
An Architectural Framework and a Middleware for
Cooperating Smart Components ∗

António Casimiro
U.Lisboa

casim@di.fc.ul.pt

Jörg Kaiser
U.Ulm

kaiser@informatik.uni-
ulm.de

Paulo Verı́ssimo
U.Lisboa

pjv@di.fc.ul.pt

ABSTRACT
In a future networked physical world, a myriad of smart
sensors and actuators assess and control aspects of their en-
vironments and autonomously act in response to it. Exam-
ples range in telematics, traffic management, team robotics
or home automation to name a few. To a large extent, such
systems operate proactively and independently of direct hu-
man control driven by the perception of the environment and
the ability to organize respective computations dynamically.
The challenging characteristics of these applications include
sentience and autonomy of components, issues of responsive-
ness and safety criticality, geographical dispersion, mobility
and evolution. A crucial design decision is the choice of
the appropriate abstractions and interaction mechanisms.
Looking to the basic building blocks of such systems we
may find components which comprise mechanical compo-
nents, hardware and software and a network interface, thus
these components have different characteristics compared to
pure software components. They are able to spontaneously
disseminate information in response to events observed in
the physical environment or to events received from other
component via the network interface. Larger autonomous
components may be composed recursively from these build-
ing blocks.

The paper describes an architectural framework and a
middleware supporting a component-based system and an
integrated view on events-based communication comprising
the real world events and the events generated in the sys-
tem. It starts by an outline of the component-based system
construction. The generic event architecture GEAR is intro-
duced which describes the event-based interaction between
the components via a generic event layer. The generic event
layer hides the different communication channels including

∗This work was partially supported by the EC, through
project IST-2000-26031 (CORTEX), and by the FCT,
through the Large-Scale Informatic Systems Labora-
tory (LaSIGE) and project POSI/1999/CHS/33996 (DE-
FEATS).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’04, April 14–16, 2004, Ischia, Italy.
Copyright 2004 ACM 1-58113-741-9/04/0004 ...$5.00.

the interactions through the environment. An appropriate
middleware is presented which reflects these needs and al-
lows to specify events which have quality attributes to ex-
press temporal constraints. This is complemented by the
notion of event channels which are abstractions of the under-
lying network and allow to enforce quality attributes. They
are established prior to interaction to reserve the needed
computational and network resources for highly predictable
event dissemination.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.2.4 []: Distributed Systems—Distributed applications; C.3
[Special-Purpose and Application-Based Systems]: Real-
Time and embedded systems

General Terms
Design

Keywords
Events-based communication, sentient computing, component-
based systems, middleware architectures

1. INTRODUCTION
In recent years we have seen the continuous improvement

of technologies that are relevant for the construction of dis-
tributed embedded systems, including trustworthy visual,
auditory, and location sensing [11], communication and pro-
cessing. We believe that in a future networked physical
world a new class of applications will emerge, composed of
a myriad of smart sensors and actuators to assess and con-
trol aspects of their environments and autonomously act in
response to it. The anticipated challenging characteristics
of these applications include autonomy, responsiveness and
safety criticality, large scale, geographical dispersion, mobil-
ity and evolution.

In order to deal with these challenges, it is of fundamen-
tal importance to use adequate high-level models, abstrac-
tions and interaction paradigms. Unfortunately, when fac-
ing the specific characteristics of the target systems, the
shortcomings of current architectures and middleware inter-
action paradigms become apparent. Looking to the basic
building blocks of such systems we may find components
which comprise mechanical parts, hardware, software and
a network interface. However, classical event/object mod-
els are usually software oriented and, as such, when trans-

ported to a real-time, embedded systems setting, their har-
mony is cluttered by the conflict between, on the one side,
send/receive of “software” events (message-based), and on
the other side, input/output of “hardware” or “real-world”
events, register-based. In terms of interaction paradigms,
and although the use of event-based models appears to be
a convenient solution [10, 22], these often lack the appropri-
ate support for non-functional requirements like reliability,
timeliness or security.

This paper describes an architectural framework and a
middleware, supporting a component-based system and an
integrated view on event-based communication comprising
the real world events and the events generated in the system.

When choosing the appropriate interaction paradigm it
is of fundamental importance to address the challenging is-
sues of the envisaged sentient applications. Unlike classical
approaches that confine the possible interactions to the ap-
plication boundaries, i.e. to its components, we consider
that the environment surrounding the application also plays
a relevant role in this respect. Therefore, the paper starts by
clarifying several issues concerning our view of the system,
about the interactions that may take place and about the
information flows. This view is complemented by provid-
ing an outline of the component-based system construction
and, in particular, by showing that it is possible to com-
pose larger applications from basic components, following
an hierarchical composition approach.

This provides the necessary background to introduce the
Generic-Events Architecture (GEAR), which describes
the event-based interaction between the components via a
generic event layer while allowing the seamless integration
of physical and computer information flows. In fact, the
generic event layer hides the different communication chan-
nels, including the interactions through the environment.

Additionally, the event layer abstraction is also adequate
for the proper handling of the non-functional requirements,
namely reliability and timeliness, which are particularly strin-
gent in real-time settings. The paper devotes particular at-
tention to this issue by discussing the temporal aspects of
interactions and the needs for predictability.

An appropriate middleware is presented which reflects
these needs and allows to specify events which have quality
attributes to express temporal constraints. This is comple-
mented by the notion of Event Channels (EC), which are ab-
stractions of the underlying network while being abstracted
by the event layer. In fact, event channels play a funda-
mental role in securing the functional and non-functional
(e.g. reliability and timeliness) properties of the envisaged
applications, that is, in allowing the enforcement of quality
attributes. They are established prior to interaction to re-
serve the needed computational and network resources for
highly predictable event dissemination.

The paper is organized as follows. In Section 3 we in-
troduce the fundamental notions and abstractions that we
adopt in this work to describe the interactions taking place
in the system. Then, in Section 4, we describe the component-
based approach that allows composition of objects. GEAR
is then described in Section 5 and Section 6 focuses on tem-
poral aspects of the interactions. Section 7 describes the
COSMIC middleware, which may be used to specify the in-
teraction between sentient objects. A simple example to
highlight the ideas presented in the paper appears in Sec-
tion 8 and Section 9 concludes the paper.

2. RELATED WORK
Our work considers a wired physical world in which a

very large number of autonomous components cooperate.
It is inspired by many research efforts in very different ar-
eas. Event-based systems in general have been introduced to
meet the requirements of applications in which entities spon-
taneously generate information and disseminate it [1, 25,
22]. Intended for large systems and requiring quite complex
infrastructures, these event systems do not consider strin-
gent quality aspects like timeliness and dependability issues.
Secondly, they are not created to support inter-operability
between tiny smart devices with substantial resource con-
straints.

In [10] a real-time event system for CORBA has been
introduced. The events are routed via a central event server
which provides scheduling functions to support the real-time
requirements. Such a central component is not available
in an infrastructure envisaged in our system architecture
and the developed middleware TAO (The Ace Orb) is quite
complex and unsuitable to be directly integrated in smart
devices.

There are efforts to implement CORBA for control net-
works, tailored to connect sensor and actuator components [15,
19]. They are targeted for the CAN-Bus [9], a popular net-
work developed for the automotive industry. However, in
these approaches the support for timeliness or dependabil-
ity issues does not exist or is only very limited.

