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This paper describes a version of APL based upon the dictionary 
[1), but significantly simplified and enhanced. and directly usable 
on any machine that provides ASCII characters. It also describes 
salient features of a C implementation that has been tested on 
several machines, and is available as freeware. There have been 
four primary motivations for this work: 

I. To provide an APL system for use in teaching mathematics 
and related topics that is modern, free, and transportable. 

2. To devise a spelling scheme based on the ASCII alphabet that 
preserves the major advantages of the one-letter words based 
on the special alphabet commonly used in APL. 

3. To exploit the advantages of breaking from the strict con
formance with earlier APL that is normally obligatory in com
mercial systems. 

4. To explore an unusual style of C programming that makes 
heavy use of pre-processing facilities. 

Examples of the use of the language in a variety of topics are 
provided in an appendix. 

We are indebted to a number of colleagues for advice and help: 
Anthony Howe. David Steinbrook, Bob Bernecky, Mark Czer
winski, L.J. Dickey, Jiri Dvorak, James Hui, Eric Iverson, Paul 
Jackson, and Roland Pesch. 

A. ORTHOGRAPHY 

At the time of the first implementation of APL, the then-new 
IBM Selectric typewriter with its changeable type element offered 
a welcome escape from the limitations of the existing printers, 
which provided only a few symbols beyond a one-case alphabet, 
punctuation, and the decimal digits. The Selectric was exploited 
by designing an alphabet that provided single-character spelling 
of all words in the language (except for the literal names used for 
variables). 

This spelling scheme offered several advantages, due to the fact 
that the words were: 

1. Mnemonic, using the shapes of symbols to suggest the func
tions denoted, as in up- and down-arrows for the functions lake 
and drop. 

2. Universal, in avoiding mnemonic devices rooted in particular 
natural languages. 
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3. Disjoint from the literals used in variable names, so as 
to a) avoid the introduction of reserved words, b) improve 
readability, and c) obviate required spaces around words, as 
in a I b instead of a mod b. 

However, special alphabets pose serious display problems, and it 
is desirable to have a spelling scheme based on a widely available 
computer alphabet. We have here attempted to design a spelling 
scheme based on the ASCII alphabet that retains the advantages 
cited above for the older spelling scheme. 

Words are spelled with one character or with two, the last of which 
is a period or a colon; words are formed by scanning from right 
to left, each colon or period (not in a number) combining with the 
character to its left to form a word. Any number of spaces may 
be used between words, but spaces are not required, except that 
in a number, a space or zero must precede a decimal point that is 
not preceded by a digit or negative sign. 

The spelling scheme is shown in the language summary of Table 
l, a study of which should clarify the application of the following 
guides used in its design: 

1. Adopt mathematical symbols (such as + - < > ! "'), and 
symbols whose shape or usage somehow suggest the mathe
matical notions, as in the number sign # for number of items 
(in an argument, or selected in replication), and De Morgan's 
use of" for power[2]. 

2. Use single characters for other primitives whose use should 
become common, as in & @ ; " _ and \ for composition, 
upon and defer, link, rank and under, negative sign, and scan 
and outer product. 

3. Use a dot or colon with a common mathematical character 
that suggests the function, as in <. and >. for min and max, 
and in =. and =: for local and global assignment. 

4. Use a dot with a letter that suggests a mathematical symbol 
or definition, as in o. for the family of circular functions, in e. 
for membership (because epsilon is used for it in mathematics), 
in i. for integers, and in x. and y. for arguments (because 
of the analogous use of x and y in mathematics). 

5. Use related strings for related functions, as in " for expo
nential, "'· for its inverse (natural log), and 1\: for root and 
square root; in II, for base value, and II : for its inverse; in + 
and * for plus and limes, and +. and *. for or and and (their 
analogs in logic); and in@ for a conjunction that permutes axes, 
and @. and @: for other permutations. 

