all the
real-world occurrences ~1’: represented), or whether any subsets of it are complete
ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions l 317

(i.e., whether all the real-world occurrences that satisfy some additional con-
straints are represented). Often, when the user receives the answer to a query,
there is uncertainty as to the quality of the answer (is it accurate? is it complete?).
Answers that are accompanied by statements about their completeness are,
therefore, more meaningful.

Finally, we note that in addition to facts, integrity constraints, and complete-
ness assertions, database knowledge may be represented in additional forms,
such as inference rules [7] or exceptional information [2].

2.3 Testing Presuppositions

In correspondence with the three kinds of database knowledge described above,
we define three tests for determining whether a presupposition extracted from a
query is correct:

(1) Test against facts. This is the simplest test. Recall that each presupposition
is actually a belief that a query may possibly succeed. If the query is evaluated
and fails, then the presupposition is rejected on the grounds that the database
knows of no facts to support it.

(2) Test against completeness assertions. The query is checked for completeness
of its answer. If it fails but can be shown to have a complete answer, then the
presupposition is rejected on the grounds that there are no facts to support it.

(3) Test against integrity constraints. The query is checked for validity. If it
violates any integrity constraint, then the presupposition is rejected on the
grounds that there may be no facts to support it.

These individual tests can be performed independently. However, note that, if
a presupposition can be verified against the facts, any further testing is pointless.
A procedure for testing individual presuppositions that combines all three tests
is outlined below. This procedure is referred to as the Supposition Tester (ST).

Consider a presupposition p submitted for testing. First, p is tested against the
facts. If it matches some facts in the database, the process terminates with the
verdict ‘p verified.” If p does not match any facts, it is tested for completeness.
If p is shown to be complete, the process terminates with the verdict “p rejected
because there are no facts to support it.” If p cannot be shown to be complete, it
is tested for validity. If p is shown to violate some integrity constraint, then the
process terminates with the verdict “p rejected because there may be no facts to
support it.” If p cannot be shown to be invalid, then the process terminates with
the verdict ‘p rejected because the system knows of no facts to support it.”
A schematic diagram of ST is shown in Figure 1.

2.4 The Verification Mechanism

As already mentioned, each query reflects a presupposition, and this presuppo-
sition implies several, more general (weaker) presuppositions. When a presup-
position is rejected by ST, then every more specific (stronger) presupposition will
also be rejected, and when a presupposition is verified by ST, then every more
general presupposition will also be verified.

Clearly, if two presuppositions are rejected, and one is more general than the
other, then the rejection of the more specific presupposition is insignificant.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

318 l Amihai Motro

Presupposition

Verify.

yes

3.
Test against
integrity

i

constraints.
Valid?

yes 1 no

Reject: Reject:
There are There may be
no facts to no facts to
support it. support it.

Fig. 1. A schematic diagram of ST.

1
Reject:
System knows
of no facts to
support it.

Hence this definition:

-An erroneous presupposition is significant if and only if every more general
presupposition can be verified.

Given a user query, the goal is then to report to the user all the erroneous
presuppositions that are significant, that is, to detect the rejected generalizations
of the original presupposition for which every more general presupposition can
be verified. Toward this goal, we define the concept of a minimal generalization:

-Given a presupposition p and a presupposition p ’ that is more general (weaker),
p ’ is minimally more general than p, if every other generalization of p is also
more general than p I.

A Supposition Generalizor (SG) is a component that, given an input presup-
position, generates a set of output presuppositions, all minimally more general
that the input presupposition. To perform this task, SG incorporates various
strategies, depending on the data model used by this system. For example, in a
relational database system, generalization may be accomplished by weaken-
ing mathematical conditions or by deleting conjuncts from queries. In data
models that incorporate a type hierarchy (e.g., [8], [Ml), type substitution may
be performed.

As an example, consider a database with information on employees, including
their name, age, and salary, and a query to list all the female employees under
30 years of age who earn at least $40,000 a year. Figure 2 shows a portion of the
lattice of presuppositions, generated by a particular supposition generalizor.
Nodes indicate presuppositions, and arcs indicate generalization relationships. A
presupposition that there may be employees whose age is under x, whose sex is
y, and whose yearly salary is at least z, is denoted (x, y, z). The symbol * indicates
any value; once it appears in a presupposition it cannot be generalized any
further.
ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions
l 319

Pl

A
P2 P3 P4

P5 P6 P9

PlO Pll P12 P13 P14 P15 P16
(33,F,40) (32,*,40) (32,F,39) (31,*,39) (31,F,38) (30,*,38) (30,F,37)

.