A new scheme to integrate smart devices in a CORBA en-
vironment is proposed in [17] and has lead to the proposal of
a standard by the Object Management Group (OMG) [26].
Smart transducers are organized in clusters that are con-
nected to a CORBA system by a gateway.

The clusters form isolated subnetworks. A special master
node enforces the temporal properties in the cluster subnet.
A CORBA gateway allows to access sensor data and write
actuator data by means of an interface file system (IFS).
The basic structure is similar to the WAN-of-CANs struc-
ture which has been introduced in the CORTEX project [4].
Islands of tight control may be realized by a control network
and cooperate via wired or wireless networks covering a large
number of these subnetworks. However, in contrast to the
event channel model introduced in this paper, all communi-
cation inside a cluster relies on a single technical solution of
a synchronous communication channel. Secondly, although
the temporal behaviour of a single cluster is rigorously de-
fined, no model to specify temporal properties for cluster-
to-CORBA or cluster-to-cluster interactions is provided.

3. INFORMATION FLOW AND
INTERACTION MODEL

In this paper we consider a component-based system model
that incorporates previous work developed in the context of
the IST CORTEX project [5]. As mentioned above, a funda-
mental idea underlying the approach is that applications can
be composed of a large number of smart components that
are able to sense their surrounding environment and inter-
act with it. These components are referred to as sentient
objects, a metaphor elaborated in CORTEX and inspired
on the generic concept of sentient computing introduced in
[12]. Sentient objects accept input events from a variety of
different sources (including sensors, but not constrained to
that), process them, and produce output events, whereby

they actuate on the environment and/or interact with other
objects. Therefore, the following kinds of interactions can
take place in the system:

Environment-to-object interactions: correspond to a
flow of information from the environment to applica-
tion objects, reporting about the state of the former,
and/or notifying about events taking place therein.

Object-to-object interactions: correspond to a flow of
information among sentient objects, serving two pur-
poses. The first is related with complementing the
assessment of each individual object about the state
of the surrounding space. The second is related to col-
laboration, in which the object tries to influence other
objects into contributing to a common goal, or into
reacting to an unexpected situation.

Object-to-environment interactions: correspond to a
flow of information from an object to the environment,
with the purpose of forcing a change in the state of the
latter.

Before continuing, we need to clarify a few issues with
respect to these possible forms of interaction. We consider
that the environment can be a producer or consumer of in-
formation while interacting with sentient objects. The en-
vironment is the real (physical) world surrounding an ob-
ject, not necessarily close to the object or limited to certain
boundaries. Quite clearly, the information produced by the
environment corresponds to the physical representation of
real-time entities, of which typical examples include temper-
ature, distance or the state of a door. On the other hand,
actuation on the environment implies the manipulation of
these real-time entities, like increasing the temperature (ap-
plying more heat), changing the distance (applying some
movement) or changing the state of the door (closing or
opening it). The required transformations between system
representations of these real-time entities and their physical
representations is accomplished, generically, by sensors and
actuators. We further consider that there may exist dumb
sensors and actuators, which interact with the objects by
disseminating or capturing raw transducer information, and
smart sensors and actuators, with enhanced processing ca-
pabilities, capable of “speaking” some more elaborate “event
dialect” (see Sections 5 and 6.1). Interaction with the en-
vironment is therefore done through sensors and actuators,
which may, or may not be part of sentient objects, as dis-
cussed in Section 4.2.

State or state changes in the environment are considered
as events, captured by sensors (in the environment or within
sentient objects) and further disseminated to other poten-
tially interested sentient objects in the system. In conse-
quence, it is quite natural to base the communication and in-
teraction among sentient objects and with the environment
on an event-based communication model. Moreover, typical
properties of event-based models, such as anonymous and
non-blocking communication, are highly desirable in systems
where sentient objects can be mobile and where interactions
are naturally very dynamic.

A distinguishing aspect of our work from many of the ex-
isting approaches, is that we consider that sentient objects
may indirectly communicate with each other through the
environment, when they act on it. Thus the environment

constitutes an interaction and communication channel and
is in the control and awareness loop of the objects. In other
words, when a sentient object actuates on the environment it
will be able to observe the state changes in the environment
by means of events captured by the sensors. Clearly, other
objects might as well capture the same events, thus estab-
lishing the above-mentioned indirect communication path.

In systems that involve interactions with the environment
it is very important to consider the possibility of commu-
nication through the environment. It has been shown that
the hidden channels developing through the latter (e.g., feed-
back loops) may hinder software-based algorithms ignoring
them [30]. Therefore, any solution to the problem requires
the definition of convenient abstractions and appropriate ar-
chitectural constructs.

On the other hand, in order to deal with the information
flow through the whole computer system and environment in
a seamless way, handling “software” and “hardware” events
uniformly, it is also necessary to find adequate abstractions.
As discussed in Section 5, the Generic-Events Architecture
introduces the concept of Generic Event and an Event Layer
abstraction which aim at dealing, among others, with these
issues.

4. SENTIENT OBJECT COMPOSITION
In this section we analyze the most relevant issues related

with the sentient object paradigm and the construction of
systems composed of sentient objects.

4.1 Component-based System Construction
Sentient objects can take several different forms: they

can simply be software-based components, but they can also
comprise mechanical and/or hardware parts, amongst which
the very sensorial apparatus that substantiates “sentience”,
mixed with software components to accomplish their task.
We refine this notion by considering a sentient object as an
encapsulating entity, a component with internal logic and
active processing elements, able to receive, transform and
produce new events. This interface hides the internal hard-
ware/software structure of the object, which may be com-
plex, and shields the system from the low-level functional
and temporal details of controlling a specific sensor or actu-
ator.

Furthermore, given the inherent complexity of the envis-
aged applications, the number of simultaneous input events
and the internal size of sentient objects may become too
large and difficult to handle. Therefore, it should be possi-
ble to consider the hierarchical composition of sentient ob-
jects so that the application logic can be separated across as
few or as many of these objects as necessary. On the other
hand, composition of sentient objects should normally be
constrained by the actual hardware component’s structure,
preventing the possibility of arbitrarily composing sentient
objects. This is illustrated in Figure 1, where a sentient
object is internally composed of a few other sentient ob-
jects, each of them consuming and producing events, some
of which only internally propagated.

Observing the figure, and recalling our previous discussion
about the possible interactions, we identify all of them here:
an object-to-environment interaction occurs between the ob-
ject controlling a WLAN transmitter and some WLAN re-
ceiver in the environment; an environment-to-object inter-
action takes place when the object responsible for the GPS

G P S
r e c e p t i o n

W i r e l e s s
t r a n s m i s s i o n

D o p p l e r
r a d a r

P h y s i c a l f e e d b a c k

O b j e c t ' s b o d y

I n t e r n a l N e t w o r k

Figure 1: Component-aware sentient object compo-
sition.

signal reception uses the information transmitted by the
satellites; finally, explicit object-to-object interactions occur
internally to the container object, through an internal com-
munication network. Additionally, it is interesting to ob-
serve that implicit communication can also occur, whether
the physical feedback develops through the environment in-
ternal to the container object (as depicted) or through the
environment external to this object. However, there is a sub-
tle difference between both cases. While in the former the
feedback can only be perceived by objects internal to the
container, bounding the extent to which consistency must
be ensured, such bounds do not exist in the latter. In fact,
the notion of sentient object as an encapsulating entity may
serve other purposes (e.g., the confinement of feedback and
of the propagation of events), beyond the mere hierarchical
composition of objects.