6. Adopt mnemonic aids such as the three cases of .$' (which 
suggests an S) for Shape, Sequence list, and Self-reference; and 
• • for the Dot or lnnu product. This adoption of the double 
dot obviates the spaces previously needed around the dot in 
some cases. 
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Anyone who is familiar with earlier spelling of APL words, or who 
is using earlier APL literature, may find iL helpful to pronounce 
them in the traditional way, as in ioza for i .. 

The function I. cuts its list argument into words according to 
rules appropriate to an APL sentence. Thus, I. 1 +13 4 5 
*i. 3 ' yields the boxed list + and I and 3 4 5 and * and 
i.. and 3. 

= NubC!assify ; Equal 
< Box : LessThan 
> Open : GreaterThan 
_ NegativeSign/lnfinity 

+ Conjugate : Plus 
* Signum ;Times 
- Negate ; Minus 
% Reciprocal ; Divide 

1\ Exponential ; Power 
$ ShapeOf ; Shape 
- Both ; Cross 
J Magnitude ; Residue 

:1\0T USABLE 
NOT l.JSABLE 

, Ravel ;Chainltems 
Table ;Link (+Box) 

II Tal.ly; Copy 
@Atop-At 
I Ins en : x Way lnsen 
\ Scan ; Outerl'roduct 

<{ Catalog ; From 
} \1erge 
" ConstCutRankLnder 
& Composition-With 

l Factorial ; OutOf 
? Roll; Deal 
( Open Parenthesis 
) ClosePar-Label-Cmd 

Q 

e 
i 
0 

:r: 

y 
E 

X 

Is (Local) 
Floor : Minimum 
Ceiling ; Maximum 

; GCD (Or) 
; LCM (And) 
Reverse ; Rotate 
Matrili.lnv ; MDiv 

NaturalLog ; Log 
SequenceList 
Not (1-) ; Less 

Det ; DotProd 
Companion 

Boxltems ; Link 

Base2; Base 
Dir-Cyc ; Permute 
Words 
Transpose 

::\ub; Take 
Raze; Drop 
Execute ;Execute 

Alphabet 
; Epsilon (Member) 
Integers ; lndexOf 
PiTimes : Circular 
First Argu.ment 
Last Argument 
: MemberOflnterval 
External (Foreign) 

1s (Global) 
Decrement ; LeOrEq 
Increment : GtOrEq 

; Nor 
; Nand 
:Match 

SquareRoot ; Root 
Sel.fReference 
Nubsieve ; NotEqual 
Custom 

Definition 
Itemize ; Laminate 

Antibase2 ; Antibase 
AtomPermute 
Gradet.:p; Son 
GradeDown ; Son 

Right (Dex) 
Left (Lev) 
Format ; Format 

Table 1: LANGUAGE SUMMARY 

B. MAJOR CELLS1 REPLICATE, RESHAPE, and 
Ol:TER PRODt:CT 

Because of the importance of major cells, we will adopt the terms 
izem and atom for the major cells and the scalars. We will also 
adopt the symbol II for the item counz, or zally; lib is 1 if b is an 
atom, and is otherwise equal to 0{$ b. 

The dyadic case nlib is similar to the replicate function previously 
provided (for historical reasons) by the derived function n/; the 
successive atoms of n specify the number ofrepetitions of succes
sive items of b to be selected. The reshape ($) is also redefined 
to apply to items rather than atoms; the old behaviour is obtained 
by ravelling the right argument. 

Catenation of the items of A and B by the expression A comma-bar 
B is more useful than the catenation of 1-cells provided by the 
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comma; in particular, the catenation of 1-cells can be provided 
by comma-bar of rank 1. Consequently, we will use the comma 
for catenation of items (!.hat is, catenation along the leading axis), 
and drop the symbol comma-bar. For similar reasons, the I and 
\ will be adopted for the meanings that were assigned to I -bar 
and \-bar, and the Iauer pair of symbols will be dropped. 

The table function (previously provided by the monadic case of 
the comma-bar) will be provided by the semi-colon, its dyadic 
use being assigned to the link function. Thus, a; b is defined by 
(<a) ,b, with the right argument b automatically boxed if it is 
open. 