.

Fig. 2. Portion of a presupposition lattice.

SEAVE(p);
var p, q: p?YSUppOSitiOni
var P: set of presupposition;
var significant: boolean;
local q, P, significant;
begin

if ST(p)
then

return true;
else

begin
Significant:=true;

P:=SG(p);
for each q in P do

significant:=Significant and SEAVE(q);
if significant

then
print(“Erroneous and signif icant presupposition:“, ‘2);

return false;
end;

end.

Fig. 3. The SEAVE algorithm.

The SEAVE mechanism combines the Supposition Generalizor and the Sup-
position Tester. Given a query, it derives the set of all erroneous presuppositions
that are significant. Figure 3 describes the algorithm in an ALGOL-like language.
The algorithm calls two other procedures: ST receives a presupposition and
returns true if the presupposition can be verified and fake otherwise; SG receives
a presupposition and returns a set of minimally more general presuppositions.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

320 - Amihai Motro

The output of the algorithm is a list of all the erroneous presuppositions that are
significant.

In the example cf Figure 2, assume that presupposition Pl is rejected. Among
its generalizations, assume that P3 is verified (and, therefore, also P6, P8, Pll,
P13, and P15), but P2 and P4 are rejected. P5 and P7 are then verified (and,
therefore, also PlO, P12, and P14), but P9 is rejected. Finally, P16 is verified.
The two erroneous and significant presuppositions are P2 and P9; they state:

(1) There may be female employees under 31 who earn at least $40,000.
(2) There may be female employees under 30 who earn at least $38,000.

A presupposition is verified after the corresponding query matches some facts.
Consequently, the process of detecting the erroneous and significant presuppo-
sitions also provides partial answers to the original query. In the above example,
P3, P5, P7, and P16 were verified. In the process, these partial answers were
computed:

”

(1) all employees under 30 who earn at least $40,000,
(2) all female employees under 32 who earn at least $40,000,
(3) all female employees under 31 who earn at least $39,000,
(4) all female employees under 30 who earn at least $37,000.

These partial answers can be delivered to the user as “the best the system could
do” to satisfy the query about all female employees under 30 who earn at least
$40,000.

3. ALGORITHMS FOR A RELATIONAL IMPLEMENTATION

The principles of SEAVE can be adapted for any database model. To demonstrate
SEAVE in more detail, we present here specific algorithms for implementing it
with relational databases. The relational model was selected primarily because
of its simplicity and widespread use. A particular concern, which influenced the
solutions, was to keep the cost of verification low.

We assume queries are submitted in QUEL’s retrieve statement [20]. As an
example, the following query retrieves from the database described in Figure 4
the names and salaries of all employees who are managed by Lucy and know
editing:

range Of eis EMPLOYEE
range of d is DEPARTMENT
rangeOfsisSKILL
retrieve (e.E-NAME,e.SALARY)
where e.E-NAME =s.E-NAME

and &S-NAME = “Editing"
ande.DEPARTMENT=d.D-NAME
andd.MANAGER= “Lucy".

We assume that the where clause includes only conjunctions and disjunctions
of atomic formulas. Each atomic formula is a comparison between a variable
and a constant or between two variables. The comparator is either = or f.
For variables that range over numeric attributes it can also be one of these:
>, 2, <, 5.
ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions l 321

EMPLOYEE = E-NAME, SALARY, DEPARTMENT

DEPARTMENT = D-NAME, MANAGER, BUDGET

SKILL = E-NAME, S-NAME, LEVEL

Fig. 4. Schema of database STUDIO.