To give a more concrete example of such component-aware
object composition we consider a scenario of cooperating
robots. Each robot is made of several components, corre-
sponding, for instance, to axis and manipulator controllers.
Together with the control software, each of these controllers
may be a sentient object. On the other hand, a robot itself
is a sentient object, composed of the objects materialized
by the controllers, and the environment internal to its own
structure, or body.

This means that it should be possible to define coopera-
tion activities using the events produced by robot sentient
objects, without the need to know the internal structure of
robots, or the events produced by body objects or by smart
sensors within the body. From an engineering point of view,
however, this also means that robot sentient object may
have to generate new events that reflect its internal state,
which requires the definition of a gateway to make the bridge
between the internal and external environments.

4.2 Encapsulation and Scoping
Now an important question is about how to represent and

disseminate events in a large scale networked world. As we
have seen above, any event generated by a sentient object
could, in principle, be visible anywhere in the system and
thus received by any other sentient object. However, there
are substantial obstacles to such universal interactions, orig-
inating from the components heterogeneity in such a large-
scale setting.

Firstly, the components may have severe performance con-
straints, particularly because we want to integrate smart
sensors and actuators in such an architecture. Secondly, the

bandwidth of the participating networks may vary largely.
Such networks may be low power, low bandwidth fieldbuses,
or more powerful wireless networks as well as high speed
backbones. Thirdly, the networks may have widely different
reliability and timeliness characteristics. Consider a pla-
toon of cooperating vehicles. Inside a vehicle there may be
a field-bus like CAN [8, 9], TTP/A [17] or LIN [20], with a
comparatively low bandwidth. On the other hand, the ve-
hicles are communicating with others in the platoon via a
direct wireless link. Finally, there may be multiple platoons
of vehicles which are coordinated by an additional wireless
network layer.

At the abstraction level of sentient objects, such hetero-
geneity is reflected by the notion of body-vs-environment.
At the network level, we assume the WAN-of-CANs struc-
ture [27] to model the different networks. The notion of
body and environment is derived from the recursively de-
fined component-based object model. A body is similar to
a cell membrane and represents a quality of service con-
tainer for the sentient objects inside. On the network level,
it may be associated with the components coupled by a cer-
tain CAN. A CAN defines the dissemination quality which
can be expected by the cooperating objects.

In the above example, a vehicle may be a sentient object,
whose body is composed of the respective lower level objects
(sensors and actuators) which are connected by the internal
network (see Figure 1). Correspondingly, the platoon can be
seen itself as an object composed of a collection of cooperat-
ing vehicles, its body being the environment encapsulated by
the platoon zone. At the network level, the wireless network
represents the respective CAN. However, several platoons
united by their CANs may interact with each other and ob-
jects further away, through some wider-range, possible fixed
networking substrate, hence the concept of WAN-of-CANs.

The notions of body-environment and WAN-of-CANs are
very useful when defining interaction properties across such
boundaries. Their introduction obeyed to our belief that
a single mechanism to provide quality measures for inter-
actions is not appropriate. Instead, a high level construct
for interaction across boundaries is needed which allows to
specify the quality of dissemination and exploits the knowl-
edge about body and environment to assess the feasibility of
quality constraints. As we will see in the following section,
the notion of an event channel represents this construct in
our architecture. It disseminates events and allows the net-
work independent specification of quality attributes. These
attributes must be mapped to the respective properties of
the underlying network structure.

5. A GENERIC EVENTS ARCHITECTURE
In order to successfully apply event-based object-oriented

models, addressing the challenges enumerated in the intro-
duction of this paper, it is necessary to use adequate archi-
tectural constructs, which allow the enforcement of funda-
mental properties such as timeliness or reliability.

We propose the Generic-Events Architecture (GEAR),
depicted in Figure 2, which we briefly describe in what fol-
lows (for a more detailed description please refer to [29]).
The L-shaped structure is crucial to ensure some of the prop-
erties described.

Environment: The physical surroundings, remote and close,
solid and etherial, of sentient objects.

C o m m ' sC o m m ' sC o m m ' s

T r a n s l a t i o n
L a y e r

T r a n s l a t i o n
L a y e r

B o d y
E n v i r o n m e n t

B o d y
E n v i r o n m e n t

B o d y
E n v i r o n m e n t

(i n c l u d i n g o p e r a t i o n a l n e t w o r k)

(o f o b j e c t o r o b j e c t c o m p o u n d)

T r a n s l a t i o n
L a y e r

T r a n s l a t i o n

S e n t i e n t
O b j e c t

S e n t i e n t
O b j e c t

S e n t i e n t
O b j e c tR e g u l a r N e t w o r k

c o n s u m ep r o d u c e

E v e n t
L a y e r

E v e n t
L a y e r

E v e n t
L a y e r

S e n t i e n t
O b j e c t

Figure 2: Generic-Events architecture.

Body: The physical embodiment of a sentient object (e.g.,
the hardware where a mechatronic controller resides,
the physical structure of a car). Note that due to the
compositional approach taken in our model, part of
what is “environment” to a smaller object seen individ-
ually, becomes “body” for a larger, containing object.
In fact, the body is the “internal environment” of the
object. This architecture layering allows composition
to take place seamlessly, in what concerns information
flow.

Inside a body there may also be implicit knowledge,
which can be exploited to make interaction more effi-
cient, like the knowledge about the number of cooper-
ating entities, the existence of a specific communica-
tion network or the simple fact that all components are
co-located and thus the respective events do not need
to specify location in their context attributes. Such in-
trinsic information is not available outside a body and,
therefore, more explicit information has to be carried
by an event.

Translation Layer: The layer responsible for physical event
transformation from/to their native form to event chan-
nel dialect, between environment/body and an event
channel. Essentially one doing observation and actua-
tion operations on the lower side, and doing transac-
tions of event descriptions on the other. On the lower
side this layer may also interact with dumb sensors or
actuators, therefore “talking” the language of the spe-
cific device. These interactions are done through op-
erational networks (hence the antenna symbol in the
figure).

Event Layer: The layer responsible for event propagation
in the whole system, through several Event Channels
(EC):. In concrete terms, this layer is a kind of middle-
ware that provides important event-processing services
which are crucial for any realistic event-based system.
For example, some of the services that imply the pro-

cessing of events may include publishing, subscribing,
discrimination (zoning, filtering, fusion, tracing), and
queuing.

Communication Layer: The layer responsible for “wrap-
ping” events (as a matter of fact, event descriptions
in EC dialect) into “carrier” event-messages, to be
transported to remote places. For example, a sens-
ing event generated by a smart sensor is wrapped in
an event-message and disseminated, to be caught by
whoever is concerned. The same holds for an actua-
tion event produced by a sentient object, to be deliv-
ered to a remote smart actuator. Likewise, this may
apply to an event-message from one sentient object
to another. Dumb sensors and actuators do not send
event-messages, since they are unable to understand
the EC dialect (they do not have an event layer nei-
ther a communication layer— they communicate, if
needed, through operational networks).

Regular Network: This is represented in the horizontal
axis of the block diagram by the communication layer,
which encompasses the usual LAN, TCP/IP, and real-
time protocols, desirably augmented with reliable and/or
ordered broadcast and other protocols.