The expression jot.f for outer product uses (for historical reasons) 
a conjunction where an adverb would serve. We will adopt the 
dyadic case of f\ for this purpose, and the jot and the notation 
jot.f will be dropped. 

C. USER-DEFTh'ED VERBS, ADVERBS 
and CO~JU~CTIO~S 

The conjunction denoted in the dictionary by the inverted Greek 
Delta will be denoted by the double colon, and the right-arrow and 
$ used to denote the sequence control· and self-reference will be 
replaced by$. and$:. The forms m: :d and 1: :a and 2: :a 
will be otherwise adopted. 

As in the dictionary, assignment provides dynamic localization; for 
example, the first execution of a= .g a in a function f applies 
g to the global value of a, but produces a local copy. Unlike the 
dictionary definition, the localization is strict, so that a local copy 
is not available to user-defined functions that are invoked in f. 
Global assignment is provided by the copula =: . 

Strict localization provides significant advantages over the herita
ble localization of earlier APL. and is now practicable because of 
the ease of passing parameters in boxed arguments. Direct defi
nitions arc easily provided by a simple cover function employing 
the forms m: : ' ' and ' ' : :d. 

D. FR0:\1, IOTA, and BASE 

The monadic case of i. is defined like monadic iota, but extended 
to list arguments as follows: i. 8 is ( Is )$+\0, (*I Is )$1, but 
reversed along each axis for which the corresponding element of 
s is negative; the result for an empty argument is the scalar 0. 
For example: 

i. 2 3 
0 1 2 
3 4 5 

i. 2 _3 
2 1 0 0 
5 4 3 

' I I 1-. i. 4 
3 2 1 0 

A new monadic case of base-value is defined as the base-2 value; 
that is, li .v is equivalent to 21i • v. An infinite rank monadic case 
of anti-base is defined as ( n$2) li: a, where n is the maximum 
of the minimum lengths required to represent the (integer) atoms 
of a. 

E. PERMlJTATIONS 

The words \ . and - • will be used for transposition and for 
leading-axis reverse and rotate, the lines in the spelling indicating 
the axes involved, as they did in the old symbols for these func
tions. Other permutations (modelled upon, and replacing, those in 
the dictionary called cycle, mix, and mix index) will be repre
sented by @. and ~: . 

Standard Direct and Cycle Representations. If p is a permu
tation of the atoms of i. n, then p is said to be a perrn.utazion 
veczor of order n, and if n=fib, then p{b is a permutation of the 
items of b. 

The expression @. p yields a list of boxed lists of the atoms of 
i . lip called the szandard cycle representation of p. If (as in the 
example in the dictionary) p=. 4 5 2 1 0 3, then @. p yields 
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2 ; 4 0 ; 5 3 1 because the permutation p moves lo posilion 2 
the item 2. to 4 the item 0, to 0 the item 4, to 5 the item 3, to 
3 the item 1. and to 1 the item 5. The monad @. is self-inverse; 
when applied to a standard cycle representation it produces the 
corresponding direcr representation. 

A given permutation could be represented by cycles in a variety 
of ways, and the standard form is made unique by the following 
restrictions: 

The cycles are disjoint and exhaustive (that is, the atoms of 
the boxed elements together form a permutation vector); each 
boxed cycle begins with its largest element (possible because 
any rolalion of a single cycle represents the same permutation); 
and the boxed cycles are arranged in ascending order on their 
leading elements (possible because the cycles are disjoint). 

Non-Standard Representations. If d and c are direct and cycle 
representations of order fib, then d@ .b and c@ .b produce the 
corresponding permutations of the items of b. More generally, 
since the item count of b determines the order of the permutation, 
the arguments d and c may be non-standard in ways to be defined. 
In particular, elements belonging to ( i. 2* Nb)- Nb are permitted, 
and are treated as their residues modulo fib. 

If q is not boxed, and if the elements of ( Nb) I q are distinct, then 
q@. b is equivalent to d@. b. where d is the standard form of q 
given by d=.((i.n)"-'.nlq),nlq. where n is Nb. In other 
words, positions occurring in q are moved to the tail end. 