3.1 The Supposition Generalizor

Generalization of presuppositions is performed by weakening mathematical con-
ditions or removing nonmathematical conditions altogether. It is assumed that
for each numeric attribute, three values are available: a minimum value and a
maximum value to indicate the allowable range of this attribute, and a step value
to specify the minimal weakening of a mathematical condition. For example, the
attribute SALARY may have minimum 10,000, maximum 100,000, and step 1000.2
Given a query, the query generalizor identifies the subformulas of the where
clause of the type A (3 c, where A is a variable and c is a constant. Each such
subformula is a basis for a generalization, according to the following process:

Assume that A is a numeric attribute with minimum ml, maximum m2,
and step d and that c is a number. If 0 is >, this subformula will be replaced by
A > c’, where c’ = maxlc - d, ml). If 0 is <, it will be replaced by A < c’,
where c ’ = minlc + d, m2). Analogous replacements will be performed when 0 is
L or 1. If 0 is =, then it will be replaced by a conjunction of two subformulas:
A E c’ and A 5 c”, where c’ = max(c - d, ml) and C” = min(c + d, m2). If 0 #,
then it will simply be deleted.

If A is a nonnumeric attribute and c is a string, then the subformula is deleted.
Note that if the database incorporates data metrics, as suggested in [17], then
queries with nonnumeric attributes may be generalized in finer steps. The
subformula A E C, where C is a set of values close to c, would be substituted for
A = c.

3.2 A Unified Representation of Database Knowledge

Of the three kinds of knowledge discussed in Section 2.2, the representation of
database facts requires no special attention, since they are simply the tuples of
the relations. The representation of completeness assertions and integrity con-
straints is discussed below. This representation is an extension of the represen-
tation of completeness assertions that we described in [16].

Since the intention is to check user queries against completeness assertions
and integrity constraints, an obvious candidate for representing queries, asser-
tions, and constraints is first-order predicate logic. However, testing queries
against the knowledge would then require general theorem proving. This solution
is not very desirable because of its complexity and undecidability. We concur
with [14] on the trade-off between the expressivity of the language for repre-
senting knowledge and the complexity of the reasoning procedures, and choose
to adopt a more restricted language. This language would be simpler to manipu-
late, yet powerful enough to be useful.

Behind the language is the observation that both completeness assertions and
integrity constraints are actually specifications of database subsets (i.e., derived

’ The allowable range is similar to domain integrity constraints [5].

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

322 - Amihai Motro

relations). A completeness assertion is a definition of a subset that is known to
include a representation of every real-world occurrence. Such subsets are called
complete subsets. Integrity constraints are often of the type “if conditionI, then
condition2,” where both conditions describe relationships among data items. Each
such statement can be restated as “the subset of facts, for which condition1 holds
and condition2 does not hold, is empty.” Such subsets are called null subsets.
Consequently, the formalisms necessary to express completeness assertions and
integrity constraints can be provided by any query language.

In this article we consider only completeness assertions and integrity con-
straints (collectively referred to as knowledge statements) that specify database
subsets of the following kind:”

la, * * * , a, I (3bd . .- (3bm)Q~ A --- A Q,al
where the Q’s are of either of these two forms:

(1) Rh,. . . , cr), meaning that the tuple (ci, . . . , c,) is asserted to be in relation
R; the c’s are either among the a’s or b’s or are constants.

(2) c t9 d, where c is among the u’s or b’s, d is among the a’s or b’s or is a constant,
and 8 is one of =, #, >, 1, <, 5.

These statements can be applied to describe either completeness assertions or
integrity constraints. For example, in the previous database, the completeness of
the set of all names of employees in Construction who are electricians is stated
as follows:

(a 1 (3bl)(3b2)EMPLOYEE(a, bl, “Construction”) A SKILL(a, “Electrical”, bz)].

And a constraint that all employees who know editing earn at least $30,000:

b I (3b1)(3b2)(3b3)EMPLoYEE(a, bl, bd
A SKILL(a, “Editing”, b3) A (bl < “30,000”)).

Note that, while the completeness assertion directly describes the set of tuples
that is complete, the integrity constraint must be restated to describe a set of
tuples that is empty.

For knowledge statements from this family we have developed a representation
that resembles regular data tuples. As we point out later in this section, this
approach provides important advantages. This method recalls the representation
of QBE queries in skeleton tables [23].