The GEAR introduces some innovative ideas in distributed
systems architecture. While serving an object model based
on production and consumption of generic events, it treats
events produced by several sources (environment, body, ob-
jects) in a homogeneous way. This is possible due to the use
of a common basic dialect for talking about events and due
to the existence of the translation layer, which performs the
necessary translation between the physical representation of
a real-time entity and the EC compliant format. Crucial to
the architecture is the event layer, which uses event channels
to propagate events through regular network infrastructures.
The event layer is realized by the COSMIC middleware, as
described in Section 7.

5.1 Information Flow in GEAR
The flow of information (external environment and com-

putational part) is seamlessly supported by the L-shaped
architecture. It occurs in a number of different ways, which
demonstrates the expressiveness of the model with regard to
the necessary forms of information encountered in real-time
cooperative and embedded systems.

Smart sensors produce events which report on the en-
vironment. Body sensors produce events which report on
the body. They are disseminated by the local event layer
module, on an event channel (EC) propagated through the
regular network, to any relevant remote event layer mod-
ules where entities showed an interest on them, normally,
sentient objects attached to the respective local event layer
modules.

Sentient objects consume events they are interested in,
process them, and produce other events. Some of these
events are destined to other sentient objects. They are pub-
lished on an EC using the same EC dialect that serves, e.g.,
sensor originated events. However, these events are seman-
tically of a kind such that they are to be subscribed by
the relevant sentient objects, for example, the sentient ob-
jects composing a robot controller system, or, at a higher
level, the sentient objects composing the actual robots in

a cooperative application. Smart actuators, on the other
hand, merely consume events produced by sentient objects,
whereby they accept and execute actuation commands. Al-
ternatively to “talking” to other sentient objects, sentient
objects can produce events of a lower level, for example,
actuation commands on the body or environment. They
publish these exactly the same way: on an event channel
through the local event layer representative. Now, if these
commands are of concern to local actuator units (e.g., body,
including internal operational networks), they are passed on
to the local translation layer. If they are of concern to a
remote smart actuator, they are disseminated through the
distributed event layer, to reach the former. In any case,
if they are also of interest to other entities, such as other
sentient objects that wish to be informed of the actuation
command, then they are also disseminated through the EC
to these sentient objects.

A key advantage of this architecture is that event-messages
and physical events can be globally ordered, if necessary,
since they all pass through the event layer. The model also
offers opportunities to solve a long lasting problem in real-
time, computer control, and embedded systems: the incon-
sistency between message passing and the feedback loop in-
formation flow subsystems.

6. TEMPORAL ASPECTS OF THE
INTERACTIONS

Any interaction needs some form of predictability. If safety
critical scenarios are considered as it is done in CORTEX,
temporal aspects become crucial and have to be made ex-
plicit. The problem is how to define temporal constraints
and how to enforce them by appropriate resource usage in a
dynamic ad-hoc environment. In an system where interac-
tions are spontaneous, it may be also necessary to determine
temporal properties dynamically. To do this, the respective
temporal information must be stated explicitly and available
during run-time. Secondly, it is not always ensured that
temporal properties can be fulfilled. In these cases, adap-
tations and timing failure notification must be provided [2,
28]. In most real-time systems, the notion of a deadline
is the prevailing scheme to express and enforce timeliness.
However, a deadline only weakly reflect the temporal char-
acteristics of the information which is handled. Secondly, a
deadline often includes implicit knowledge about the system
and the relations between activities. In a rather well defined,
closed environment, it is possible to make such implicit as-
sumptions and map these to execution times and deadlines.
E.g. the engineer knows how long a vehicle position can be
used before the vehicle movement outdates this information.
Thus he maps this dependency between speed and position
on a deadline which then assures that the position error
can be assumed to be bounded. In a open environment, this
implicit mapping is not possible any more because, as an ob-
vious reason, the relation between speed and position, and
thus the error bound, cannot easily be reverse engineered
from a deadline. Therefore, our event model includes ex-
plicit quality attributes which allow to specify the temporal
attributes for every individual event. This is of course an
overhead compared to the use of implicit knowledge, but in
a dynamic environment such information is needed.

To illustrate the problem, consider the example of the
position of a vehicle. A position is a typical example for

〈time, value〉 entity [30]. Thus, the position is useful if we
can determine an error bound which is related to time, e.g. if
we want a position error below 10 meters to establish a safety
property between cooperating cars moving with 5 m/sec,
the position has a validity time of 2 seconds. In a 〈time,
value〉 entity entity we can trade time against the precision
of the value. This is known as value over time and time over
value [18]. Once having established the time-value relation
and captured in event attributes, subscribers of this event
can locally decide about the usefulness of an information. In
the GEAR architecture temporal validity is used to reason
about safety properties in a event-based system [29]. We
will briefly review the respective notions and see how they
are exploited in our COSMIC event middleware.

Consider the timeline of generating an event representing
some real-time entity [18] from its occurrence to the notifi-
cation of a certain sentient object (Figure 3). The real-time
entity is captured at the sensor interface of the system and
has to be transformed in a form which can be treated by a
computer. During the time interval t0 the sensor reads the
real-time entity and a time stamp is associated with the re-
spective value. The derived 〈time, value〉 entity represents
an observation. It may be necessary to perform substantial
local computations to derive application relevant informa-
tion from the raw sensor data. However, it should be noted
that the time stamp of the observation is associated with
the capture time and thus independent from further signal
processing and event generation. This close relationship be-
tween capture time and the associated value is supported by
smart sensors described above.

The processed sensor information is assembled in an event
data structure after ts to be published to an event channel.
As is described later, the event includes the time stamp of
generation and the temporal validity as attributes.

The temporal validity is an application defined measure
for the expiration of a 〈time, value〉. As we explained in
the example of a position above, it may vary dependent on
application parameters. Temporal validity is a more general
concept than that of a deadline. It is independent of a cer-
tain technical implementation of a system. While deadlines
may be used to schedule the respective steps in an event
generation and dissemination, a temporal validity is an in-
trinsic property of a 〈time, value〉 entity carried in an event.
A temporal validity allows to reason about the usefulness
of information and is beneficial even in systems in which
timely dissemination of events cannot be enforced because
it enables timing failure detection at the event consumer. It
is obvious that deadlines or periods can be derived from the
temporal validity of an event. To set a deadline, knowledge
of an implementation, worst case execution times or mes-
sage dissemination latencies is necessary. Thus, in the time-
line of Figure 3 every interval may have a deadline. Event
dissemination through soft real-time channels in COSMIC
exploits the temporal validity to define dissemination dead-
lines. Quality attributes can be defined, for instance, in
terms of 〈validity interval, omission degree〉 pairs. These al-
low to characterize the usefulness of the event for a certain
application, in a certain context. Because of that, quality
attributes of an event clearly depend on higher level issues,
such as the nature of the sentient object or of the smart
sensor that produced the event. For instance, an event con-
taining an indication of some vehicle speed must have dif-
ferent quality attributes depending on the kind of vehicle

real-world

event

observation:

<time stamp, value>

event generated

ready to be transmitted
 event

received notification

D to
t

event
producer communication network

event
consumer

event channel

push <event>

D ts

D tm D tt D tn

D t o : t i m e t o o b t a i n a n o b s e r v a t i o n D t s : t i m e t o p r o c e s s s e n s o r r e a d i n g D t m : t i m e t o a s s e m b l e a n e v e n t m e s s a g e D t t : t i m e t o t r a n s f e r t h e e v e n t o n t h e r e g u l a r n e t w o r k D t n : t i m e f o r n o t i f i c a t i o n o n t h e c o n s u m e r s i t e

Figure 3: Event processing and dissemination.

from which it originated, or depending on its current speed.
The same happens with the position event of the car ex-
ample above, whose validity depends on the current speed
and on a predefined required precision. However, since qual-
ity attributes are strictly related with the semantics of the
application or, at least, with some high level knowledge of
the purpose of the system (from which the validity of the
information can be derived), the definition of these quality
attributes may be done by exploiting the information pro-
vided at the programming interface. Therefore, it is impor-
tant to understand how the system programmer can spec-
ify non-functional requirements at the API, and how these
requirements translate into quality attributes assigned to
events. While temporal validity is identified as an intrinsic
event property, which is exploited to decide on the useful-
ness of data at a certain point in time, it is still necessary
to provide a communication facility which can disseminate
the event before the validity is expired.