If q is boxed, then the elements of (fib) I > j { q must be distinct 
for each j, and the boxes are applied in succession. For exam
ple, (2 1;3 0 1)@.i.5 is equivalent to (<2 1)@,(<3 0 
1)@. i. 5, and the result of either is the standard direct permu
tation 1 2 3 0 4. 

Atomic Representation. If T is the table of all ! n permutations 
of order n arranged in lexical order (that is, I :Tis i. ! fiT). then 
k is said to be the alomic representation of the permutation k{T. 
Moreover, k@: b permutes items of b by the permutation of order 
Nb whose atomic representation is ( ! fib) I k. For example, 1@ :b 
transposes the last two items of b, and _1@: b reverses the items, 
and 3@: b and 4@: b rotate the last three items of b. Finally, 
( i. ! n) @: i. n produces the ordered table of all permutations of 
order n, as docs the fork [3] used in the expression ( i. & ! @: i. ) 
n. 

The transformation between direct and cycle represemations pro
vided by the monad @. is extended to non-negative non-standard 
cases by treating any argument q as a representation of a permu
tation of order 1 +>.I}. q. Similarly, the monad @: applied to 
any cycle or direct permutation yields its atomic representation. 
For example, @ : 0 3 2 1 is 5, as are @: 3 2 1 and @: 0 ; 2 ; 3 
1 and @:<3 1. 

F. TRA~SPOSITIOl'iS and SECTIO~S 

The symbol @ will replace the hoof. with the noun cases of the 
conjunction (Defer and Prefer) modified so that v@n defers axes 
n of the right argument before applying v, and n@v defers axes 
of the left. Consequently, the expression a n0@v@n1 b defers 
axes of both arguments before applying v. The monadic cases of 
v@n and n@v are identical. 

If the number of elements of n equals the rank of v. then v@n 
applies v to the cells selected by the axes specified by the atoms 
of v, and v@n can therefore be said to apply v at n, as suggested 
by the name of the symbol @. 

Because { : is an identity function, transposition alone can be 
obtained by using { : @n. 

A boxed argument n provides sectioning. grouping the axes spec
ified by a single box into a single result axis. For example, if b 
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has the shape i. 6 and n=. 2; 4 1; 0, then the shape of { : @n 
b is 3 5 2 1 0. 

G. FORMAT 

The dyadic case of format (":) is defined with both ranks 1, and 
with each element e of the left argument controlling the rep
resentation of the corresponding element of the right argument as 
follows: 

w=. < • I e specifies the total width allocated; if this space is 
inadequate, the entire space is filled with asterisks. 

d=.<.10*( le)-w specifies the number of digits following 
the decimal point (which is itself included only if d is not 
zero.) 

Any negative sign is placed just before the leading digit. 

If e>: 0, the result is right-justified in the space w 

If e<O. the result is put in exponential form (with one digit be
fore the decimal point) and is left-justified except for two fixed 
spaces reserved on the left (including the one for a possible 
negative sign) 

The monadic rank of ": is infinite, and the result is equivalent 
to the application of the dyadic definition with a left argument 
chosen to provide a minimum of one space between columns. 
Default output is equivalent to the use of the monadic case. 

H. EXTER:'\AL CO\f!\1U~ICATIO~ 

Communication with the keyboard, screen, and operating system 
files is provided by the conjunction X., whose many arguments 
provide considerable flexibility. 

I. SOME I~PLICATIOl\S FOR TEACHI~G 

The mere introduction of lists, scan, and outer product allows a 
wealth of interesting explorations, as in +'a=. 0 1 2 3 4 5 
for the triangular numbers, in +\1 +a+a to see that the odd num
bers sum to squares, and in various outer products such as a+\a 
and a*\a to see addition, multiplication, remainder, divisibility 
and other tables, including the binomial coefficients (Pascal's Tri
angle) provided by a! \a. 