A knowledge statement from this family is represented as several knowledge
tuples. For each subformula R(cl, . . . , cr), a tuple, obtained from (ci, . . . , cr), is
stored in R. The c’s that are variables (a’s or b’s) that appear only once in this
statement are replaced with blanks; the c’s that are u’s are suffixed with *. For
each subformula c 6 d, a tuple (c, 8, d) is stored in a special new relation
CONDITION. When 0 is =, the tuple in CONDITION may be discarded and the
variable c replaced with d throughout the other knowledge tuples. Consequently,
each component of a knowledge tuple may be either a constant or a variable or a

3 This family of subsets is often used for querying, where it is known as the family of conjunctiue
queries [21].

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

Cl
c2
11
12

SEAVE: A Mechanism for Verifying User Presuppositions - 323

EMPLOYEE
E-NAME SALARY DEPARTMENT
Betty 38.000 Production
John 26.000 Construction
Tom 32.000 Marketing
Mary 34,000 Production

*

z* Construction
Y* z
U’ v

DEPARTMENT

c2
11
I2

SKILL
E-NAME
Betty
John
John
Tom
Mary

Mary

5

Y
21

D-NAME 1 MANAGER 1 BUDGET
Construction 1 John I3.000,000
Marketing Tom 2.750.000
Production Betty 4.250.000

Fig. 5. A database extended with knowledge statements.

I1
I2

S-NAME
Cinematography
Electrical
Directing
Operating
Acting
Editing
Electrical
Editing
Editing

CONDITION

El

blank, and each may possibly be suffixed by *. A constant imposes a restriction
on the values that an attribute may have; a variable forces this value to be
identical to the value of another attribute; a blank is an attribute whose value is
irrelevant to this statement. A * indicates an attribute on which knowledge
is stated.

We assume that a variable name is not used in more than one knowledge
statement, and that tuples of completeness assertions are distinguishable from
tuples of integrity constraints. A relation with knowledge tuples is called an
extended relation.

As an example, Figure 5 shows four knowledge statements, together with a
small instance of the database. They state that the set of names of employees is
complete (Cl), that the set of names of employees in Construction who are
electricians is complete (C2), that every employee who knows editing earns at
least $30,000 (Il), and that every employee who knows editing must be in
Production (12).

Note that when an attribute on which knowledge is asserted (i.e., an attribute
that has * in the knowledge tuple) functionally determines another attribute,
then the same knowledge may be asserted on the other attribute as well. For
example, since DEPARTMENT is functionally dependent on E-NAME, if the set of
all employee names is complete, so is the set of all departments for which
employees work.

This method for storing knowledge has several advantages. First, the specifi-
cation of knowledge statements using QBE-like notation is very intuitive. Second,
storing the knowledge does not require any new data structures. Third, the
knowledge may be updated with the same tools used to update the data. But the
greatest advantage is in the testing of presuppositions. With this storage strategy,
it is possible to develop a method for performing all three tests (Figure 1)
concurrently, so that, in effect, the second and third tests become by-products of
the standard query evaluation (the first test). Such a method is described next.

ACM Transactions on Office Information Systems,Vol. 4,No4,October1986.

LEVEL
2
3
1
2
2
3

324 l Amihai Motro

3.3 A Unified Test of Presuppositions

As mentioned above, knowledge statements define database subsets that are
either complete or null. A given query also defines a database subset. If an answer
to a query is contained in a complete subset, then the answer provided is complete
(and if it is null, then the presupposition fails the second test). If an answer to a
query is contained in a null subset, then the query is a violation (and the
presupposition fails the third test). Therefore, the second and third tests can be
performed by a procedure to detect whether the answer to a given query is
contained in one of the subsets defined by the knowledge statements.

Our approach is to extend the operations that manipulate relations during
query processing so that they preserve the knowledge in extended relations. Each
relational operator would manipulate the knowledge tuples so that the complete-
ness tuples in the resulting relation will, indeed, describe subsets of the result
that are complete, and the integrity tuples in the resulting relation will, indeed,
describe subsets of the result that are null. Consequently, when the final relation
(the answer to the query) is derived, its knowledge tuples will describe subsets
that are complete or null. This relation need only be checked for knowledge
tuples that have * in every component. A completeness tuple of this kind states
that the answer is contained in a complete subset (the data tuples in the result,
if any, form a complete subset). An integrity tuple of this kind states that the
answer is contained in a null subset (if integrity is enforced, then the result
should not contain any data tuples).

The QUEL queries we assumed can be implemented with three relational
operations: Cartesian product, selection, and projection. The extension of these
operators to preserve knowledge is discussed below. (Note that relation CONDI-
TION is not manipulated directly; it only assists in performing selections.)