In a WAN-of-CANs network structure we have to cope
with very different network characteristics and quality of
service properties. Therefore, when crossing the network
boundaries the quality of service guarantees available in a
certain network will be lost and it will be very hard, costly
and perhaps impossible to achieve these properties in the
next larger area of the WAN-of CANs structure. CORTEX
has a couple of abstractions to cope with this situation (net-
work zones, body/environment) which have been discussed
above. From the temporal point of view we need a high
level abstraction like the temporal validity for the individ-
ual event now to express our quality requirements of the dis-
semination over the network. The 〈bound, coverage〉 pair,
introduced in relation with the TCB [28] seems to be an
appropriate approach. It considers the inherent uncertainty
of networks and allows to trade the quality of dissemination
against the resources which are needed. In relation with
the event channel model discussed later, the 〈bound, cover-
age〉 pair allows to specify the quality properties of an event
channel independently of specific technical issues. Given
the typical environments in which sentient applications will

operate, where it is difficult or even impossible to provide
timeliness or reliability guarantees, we proposed an alterna-
tive way to handle non-functional application requirements,
in relation with the TCB approach [28]. The proposed ap-
proach exploits intrinsic characteristics of applications, such
as fail-safety, or time-elasticity, in order to secure QoS spec-
ifications of the form 〈bound, coverage〉. Instead of con-
structing systems that rely on guaranteed bounds, the idea
is to use (possibly changing) bounds that are secured with a
constant probability all over the execution. This obviously
requires an application to be able to adapt to changing con-
ditions (and/or changing bounds) or, if this is not possible,
to be able to perform some safety procedures when the op-
erational conditions degrade to an unbearable level. The
bounds we mentioned above refer essentially to timeliness
bounds associated to the execution of local or distributed
activities, or combinations thereof. From these bounds it is
then possible to derive the quality attributes, in particular
validity intervals, that characterize the events published in
the event channel.

6.1 The Role of Smart Sensors and Actuators
Smart devices encapsulate hardware, software and me-

chanical components and provide information and a set of
well specified functions and which are closely related to
the interaction with the environment. The built-in compu-
tational components and the network interface enable the
implementation of a well-defined high level interface that
does not just provide raw transducer data, but a processed,
application-related set of events. Moreover, they exhibit an
autonomous spontaneous behaviour. They differ from gen-
eral purpose nodes because they are dedicated to a certain
functionality which complies to their sensing and actuat-
ing capabilities while general purpose node may execute any
program.

Concerning the sentient object model, smart sensors and
actuators may be basic sentient objects themselves, consum-
ing events from the real-world environment and producing
the respective generic events for the system’s event layer or,

vice versa consuming a generic event and converting it to a
real-world event by an actuation. Smart components there-
fore constitute the periphery, i.e. the real-world interface of
a more complex sentient object. The model of sentient ob-
jects also constitutes the framework to built more complex
“virtual” sensors by relating multiple (primary, i.e. sensors
which directly sense a physical entity) sensors.

Smart components translate events of the environment
to an appropriate form available at the event layer or, vice
versa, transform a system event into an actuation. For smart
components we can assume that:

• Smart components have dedicated resources to per-
form a specific function.

• These resources are not used for other purposes during
normal real-time operation.

• No local temporal conflicts occur that will change the
observable temporal behaviour.

• The functions of a component can usually only be
changed during a configuration procedure which is not
performed when the component is involved in critical
operations.

• An observation of the environment as a 〈time,value〉
pair can be obtained with a bounded jitter in time.

Many predictability and scheduling problems arise from
the fact, that very low level timing behaviours have to be
handled on a single processor. Here, temporal encapsula-
tion of activities is difficult because of the possible side ef-
fects when sharing a single processor resource. Consider the
control of a simple IR-range detector which is used for ob-
stacle avoidance. Dependent on its range and the speed of
a vehicle, it has to be polled to prevent the vehicle from
crashing into an obstacle. On a single central processor,
this critical activity has to be coordinated with many sim-
ilar, possibly less critical functions. It means that a very
fine grained schedule has to be derived based purely on the
artifacts of the low level device control. In a smart sen-
sor component, all this low level timing behaviour can be
optimized and encapsulated. Thus we can assume temporal
encapsulation similar to information hiding in the functional
domain. Of course, there is still the problem to guarantee
that an event will be disseminated and recognized in due
time by the respective system components, but this relates
to application related events rather than the low artifacts of
a device timing. The main responsibility to provide time-
liness guarantees is shifted to the event layer where these
events are disseminated. Smart sensors thus lead to network
centric system model. The network constitute the shared re-
source which has to be scheduled in a predictable way. The
COSMIC middleware introduced in the next section is an
approach to provide predictable event dissemination for a
network of smart sensors and actuators.

7. AN EVENT MODEL AND MIDDLEWARE
FOR COOPERATING SMART DEVICES

An event model and a middleware suitable for smart com-
ponents must support timely and reliable communication
and also must be resource efficient. COSMIC (COoper-
ating Smart devices) is aimed at supporting the interac-
tion between those components according to the concepts
introduced so far. Based on the model of a WAN-of-CANs,
we assume that the components are connected to some form
of CAN as a fieldbus or a special wireless sensor network

which provides specific network properties. E.g. a fieldbus
developed for control applications usually includes mecha-
nisms for predictable communication while other networks
only support a best effort dissemination. A gateway con-
nects these CANs to the next level in the network hierarchy.
The event system should allow the dynamic interaction over
a hierarchy of such networks and comply with the overall
CORTEX generic event model. Events are typed informa-
tion carriers and are disseminated in a publisher/ subscriber
style [24, 7], which is particularly suitable because it sup-
ports generative, anonymous communication [3] and does
not create any artificial control dependencies between pro-
ducers of information and the consumers. This decoupling
in space (no references or names of senders or receivers are
needed for communication) and the flow decoupling (no con-
trol transfer occurs with a data transfer) are well known [24,
7, 14] and crucial properties to maintain autonomy of com-
ponents and dynamic interactions.