Lists are easily explained as the use of collective nouns, and the 
scan is easily explained as an adverb. Unfortunately, the simple 
and important notion of a function table required, in traditional 
APL. not just a further use of an adverb, but the use of a conjunc
tion whose first argument could only be explained as an historical 
anomaly. The present use of an adverb for outer product avoids 
this difficulty. 

Expressions such as pr=. +% provide a simple introduction of the 
notion of function definition (and of the hook [3)), and expres
sions such as pr\1 2 2 2 2 2 2 and pr\3 7 15 1 show 
interesting uses of such a defined function in producing successive 
approximations to interesting quantitites. 

Expressions such as sum= • +I and sqrt= . /\& 0 • 5 and 1. og=. 
1 0& A. and neq= • "'. 9= provide simple and interesting uses of 
adverbs and conjunctions. Moreover, the general form of defini
tion provided by the : : conjunction permits a simple introduction 
to the use of iteration and recursion. 

The generally useful notions of classification can be introduced by 
using the outer product a<: '\b in expressions for producing bar
charts and graphs, and can be explored further using the expression 
fi:i.2An to produce the complete classification table of order 
n. Thus if CCT=.fi:i.2Aflv=.2 3 5, then v+. ·*CCT and 
V* • • ACCT produce the sums and products over all subsets of v. 

In a more specialized area, the functions @. and @ : provide 
powerful facilities for the discussion of permutations. Thus, 
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( i . ! 4)@: i . 4 displays a complete table of permutations, and 
an expression such as i. 4 3 0 1 2 can provide an introduc
tion to cycles and to the use of the LCM (*.) of their lengths 
to determine the power of a permutation. For examples in funher 
topics, see the appendix. 

J, THE C IMPLEME~TATIO~ 

The system is implemented in C. because it is an adequate lan
guage available on a wide variety of machines. The implemen
tation is guided by two principles: clarity, and exploitation of 
underlying facilities. Efficiency is not a main objective. 

Clarity does not mean the micro (and relatively insignificant) 
clarity of individual C statements, but the macro clarity of being 
close to the APL or mathematical definitions. The C code is 
written to be understandable by an APL-knowledgeable reader. 

Facilities already available in the environment are exploited: for 
memory management, the C library functions malloc o and fr•• o 
are used, the underlying virtual memory facilities being presumed 
to be adequate; for session management, the system reads from 
standard input and writes to standard output. This, together 
with the ASCTI spelling, makes it possible to use any of sev
eral widely-available session managers. such as EMACS or Sun
View /OpenLook. 

Organization. The system is organized along the lines suggested 
by the dictionary, in particular, by the parser [1, p. 38]. The 
parsing rules are expressed in C as follows: 

fdefine RHS (NOON+VERB+ADV+CONJ) 
ldefine EDGE (HARX+ASGN+LPAR) 

•tatic atruct {I c[4);AF f;I b,e;)caaea[) • ( 

EDGE+ADV+VERB, VERB, NOON, ANY, verb,l, 2, 
CONJ, NOON, VERB, NOON, verb,2, 3, 
EDGE+ADV+VERB+NOON, NOON, VERB, NOON, ••r:b,l, 3, 
ED.GE+ADV+VERB+NOON, NOON+VERB, ADV, ANY, adv, 1, 2, 
EDGE+ADV+VERB+NOON, NOON+VERB, CONJ', NOCN+VERB,conj,l, 3, 
EDGE+ADV+VERB+NOON,VERB, VERB, VERB, form,l, 3, 
EDGE, VERB, VERB, ANY, form,l, 2, 
NAME, ASGN, lUiS, ANY, ia, 0, 2, 
UAR, RHS, Ill? All, ANY, punc,O, 2, 
ANY, ANY, ANY, ANY, move,O, -1, 

I; 

A sentence to be parsed is placed on a left stack, and as execution 
proceeds words are moved from the tail of the left stack to the 
front of a right stack. When the first four words of the right stack 
match a pattern (columns 0 to 3 of the table), the corresponding 
action (4) is triggered and applied to the indicated words (5, 6), 
with the result replacing these words. 