Note that the meaning of each knowledge statement depends on the semantics
of the relations that are involved. Therefore, the semantics of all database
relations must be determined before knowledge statements are defined. To show
that knowledge is preserved after each extended operation, it is important to
determine the semantics of the output relations in terms of the semantics of the
input relations. For example, when a selection is applied to a relation that models
a particular real-world concept, the result no longer models the original concept
but a more restricted one. Thus, if EMPLOYEE models all employees, then
~DEPARTMENT = Construction (EMPLOYEE) models only the employees in Construction.
Consequently, although both relations may have the same attributes, a knowledge
tuple in the output relation asserts something different from the same knowledge
tuple in the input relation.

3.3.1 Cartesian Product. Let R and S be two extended relations, and let r and
s denote, respectively, completeness (integrity) tuples from R and S. Let rs denote
their concatenation, and let - denote a tuple of blanks. The Cartesian product of
R and S includes the usual data tuples obtained from the data tuples of R and S,
plus the following knowledge tuples:

(1) If both r and s are completeness (integrity) tuples, then include the complete-
ness (integrity) tuple rs.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions l 325

(2) If r is a completeness (integrity) tuple, then include the completeness (integ-
rity) tuple r-.

(3) Ifs is a completeness (integrity) tuple, then include the completeness (integ-
rity) tuple -s.

In the example of Figure 5, consider the Cartesian product of EMPLOYEE and
SKILL. The three completeness tuples in these relations will be carried over to
the product by extending each with blanks, and each of the two completeness
tuples of EMPLOYEE will be concatenated with the completeness tuple of SKILL,
yielding a total of five completeness tuples. Similarly, the product will include
eight integrity tuples.

3.3.2 Selection. We assume that the selection formula is a single comparator
(the generalization to more complex formulas is straightforward). Let R be an
extended relation, and consider a selection condition A 0 a that compares an
attribute of R with a constant. This selection from R by this condition includes
the usual data tuples, plus the knowledge tuples for which either of the following
is true:

(1) The value in attribute A is a constant a’, and a’ 6 a.
(2) The value in attribute A is a variable x that is linked only to an entry x 4 a’

in relation CONDITION, and x 4 a’ implies x 8 a.
(3) The value in attribute A is a variable or a blank suffixed by *.

In the example, consider the selection DEPARTMENT = “Construction” from
relation EMPLOYEE. The knowledge tuples C2 and 12 fall, respectively, under the
first and second cases and are, therefore, selected.

Similarly, consider a selection condition A 0 B that compares two attributes
of R. Some of the cases in which a knowledge tuple is selected are

(1) The values in attributes A and B are constants a and b, respectively, and
a 0 b.

(2) The value in attribute A is a variable x that is linked only to an entry x: 4 a’
in relation CONDITION, the value in attribute B is a constant b, and x 4 a’
implies x: 0 b.

(3) The values in attributes A and B are variables or blanks suffixed by *.

3.3.3 Projection. We consider only projections that remove a single attribute
(the treatment of general projections is similar). Let R be an extended relation,
and let A be an attribute of R. The projection of R that removes the attribute A
includes the usual data tuples, plus the knowledge tuples that have a blank
(possibly suffixed by *) in attribute A.

In the example, assume attribute DEPARTMENT is removed from relation
EMPLOYEE. Two knowledge tuples (Cl and 11) do not restrict this attribute
and are, therefore, retained after the projection. The other knowledge tuples
(C2 and 12) restrict this attribute (through the constant “Construction” and the
variable u) and are, therefore, discarded.

Each knowledge tuple introduced in the above definitions must be shown valid,
given the validity of the knowledge tuples in the input relations. Toward this end

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

326 l Amihai Motro

we assume that the real world is captured in a hypothetical database; this database
includes exactly the tuples that are true. A completeness assertion is a relational
expression that, when computed in the database, derives a relation that contains
the relation that would have been derived had the same expression been computed
in the real world. Similarly, an integrity constraint is a relational expression
that, when computed in both the database and the real world, derives relations
that are null. With this hypothetical database, knowledge tuples that are intro-
duced by relational operators may be given formal justifications. The proofs are
quite similar, and we illustrate one example below.