It is obvious that not all networks can provide the same
QoS guarantees and secondly, applications may have widely
differing requirements for event dissemination. Addition-
ally, when striving for predictability, resources have to be
reserved and data structures must be set up before commu-
nication takes place. Thus, these things can not predictably
be made on the fly while disseminating an event. Therefore,
we introduced the notion of an event channel to cope with
differing properties and requirements and have an object to
which we can assign resources and reservations. The con-
cept of an event channel is not new [10, 25], however, it has
not yet been used to reflect the properties of the underlying
heterogeneous communication networks and mechanisms as
described by the GEAR architecture. Rather, existing event
middleware allows to specify the priorities or deadlines of
events handled in an event server. Event channels allow
to specify the communication properties on the level of the
event system in a fine grained way. An event channel is
defined by:

event channel := 〈subject, quality attributeList,
handlers〉

The subject determines the types of events event which
may be issued to the channel. The quality attributes model
the properties of the underlying communication network
and dissemination scheme. These attributes include latency
specifications, dissemination constraints and reliability pa-
rameters. The notion of zones which represent a guaranteed
quality of service in a subnetwork support this approach.
Our goal is to handle the temporal specifications as 〈bound,
coverage〉 pairs [28] orthogonal to the more technical ques-
tions of how to achieve a certain synchrony property of the
dissemination infrastructure. Currently, we support qual-
ity attributes of event channels in a CAN-Bus environment
represented by explicit synchrony classes.

The COSMIC middleware maps the channel properties to
lower level protocols of the regular network. Based on our
previous work on predictable protocols for the CAN-Bus,
COSMIC defines an abstract network which provides hard,
soft and non real-time message classes [21].

Correspondingly, we distinguish three event channel classes
according to their synchrony properties: hard real-time chan-
nels, soft real-time channels and non-real-time channels.

Hard real-time channels (HRTC) guarantee event propa-
gation within the defined time constraints in the presence

of a specified number of omission faults. HRTECs are sup-
ported by a reservation scheme which is similar to the scheme
used in time-triggered protocols like TTP [16][31], TTP/A [17],
and TTCAN [8]. However, a substantial advantage over a
TDMA scheme is that due to CAN-Bus properties, band-
width which was reserved but is not needed by a HRTEC
can be used by less critical traffic [21].

Soft real-time channels (SRTC) exploit the temporal va-
lidity interval of events to derive deadlines for scheduling.
The validity interval defines the point in time after which
an event becomes temporally inconsistent. Therefore, in a
real-time system an event is useless after this point and may
me discarded. The transmission deadline (DL) is defined as
the latest point in time when a message has to be transmit-
ted and is specified in a time interval which is derived from
the expiration time:

tevent ready < DL < texpiration −∆notification

texpiration defines the point in time when the temporal
validity expires. ∆notification is the expected end-to-end la-
tency which includes the transfer time over the network and
the time the event may be delayed by the local event han-
dling in the nodes. As said before, event deadlines are used
to schedule the dissemination by SRTECs. However, dead-
lines may be missed in transient overload situations or due
to arbitrary arrival times of events. On the publisher side
the application’s exception handler is called whenever the
event deadline expires before event transmission. At this
point in time the event is also not expected to arrive at the
subscriber side before the validity expires. Therefore, the
event is removed from the sending queue. On the subscriber
side the expiration time is used to schedule the delivery of
the event. If the event cannot be delivered until its expira-
tion time it is removed from the respective queues allocated
by the COSMIC middleware. This prevents the communi-
cation system to be loaded by outdated messages.

Non-real-time channels do not assume any temporal spec-
ification and disseminate events in a best effort manner. An
instance of an event channel is created locally, whenever a
publisher makes an announcement for publication or a sub-
scriber subscribes for an event notification. When a pub-
lisher announces publication, the respective data structures
of an event channel are created by the middleware. When
a subscriber subscribes to an event channel, it may specify
context attributes of an event which are used to filter events
locally. E.g. a subscriber may only be interested in events
generated at a certain location. Additionally the subscriber
specifies quality properties of the event channel. A more de-
tailed description of the event channels can be found in [13].

Currently, COSMIC handles all event channels which dis-
seminate events beyond the CAN network boundary as non
real-time event channels. This is mainly because we use the
TCP/IP protocol to disseminate events over wireless links
or to the standard Ethernet. However, there are a num-
ber of possible improvements which can easily be integrated
in the event channel model. The Timely Computing Base
(TCB) [28] can be exploited for timing failure detection and
thus would provide awareness for event dissemination in en-
vironments where timely delivery of events cannot be en-
forced. Additionally, there are wireless protocols which can
provide timely and reliable message delivery [6, 23] which
may be exploited for the respective event channel classes.

Events are the information carriers which are exchanged

between sentient objects through event channels. To cope
with the requirements of an ad-hoc environment, an event
includes the description of the context in which it has been
generated and quality attributes defining requirements for
dissemination. This is particularly important in an open,
dynamic environment where an event may travel over mul-
tiple networks. An event instance is specified as:

event := 〈subject, context attributeList,
quality attributeList, contents〉

A subject defines the type of the event and is related
to the event contents. It supports anonymous communi-
cation and is used to route an event. The subject has to
match to the subject of the event channel through which
the event is disseminated. Attributes are complementary
to the event contents. They describe individual functional
and non-functional properties of the event. The context at-
tributes describe the environment in which the event has
been generated, e.g. a location, an operational mode or a
time of occurrence. The quality attributes specify timeli-
ness and dependability aspects in terms of 〈validity inter-
val, omission degree〉 pairs. The validity interval defines the
point in time after which an event becomes temporally in-
consistent [18]. As described above, the temporal validity
can be mapped to a deadline. However, usually a dead-
line is an engineering artefact which is used for scheduling
while the temporal validity is a general property of a 〈time,
value〉 entity. In a environment where a deadline cannot
be enforced, a consumer of an event eventually must decide
whether the event still is temporally consistent, i.e. repre-
sents a valid 〈time, value〉 entity.

7.1 The Architecture of the COSMIC
Middleware

On the architectural level, COSMIC distinguish three lay-
ers roughly depicted in Figure 4. Two of them, the event
layer and the abstract network layer are implemented by the
COSMIC middleware. The event layer provides the API for
the application and realizes the abstraction of event and
event channels.

The abstract network implements real-time message classes
and adapts the quality requirements to the underlying real
network. An event channel handler resides in every node. It
supports the programming interface and provides the neces-
sary data structures for event-based communication. When-
ever an object subscribes to a channel or a publisher an-
nounces a channel, the event channel handler is involved. It
initiates the binding of the channel’s subject, which is repre-
sented by a network independent unique identifier to an ad-
dress of the underlying abstract network to enable commu-
nication [14]. The event channel handler then tightly coop-
erates with the respective handlers of the abstract network
layer to disseminate events or receive event notifications. It
should be noted that the QoS properties of the event layer
in general depend on what the abstract network layer can
provide. Thus, it may not always be possible to e.g. support
hard real-time event channels because the abstract network
layer cannot provide the respective guarantees. In [13], we
describe the protocols and services of the abstract network
layer particularly for the CAN-Bus.

As can be seen in Figure 4, the hard real-time (HRT)
message class is supported by a dedicated handler which is
able to provide the time triggered message dissemination.

event
notifications

HRT-msg
list

SRT-msg
queue

NRT-msg
queue

HRT-msg
calendar

HRTC
Handler

S/NRTC
Handler

Abstract Network
Layer

CAN Layer
RX Buffer TX Buffer

RX, TX, error
interrupts

Event Channel
Specs.

Event Layer

send
messages

exception
notification

exceptions,
notifications

ECH:
Event Channel

Handler

p u b l i s h a n n o u n c e s u b s c r i b e

b i n d i n g
p r o t o c o l

c o n f i g .
p r o t o c o l

Global
Time

Service

event
notifications

HRT-msg
list

SRT-msg
queue

NRT-msg
queue

HRT-msg
calendar

HRTC
Handler

S/NRTC
Handler

Abstract Network
Layer

CAN Layer
RX Buffer TX Buffer

RX, TX, error
interrupts

Event Channel
Specs.