Data Structures. The fundamental data structure is the APL array, 
that is, the C structure: 

typedef long I; 
typedef atruct (I t,c,n,r,a[1);)*A; 

t type 
c reference count 
n number of atoms in the ravelled array 
r rank 
• shape list 
v atoms of the ravelled array (immediately following •) 
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All objects, whether numeric, literal, or boxed, whether noun, 
verb, adverb, conjunction, or punctuation, are represented by this 
structure. Most C functions in the system accept APL arrays as 
arguments and return them as results. 

Definitions and macros. Extensive use is made of C preprocessor 
definitions and macros; to augment the expressive power of C. 
to enforce uniformity, and to increase readability. Example: An 
"APL function" is a function which accepts one or two APL array 
arguments, and returns an APL array result. The macros FI and 
F2 encapsulate this convention: 

ldefin• Fl(f) A f(w,aelf)A v,ae1f; 
ldefine F2(f) A f(a,v,aelf)A a,v,aelf; 

(••lf is a pointer to function parts - rank, inverse, etc.) 

A compact but readable programming style results from using 
such definitions. The implementation of , :y (itemize) and x, :y 

(laminate) are cases in point: 

Itemize: , :y adds a single unit axis to y, making the shape 1, $y. 

F1(lamin1) (a reahape(o•er(one,ahape(v)),ravel(v));) 

Laminate: If the shapes of x and y are equal, then .z, :y is defined 
by (, :.z), (, :y). If one is an atom a, it is first replaced by· a$a, 
where • is the shape of the other. 

F2(lamin2) (R o••r(a,reahape(over(one,ahape(Ail(w)?w:a)) 
,ra•d(v)));) 

Statistics. Analysis of the C implementation as it stands on 1990 
2 22 yields the following statistics. (Header files and variables 
without functions are excluded.) 
C Fns 240 Lines 
Lines 1345 +/ Line lengths 
Average lines/fn 5. 6 Average chars/line 
Min 1 Min 
Max 40 Max 
Median 
One-liners 

1 
125 

Median 
One-character lines 

181 of the 240 functions are APL functions. 

1345 
1+4722 

33.3 
1 

89 
32 
91 

Therefore, the implementation consists of a large number of short 
functions, having short lines, with a well-defined uniform inter
face. These are characteristic of an APL programming style. 
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APPENDIX 

The forty-five frames in the following appendix show examples 
of use of the system in a variety of topics. All were actually 
executed on the system in March 1990. 
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ALPHABET A 
$ a. 

256 
j=. a. i. 'aA 1 

:1 
97 65 

j +\ i. 9 
97 98 99 100 101 102 103 10~ 105 
65 66 67 68 69 70 71 72 73 

{.i+\i.30){a. 
abadefghijktmnopqrstuvwzyz{:}
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A 

a.{-j+\i. 30 
abadefghijktmnopqrstuvwzyz{:}
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A 

3 + 125 * 6 % 100 
10.5 

i. 2 5 
0 1 2 3 ~ 
5 6 7 8 9 

*\-Oj1 _1 
_1 0:/_1 

0:/_1 1 

Oj_1 1 
1 Oj1 

Oj1 _1 
_1 Oj_1 1 Oj1 

0:11 _1 Oj_1 1 

prices=. 3 1 ~ 2 
orders=. 2 0 2 1 

prices * orders 
6 0 8 2 

prices *\ orders 
6 0 6 3 
2 0 2 1 
8 o e 4 
4 0 4 2 

TO RE/.IJ A TABLE, 
BORDER IT BY ITS 
ARGUMENTS: 

3 : 6 0 6 3 
1 : 2 0 2 1 
~ : 8 0 8 4 
2 : 4 0 4 2 

TABLES Da 

TABLES Dd 
text=. 1 i sing of otaf 1 

text=. text,•gtad and big' 

atph=. ' abcdefghijktmno' 
atph=. atph,'pqrstuvwxyz' 