Assume a completeness tuple F in relation R, and a completeness tuple s in
relation S, and let T denote the Cartesian product of R and S. Let R’, S’, and T’
be the corresponding relations in the real world. Consider the tuple FS. It specifies
a subset of T and a subset of T’. Consider a tuple in the subset of T’. This tuple
may be split into two separate tuples that are in R’ and S’, respectively. These
tuples would be contained in the subsets specified by the completeness tuples F

and s, respectively. Therefore, given the validity of the completeness tuples r and
s, they are also in the subsets of R and S that are specified by r and s.
Consequently, they must also be in the subset of T that is specified by rs. The
conclusion is that FS is indeed a valid completeness tuple in the Cartesian product.

Often, a knowledge tuple that is retained after a selection operation may be
“relaxed” slightly. For example, consider a knowledge tuple that has a constant
a in attribute A and a selection condition A = a. This knowledge tuple is selected,
but the semantics of the resulting relation permits us to clear this restriction in
the new knowledge tuple. Similarly, consider a knowledge tuple that has the
same variable x in both attributes A and B and a selection condition A = B. This
knowledge tuple is selected, but the semantics of the result permit us to clear at
least one of the restrictions in the new knowledge tuple (and both, if x does not
appear anywhere else). The advantage of clearing such restrictions is that the
new knowledge tuple will “survive” a future projection that removes this partic-
ular attribute.

We demonstrate these methods with the following query to retrieve the names
of all the editors in Construction:

range OfeisEMPLOYEE
range ofsis SKILL
retrieve (e.E-NAME)
wheree.E-NAME=s.E-NAME

and S.S-NAME = “Editing”
and e.DEPARTMENT = "Construction".

For clarity, this query is processed in nine steps:

(1) Perform the Cartesian product of EMPLOYEE and SKILL.
(2) Select from the result EMPLOYEE.E-NAME = SKILL.E-NAME.
(3) Remove from the result one of the attributes E-NAME.
(4) Remove from the result the attribute LEVEL.
(5) Select from the result S-NAME = “Editing”.
(6) Remove from the result the attribute S-NAME.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions l 327

(7) Select from the result DEPARTMENT = “Construction”.
(8) Remove from the result the attribute DEPARTMENT.
(9) Remove from the result the attribute SALARY.

The first three steps correspond to a natural join between EMPLOYEE and
SKILL, after which we have

c3
13
14

DEPARTMENT

Production
Construction
Construction
Marketing
Production
Production
Construction

S-NAME

Cinematography
Electrical
Directing
Operating
Acting
Editing
Electrical
Editing

LEVEL

2
3
1
2
2
3

V Editing

Note that whereas the set of all names of employees was complete (Cl), the set
of all names of employees with skills was not asserted to be complete. Conse-
quently, the set of names of employees in this intermediate relation, which
models only skilled employees, is not guaranteed to be complete. The fourth step
removes the attribute LEVEL without any effect on the knowledge tuples. The
fifth step now selects only one data tuple and two knowledge tuples, 13 and 14,
where it clears the attribute S-NAME. The sixth step then projects out this
attribute, yielding

The seventh step now removes the last data tuple and the knowledge tuple 15. In
I6 it clears the attribute DEPARTMENT. The eighth step then projects out this
attribute, and the last step projects out the attribute SALARY and removes 17.
The result is

Since the final relation represents the set of all employees in Accounting who
are editors, 17 is an integrity constraint that states that the set of all employees
in Accounting who are editors is null (i.e., contained in one of the original null
subsets). Since the answer includes no data tuples, the final verdict of the
Supposition Tester is a double rejection: we know of no data to support the
presupposition, and there may be no data to support the presupposition.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

328 l Amihai Motro

3.4 Performance Issues

As described in Section 2.4, the SEAVE mechanism simply combines SG (the
supposition generalizor) with ST (the supposition tester) in a recursive procedure.
The only additional issues we discuss here involve performance.

With the methods described above for storing and manipulating the knowledge,
the cost of testing a presupposition is comparable to the cost of evaluating the
query. However, as shown in Figure 2, to identify the erroneous presuppositions
that are significant, numerous follow-up queries may need to be tested. This
raises two important issues: (1) how far should the mechanism proceed in the
analysis of a single query, and (2) are there any opportunities for optimization.

To prevent spending too much time on the analysis of a single failed query, it
may be necessary to impose some kind of a limit, for example, a ceiling on the
depth of the recursion, or a ceiling on the total number of presuppositions tested
in connection with a single query, or simply a time limit. Here, we assume a limit
of the first kind. Thus, the original query will be generalized in all possible
directions, until it reaches a predetermined level.