Event Layer

send
messages

exception
notification

exceptions,
notifications

ECH:
Event Channel

Handler

p u b l i s h a n n o u n c e s u b s c r i b e

b i n d i n g
p r o t o c o l

c o n f i g .
p r o t o c o l

Global
Time

Service

Figure 4: Architecture layers of COSMIC.

The HRT handler maintains the HRT message list, which
contains an entry for each local HRT message to be sent.
The entry holds the parameters for the message, the acti-
vation status and the binding information. Messages are
scheduled on the bus according to the HRT message calen-
dar which comprises the precise start time for each time slot
allocated for a message. Soft real-time message queues order
outgoing messages according to their transmission deadlines
derived from the temporal validity interval. If the transmis-
sion deadline is exceeded, the event message is purged out of
the queue. The respective application is notified via the ex-
ception notification interface and can take actions like trying
to publish the event again or publish it to a channel of an-
other class. Incoming event messages are ordered according
to their temporal validity. If an event message arrive, the
respective applications are notified. At the moment, an out-
dated message is deleted from the queue and if the queue
runs out of space, the oldest message is discarded. How-
ever, there are other policies possible depending on event
attributes and available memory space. Non real-time mes-
sages are FIFO ordered in a fixed size circular buffer.

7.2 Status of COSMIC
The goal for developing COSMIC was to provide a plat-

form to seamlessly integrate smart tiny components in a
large system. Therefore, COSMIC should run also on the
small, resource constraint devices which are built around 16-
Bit or even 8-Bit micro-controllers. The distributed COS-
MIC middleware has been implemented and tested on var-
ious platforms. Under RT-Linux, we support the real-time
channels over the CAN Bus as described above. The RT-
Linux version runs on Pentium processors and is currently
evaluated before we intent to port it to a smart sensor or
actuator. For the interoperability in a WAN-of-CANs envi-
ronment, we only provide non real-time channels at the mo-
ment. This version includes a gateway between the CAN-
bus and a TCP/IP network. It allows us to use a stan-
dard wireless 802.11 network. The non real-time version of
COSMIC is available on Linux, RT-Linux and on the micro-
controller families C167 (Infineon) and 68HC908 (Motorola).
Both micro-controllers have an on-board CAN controller

and thus do not require additional hardware components for
the network. The memory footprint of COSMIC is about 13
Kbyte on a C167 and slightly more on the 68HC908 where it
fits into the on-board flash memory without problems. Be-
cause only a few channels are required on such a smart sensor
or actuator component, the requirement of RAM (which is
a scarce resource on many single chip systems) to hold the
dynamic data structures of a channel is low. The COSMIC
middleware makes it very easy to include new smart sensors
in an existing system. Particularly, the application running
on a smart sensor to condition and process the raw physical
data must not be aware of any low level network specific de-
tails. It seamlessly interacts with other components of the
system exclusively via event channels.

The demo example, briefly described in the next chapter,
is using a distributed infrastructure of tiny smart sensors
and actuators directly cooperating via event channels over
heterogeneous networks.

8. AN ILLUSTRATIVE EXAMPLE
A simple example for many important properties of the

proposed system showing the coordination through the en-
vironment and events disseminated over the network is the
demo of two cooperating robots depicted in Figure 5.

Each robot is equipped with smart distance sensors, speed
sensors, acceleration sensors and one of the robots (the “guide”
(KURT2) in front (Figure 5)) has a tracking camera allow-
ing to follow a white line. The robots form a WAN-of-CANs
system in which their local CANs are interconnected via a
wireless 802.11 network. COSMIC provides the event layer
for seamless interaction. The “blind” robot (N.N.) is search-
ing the guide randomly. Whenever the blind robot detects
(by its front distance sensors) an obstacle, it checks whether
this may be the guide. For this purpose, it dynamically sub-
scribes to the event channel disseminating distance events
from rear distance sensors of the guide(s) and compares
these with the distance events from its local front sensors.
If the distance is approximately the same it infers that it
is really behind a guide. Now N.N. also subscribes to the
event channels of the tracking camera and the speed sensors

Figure 5: Cooperating robots.

to follow the guide. The demo application highlights the
following properties of the system:

1. Dynamic interaction of robots which is not known in
advance. In principle, any two a priori unknown robots
can cooperate. All what publishers and subscribers
have to know to dynamically interact in this environ-
ment is the subject of the respective event class. A
problem will be to receive only the events of the robot
which is closest. A robot identity does not help much
to solve this problem. Rather, the position of the event
generation entity which is captured in the respective
attributes can be evaluated to filter the relevant event
out of the event stream. A suitable wireless protocol
which uses proximity to filter events has been proposed
by Meier and Cahill [22] in the CORTEX project.

2. Interaction through the environment. The coopera-
tion between the robots is controlled by sensing the
distance between the robots. If the guide detects that
the distance grows, it slows down. Respectively, if the
blind robot comes too close it reduces its speed. The
local distance sensors produce events which are dissem-
inated through a low latency, highly predictable event
channel. The respective reaction time can be calcu-
lated as function of the speed and the distance of the
robots and define a dynamic dissemination deadline
for events. Thus, the interaction through the environ-
ment will secure the safety properties of the applica-
tion, i.e. the follower may not crash into the guide and
the guide may not loose the follower. Additionally, the
robots have remote subscriptions to the respective dis-
tance events which are used to check it with the local
sensor readings to validate that they really follow the
guide which they detect with their local sensors. Be-
cause there may be longer latencies and omissions, this
check occasionally will not be possible. The unavail-
ability of the remote events will decrease the quality
of interaction and probably and slow down the robots,
but will not affect safety properties.

3. Cooperative sensing. The blind robot subscribes to the
events of the line tracking camera. Thus it can ”see”
through the eye of the guide. Because it knows the dis-
tance to the guide and the speed as well, it can foresee
the necessary movements. The proposed system pro-
vides the architectural framework for such a cooper-

ation. The respective sentient object controlling the
actuation of the robot receives as input the position
and orientation of the white line to be tracked. In the
case of the guide robot, this information is directly de-
livered as a body event with a low latency and a high
reliability over the internal network. For the follower
robot, the information comes also via an event channel
but with different quality attributes. These quality at-
tributes are reflected in the event channel description.
The sentient object controlling the actuation of the
follower is aware of the increased latency and higher
probability of omission.

9. CONCLUSION AND FUTURE WORK
The paper addresses problems of building large distributed

systems interacting with the physical environment and be-
ing composed from a huge number of smart components.
We cannot assume that the network architecture in such a
system is homogeneous. Rather multiple “edge-” networks
are fused to a hierarchical, heterogeneous wide area net-
work. They connect the tiny sensors and actuators perceiv-
ing the environment and providing sentience to the appli-
cation. Additionally, mobility and dynamic deployment of
components require the dynamic interaction without fixed,
a priori known addressing and routing schemes. The work
presented in the paper is a contribution towards the seam-
less interaction in such an environment which should not be
restricted by technical obstacles. Rather it should be possi-
ble to control the flow of information by explicitly specifying
functional and temporal dissemination constraints.