'01'{-10{.atph=\te:rt 
1010000100100001000010001000 
0000000000000100001001000000 
0000000000000000000000000100 
0000000000000000000000000000 
0000000000000000000100010000 
0000000000000000000000000000 
0000000001000010000000000000 
0000001000000000100000000001 
0000000000000000000000000000 
0100100000000000000000000010 

2 13$+/"1 atph=\text 
7 3 1 0 2 0 2 3 0 3 0 0 2 
0 2 2 0 0 0 1 0 0 0 0 0 0 
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SPELLING B 
sentence=. 1 inde::=. a. i. 1 •a:A 1 • • 

/.sentence 

1 index 1 =·I a ·I i ·I . aA. 1 
S /.sente7'1ce 

5 

>/.sentence 
index 

a. 
i. 
'aA' 

11 sentence 
97 65 

11 'abc -. 3 1 4 2' 
3 1 ~ 2 

abo 
3 1 ~ 2 

n=. 0 :1 2 3 
n +\ n 

0 1 2 3 
1 2 3 I+ 
2 3 4 5 
3 4 5 6 

*\ - n 
0 0 0 0 
0 1 2 3 
0 2 ~ 6 
0 3 6 9 

A\- i. 
1 0 0 0 
1 1 1 1 
1 2 4 8 
1 3 9 27 

+.\- 0 
0 1 
1 1 

+:\- 0 
1 0 
0 0 

~ 

1 

1 

TABLES Db 

CLASSIFICATION Ea 
x=. 1 2 3 4 5 6 7 
y=. (:r-3) * (:r-5) 
y 

8 3 0 _1 0 3 8 

range=. m-i. 1+(m=. >./y)-<./y 
range 

8 7 6 5 4 3 2 1 0 _1 

be=. range <:\ y 
be 

1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 0 0 0 1 1 
1 1 0 0 0 l 1 
1 1 0 0 0 1 1 
1 1 1 0 1 1 1 
1 1 1 1 1 1 1 
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GRAMMAR C 
fahrenheit =. SO 
(fahrenheit - 32) * 5 % 9 

10 
prices -· 3 1 ~ 2 
orders -. 2 0 2 1 
orders * prices 

6 0 8 2 
+/ orders * prices 

16 
+\ 1 2 3 4 5 

1 3 6 10 15 
2 3 * \ 1 2 3 4 5 

2 4 6 8 10 
3 6 9 12 15 

deer=. - & 1 
deer _1 0 1 2 3 

_2 _1 0 1 2 
PA.RXS OF SPEECH 

so fahrenheit Nouns/Pronouns 
+ - * % deer Verbs/Proverbs 
I \ Adverbs 
& Conjunction 
-. Verb-to-be 
{ ) Punctuation 

TABLES Do 
l\ - l+i. 5 

0 0 0 0 0 
1 0 1 0 1 
1 2 0 1 2 
1 2 3 0 1 
1 2 3 ~ 0 

+/ 0= :\ - j=. 1+i.. 15 
1 2 2 3 2 ~ 2 ~ 3 4 2 6 2 ~ ~ 

2=+/0=:\ - j 
0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 

(2=+/0=:\- j) fl j 
2 3 5 7 11 13 

=\-i. 4 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

<:\-i. ~ 
1 1 1 1 
0 1 1 1 
0 0 1 1 
0 0 0 1 

CLASSIFICATION Eb 
x=. 1 2 3 ~ 5 6 7 
y=. {:r-3) * {.:c-5) 
y 

8 3 0 _1 0 3 8 

range=. m-i. >:(m=. >.ly)-<./y 
range 

8 7 6 5 4 3 2 1 0 _l 

be=. range <:'\ y 
bo { ' *' 

* * 
* * 
* * 
* * 
* * 
** ** 
** ** 
** ** 
*** *** 
******* 

<\ 0 0 0 1 0 1 1 0 1 
0 0 0 1 0 0 0 0 0 
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CI:.ASSIFICA:!ION: graphs Ec 
be 