By predetermining the farthest level of generalization, we can obtain at the
beginning of the process a cluster of queries that eventually may have to be
evaluated. Techniques for optimizing multiple queries have been examined in the
past (e.g., [3], [lo], [la], and [19]). However, the lattice structure among the
queries in this cluster suggests a much simpler approach.

Let k be the predetermined depth of recursion. Given the input query, the
techniques described in Section 3.1 are applied to weaken each of its subformulas
by k steps. The resulting query will serve as the lower bound of a new lattice,
which will include only the top k levels of the original lattice. In the example
of Figure 2, assuming k = 4, the lower bound query is “all employees under
33 (of either sex) who earn at least $37,000” (i.e., (33, *, 37)).

When a user query is received, it is first evaluated. If it fails, then the lower
bound query is obtained, evaluated, and the resulting relation stored. Thereafter,
the standard SEAVE algorithm is applied (to depth k). However, all follow-up
queries are now evaluated on the basis of the result of the lower bound query.
Thus, the cost of deriving the erroneous and significant presuppositions is reduced
substantially.

4. CONCLUSION

Often, the source of null answers is in erroneous presuppositions that are
undetected by the database management system. This article describes a mech-
anism called SEAVE that distinguishes between these fake nulls and genuine
nulls. SEAVE attempts to verify the presuppositions behind queries by testing
them against three repositories of database knowledge: the database itself, its
completeness assertions, and its integrity constraints. When a query fails the
test, it is repeated for generalizations of this query in an attempt to detect the
erroneous presuppositions that are most significant.

This mechanism can be adapted for any database management system. In
particular, we examined it in the environment of relational databases, where we
showed a method for storing all three knowledge repositories together and a
ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

SEAVE: A Mechanism for Verifying User Presuppositions - 329

procedure for testing queries against this knowledge, at a cost comparable to
standard query evaluation.

Below are several examples of queries that failed and the reaction of SEAVE
to each of them. For clarity, the queries and the reactions are presented in
natural language. The phrases “there may not be . . . ,” “we are certain there are
no . . . ,” and “we know of no . . . ,” reflect the detection of erroneous and
significant presuppositions based on, respectively, violation of an integrity con-
straint, containment in a complete subset, and a null answer.

1. Query: Retrieve all editors in Marketing who earn less than $28,000.
SEAVE: There may not be editors in Marketing.

There may not be editors who earn less than $30,000.
We know of no employees in Marketing who earn less than $32,000.

2. Query: Retrieve all employees who earn more than $50,000.
SEAVE: We are certain there are no employees who earn more than $38,000.

3. Query: Retrieve all level 1 operators in Production.
SEAVE: We know of no operators in Production.

We know of no level 1 operators.
We know of no employees with level 1 skills in Production.

One weakness of the methods we have described is that currently they cannot
combine completeness assertions with integrity constraints to infer new state-
ments. For example, they do not conclude that the set of employees in Production
is complete from the knowledge that the set of employees who know editing is
complete and that every employee in Production is required to know editing.

The method of storing generic statements along with the facts has possibilities
that are also outside the current scope of interpreting null answers. Techniques
similar to those described in this article can be used to manipulate relations with
stored constraints so that queries can be answered both specifically and gener-
ically. For example, if the constraint that every level 2 cinematographer earns at
least $36,000 is stored in the relations, then the query “Who earns at least
$35,000?” can now be given a more insightful answer: “Betty, Tom, and, in
general, every level 2 cinematographer.”

In this article we have described the principles and algorithms of a mechanism
for detecting erroneous presuppositions in query systems. The implementation
of this mechanism, in particular, the management of the database knowledge
that we assumed, involves several engineering, as well as procedural, issues that
have yet to be addressed-for example, how to assure the validity of the knowledge
statements in a dynamically changing environment, and how to paraphrase and
display knowledge statements to users.

REFERENCES
1. ARENS, Y. CLUSTER: An approach to contextual language understanding. Ph.D. dissertation,

Dept. of Mathematics, Univ. of California, Berkeley, 1986.
2. BORGIDA, A. Language features for flexible handling of exceptions in information systems.

ACM Trans. Database Syst. 10,4 (Dec. 1985), 565-603.
3. CHAKRAVARTHY, U. S., AND MINKER, J. Processing multiple queries in database systems.

Database Eng. 1, 1983.