The paper presented the general model of a sentient ob-
ject to describe composition, encapsulation and interaction
in such an environment and developed the Generic Event Ar-
chitecture GEAR which integrates the interaction through
the environment and the network. While appropriate ab-
stractions and interaction models can hide the functional
heterogeneity of the networks, it is impossible to hide the
quality differences. Therefore, one of the main concerns is
to define temporal properties in such an open infrastruc-
ture. The notion of an event channel has been introduced
which allows to specify quality aspects explicitly. They can
be verified at subscription and define a boundary for event
dissemination. The COSMIC middleware is a first attempt
to put these concepts into operation. COSMIC allows the
interoperability of tiny components over multiple network
boundaries and supports the definition of different real-time
event channel classes.

There are many open questions that emerged from our
work. One direction of future research will be the inclusion
of real-world communication channels established between
sensors and actuators in the temporal analysis and the or-
dering of such events in a cause-effect chain. Additionally,
the provision of timing failure detection for the adaptation
of interactions will be in the focus of our research. To reduce
network traffic and only disseminate those events to the sub-
scribers which they are really interested in and which have
a chance to arrive timely, the encapsulation and scoping
schemes have to be transformed into respective multi-level
filtering rules. The event attributes which describe aspects
of the context and temporal constraints for the dissemina-
tion will be exploited for this purpose. Finally, it is intended
to integrate the results in the COSMIC middleware to en-
able experimental assessment.

10. REFERENCES
[1] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma,

A. McNeil, O. Seidel, and M. Spiteri. Generic support
for distributed applications. IEEE Computer,
33(3):68–76, 2000.

[2] L. B. Becker, M. Gergeleit, S. Schemmer, and E. Nett.
Using a flexible real-time scheduling strategy in a
distributed embedded application. In Proc. of the 9th
IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA),
Lisbon, Portugal, Sept. 2003.

[3] N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, apr
1989.

[4] A. Casimiro (Ed.). Preliminary definition of cortex
system architecture. CORTEX project,
IST-2000-26031, Deliverable D4, Apr. 2002.

[5] CORTEX project Annex 1, Description of Work.
Technical report, CORTEX project, IST-2000-26031,
Oct. 2000. http://cortex.di.fc.ul.pt.

[6] R. Cunningham and V. Cahill. Time bounded medium
access control for ad hoc networks. In Proceedings of
the Second ACM International Workshop on
Principles of Mobile Computing (POMC’02), pages
1–8, Toulouse, France, Oct. 2002. ACM Press.

[7] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
Technical Report DSC ID:200104, EPFL, Lausanne,
Switzerland, 2001.

[8] T. Führer, B. Müller, W. Dieterle, F. Hartwich,
R. Hugel, and M.Walther. Time triggered
communication on CAN, 2000.
http://www.can-cia.org/can/ttcan/fuehrer.pdf.

[9] R. B. GmbH. CAN Specification Version 2.0.
Technical report, Sept. 1991.

[10] T. Harrison, D. Levine, and D. Schmidt. The design
and performance of a real-time corba event service. In
Proceedings of the 1997 Conference on Object Oriented
Programming Systems, Languages and Applications
(OOPSLA), pages 184–200, Atlanta, Georgia, USA,
1997. ACM Press.

[11] J. Hightower and G. Borriello. Location systems for
ubiquitous computing. IEEE Computer, 34(8):57–66,
aug 2001.

[12] A. Hopper. The Clifford Paterson Lecture, 1999
Sentient Computing. Philosophical Transactions of the
Royal Society London, 358(1773):2349–2358, Aug.
2000.

[13] J. Kaiser, C. Mitidieri, C. Brudna, and C. Pereira.
COSMIC: A Middleware for Event-Based Interaction
on CAN. In Proc. 2003 IEEE Conference on Emerging
Technologies and Factory Automation, Lisbon,
Portugal, Sept. 2003.

[14] J. Kaiser and M. Mock. Implementing the real-time
publisher/subscriber model on the controller area
network (CAN). In Proceedings of the 2nd
International Symposium on Object-oriented Real-time
distributed Computing (ISORC99), Saint-Malo,
France, May 1999.

[15] K. Kim, G. Jeon, S. Hong, T. Kim, and S. Kim.
Integrating subscription-based and
connection-oriented communications into the

embedded CORBA for the CAN Bus. In Proceedings
of the IEEE Real-time Technology and Application
Symposium, May 2000.

[16] H. Kopetz and G. Grünsteidl. TTP - A
Time-Triggered Protocol for Fault-Tolerant Real-Time
Systems. Technical Report rr-12-92, Institut für
Technische Informatik, Technische Universität Wien,
Treilstr. 3/182/1, A-1040 Vienna, Austria, 1992.

[17] H. Kopetz, M. Holzmann, and W. Elmenreich. A
Universal Smart Transducer Interface: TTP/A.
International Journal of Computer System, Science
Engineering, 16(2), Mar. 2001.

[18] H. Kopetz and P. Veŕıssimo. Real-time and
Dependability Concepts. In S. J. Mullender, editor,
Distributed Systems, 2nd Edition, ACM-Press,
chapter 16, pages 411–446. Addison-Wesley, 1993.

[19] S. Lankes, A. Jabs, and T. Bemmerl. Integration of a
CAN-based connection-oriented communication model
into Real-Time CORBA. In Workshop on Parallel and
Distributed Real-Time Systems, Nice, France, Apr.
2003.

[20] Local Interconnect Network: LIN Specification
Package Revision 1.2. Technical report, Nov. 2000.

[21] M. Livani, J. Kaiser, and W. Jia. Scheduling hard and
soft real-time communication in the controller area
network. Control Engineering, 7(12):1515–1523, 1999.

[22] R. Meier and V. Cahill. Steam: Event-based
middleware for wireless ad hoc networks. In
Proceedings of the International Workshop on
Distributed Event-Based Systems (ICDCS/DEBS’02),
pages 639–644, Vienna, Austria, 2002.

[23] E. Nett and S. Schemmer. Reliable real-time
communication in cooperative mobile applications.
IEEE Transactions on Computers, 52(2):166–180, Feb.
2003.

[24] B. Oki, M. Pfluegl, A. Seigel, and D. Skeen. The
information bus - an architecture for extensible
distributed systems. Operating Systems Review,
27(5):58–68, 1993.

[25] O. M. G. (OMG). CORBAservices: Common Object
Services Specification - Notification Service
Specification, Version 1.0, 2000.

[26] O. M. G. (OMG). Smart transducer interface, initial
submission, June 2001.

[27] P. Veŕıssimo, V. Cahill, A. Casimiro, K. Cheverst,
A. Friday, and J. Kaiser. Cortex: Towards supporting
autonomous and cooperating sentient entities. In
Proceedings of European Wireless 2002, Florence,
Italy, Feb. 2002.

[28] P. Veŕıssimo and A. Casimiro. The Timely Computing
Base model and architecture. Transactions on
Computers - Special Issue on Asynchronous
Real-Time Systems, 51(8):916–930, Aug. 2002.

[29] P. Veŕıssimo and A. Casimiro. Event-driven support of
real-time sentient objects. In Proceedings of the 8th
IEEE International Workshop on Object-oriented
Real-time Dependable Systems, Guadalajara, Mexico,
Jan. 2003.

[30] P. Veŕıssimo and L. Rodrigues. Distributed Systems for
System Architects. Kluwer Academic Publishers, 2001.