ACM Transactions on Office Information Systems, Vol. 4, No. 4, October 1986.

330 l Amihai Motro

4. CORELLA, F., KAPLAN, S. J., WIEDERHOLD, G., AND YESIL, L. Cooperative responses to Boolean
queries. In Proceedings of the 1st International Conference on Data Engineering (Los Angeles,
Calif.). IEEE Computer Society, Silver Spring, Md., pp. 77-85.

5. DATE, C. J. An Introduction to Database Systems, vol. 2. Addison-Wesley, Reading, Mass., 1983.
6. DATE, C. J. An Introduction to Database Systems, vol. 1, 4th ed. Addison-Wesley, Reading,

Mass., 1986.
7. GALLAIRE, H., MINKER, J., AND NICOLAS, J.-M. Logic and databases: A deductive approach.

ACM Comput. Suru. 16,2 (June 1984), 153-185.
8. HAMMER, M., AND MCLEOD, D. Database description with SDM: A semantic database model.

ACM Trans. Database Syst. 6,3 (Sept. 1981), 351-386.
9. HENDRIX, G. G., SACERDOTI, E. D., SAGALOWICZ, D., AND SLOCUM, J. Developing a natural

language interface to complex data. ACM Trans. Database Syst. 3,2 (June 1978), 105-147.
10. JARKE, M. Common subexpression isolation in multiple query optimization. In Query Processing

in Database Systems, W. Kim, D. Reiner, and D. Batory, Eds. Springer-Verlag, New York, 1984.
11. KAPLAN, J. Cooperative responses from a portable natural language data base query system.

Ph.D. dissertation, Dept. of Computer and Information Science, Univ. of Pennsylvania, Phila-
delphia, 1979.

12. KIM, W. Global optimization of relational queries. In Query Processing in Database Systems,
W. Kim, D. Reiner, and D. Batory, Eds. Springer-Verlag, New York, 1984.

13. LEBOWITZ, M. Generalization and memory in an integrated understanding system. Ph.D.
dissertation, Dept. of Computer Science, Yale Univ., New Haven, Conn., 1980.

14. LEVESQUE, H. J., AND BRACHMAN, R. J. A fundamental tradeoff in knowledge representation
and reasoning. In Readings in Knowledge Representation, R. J. Brachman, and H. J. Levesque,
Eds. Morgan Kaufmann, Los Altos, Calif., 1985, pp. 42-70.

15. MOTRO, A. Query generalization: A method for interpreting null answers. In Expert Database
Systems (Proceedings from the 1st International Workshop), L. Kerschberg, Ed. Benjamin/
Cummings, Menlo Park, Calif., 1986, pp. 597-616.

16. MOTRO, A. Completeness information and its application to query processing. In Proceedings
of the 12th Znternational Conference on Very Large Data Bases (Kyoto, Japan, Aug. 25-28). Very
Large Database Endowment, Morgan Kaufmann, Los Altos, Calif., 1986, pp. 170-178.

17. MOTRO, A. Supporting goal queries in relational databases. In Proceedings of the 1st Znterna-
tional Conference on Expert Database Systems (Charleston, S.C., Apr. l-4). Institute of Infor-
mation Management, Technology and Policy, Univ. of South Carolina, Columbia, S.C., 1986,
pp. 85-96.

18. MYLOPOVLOS, J., AND WONG, H. K. T. Some features of the TAXIS data model. In Proceedings
of the 6th International Conference on Very Large Data Bases (Montreal, Canada, Oct. l-3).
ACM, New York, 1980, pp. 399-410.

19. SELLIS, T. K. Global query optimization. In Proceedings of ACM-SZGMOD International
Conference on Management of Data (Washington, D.C., May 28-30). ACM, New York, 1986,
pp. 191-205.

20. STONEBRAKER, M., WONG, E., KREPS, P., AND HELD, G. The design and implementation of
INGRES. ACM Trans. Database Syst. 1,3 (Sept. 1976), 189-222.

21. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md., 1982.
22. WINOGRAD, T. Understanding Natural Language. Academic Press, Orlando, Fla., 1972.
23. ZLOOF, M. Query-by-example: A database language. IBM Syst. J. 16,4 (Dec. 1977), 324-343.

Received March 1986; revised October 1986; accepted October 1986.

ACM Transactions bn Office Information Systems, Vol. 4, No. 4, October 1986.