1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 0 0 0 0 0 1 
1 1 0 0 0 1 1 
1 1 0 0 0 1 1 
1 1 0 0 0 1 1 
1 1 1 0 1 1 1 
1 1 1 1 1 1 1 

<\ bo 
1 0 0 0 0 0 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 1 0 0 0 1 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 1 0 1 0 0 
0 0 0 1 0 0 0 

CI:.ASSIFICA:!ION dot products Ef 

2 3 5 ' o 5 3 a 2 7 5 10 ' 
4 2 1 ' 0 1 2 3 4 5 6 7 ' ------:-----------------

' 0 0 0 0 1 1 1 1 I 
I 0 0 1 1 0 0 1 1 I 

I 0 1 0 1 0 1 0 1 I 

rowO -. 2 3 5 }: cotS=. 1 o 1 

rowo * cotS 
2 0 5 

+/ rowO * cotS 
7 

rowO +. ·* cat 
0 5 3 8 2 7 5 10 

rowe*··" cat 
1 5 3 15 2 10 6 30 

rowO " cotS 
2 1 5 

*/ rowo " ao1.5 
10 

words 

tt=. > words 
tt 

i 
sing 
of 
otaf 
gtad 
and 
big 

s tt 
7 4 

APL QUOTE QUAD 

STRUCTURES open Fa 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

* 

<\be 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 1 

' *' 

* * 

* * 
* 

* 

CI:.ASSIFICA:!ION: graphll Ed 

0 0 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
0 0 0 
1 0 0 
0 0 0 

<- <\be 

CI:.ASSIFICA:!ION +,* on sl.lbsets Ee 

a=. 0 0 0 0 1 1 1 1 
b=. 0 0 1 1 0 0 1 1 
c=. o 1 0 1 0 1 0 1 

act=. a,b,, :a 
cot 

0 0 0 0 1 1 1 1 
0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 

2 3 5 +. ·* cot 
0 5 3 a 2 7 5 10 

2 3 5 *·,I\ cat 
1 5 3 15 2 10 6 30 

+/cot 
0 1 1 2 1 2 2 3 

{:c2=.(2=+/oct)tl"1 cot 
0 1 1 
1 0 1 
1 1 0 

2 3 5 > ••• * o2 
5 5 3 

STRUCTURES: boz Fa STRUCTURES: each Fb 
tezt tezt 

i sing of otaf gtad and big i sing of o1.af g7.ad and big 

-. tezt 
gib dna datg tato to gnis i 

< 'gtad' 

lgtadl 

u=. (<'gtad'),(<'and'),<'big' 
u 

-. u 

lbig,andjgtadl 

tl u 
3 

•gtad•;•and';'big' 

JgtadJand,bigl 

a 

PROGRAMS: simpte Ga 
root= . ' y. A :C2 ' : : ' y. " :C:z • ' 
root 64 

3 root 6'+ 

rPr=. ':c; y. 1 : : '::. + :c; y. ' 
3 rPr 4 

3.25 
rPr I 1 2 2 2 2 2 2 

1.4142 
rPr \ 1 2 2 2 2 

1 1.5 1.4 1.'+1667 1.'+1379 
rPr \ 3 7 15 

3 3.14286 3.14151 
tripte=. '3*y. 1 ::'' 

tripte i.S 
0 3 6 9 12 

3 tripte 6 
domain error 

tr=. '3•y.'::• 
tr i. 5 

0 3 6 9 12 
3 5 7 tr i. 3 

0 5 14 
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words=. /. tezt 

words 

1 0 2 3 { words 

I singjt:iotjotatl 

- " > 1 0 2 3 { words 

lgnisliltojfatoJ 

_1"< tezt 

PROGRAMS: conditional Gb 
p=. •$.=. 1+y.<0' 
q=. 'Y· ",;21 
r=. '''DOMAIN ERROR'' 1 

conditional.=. (p;q;r)::•• 

conditional. -49 
DOMAIN ERROR 

conditiona"l. 49 
7 

tozero=.(p;•y.-1 1 ;'y.+1')::•• 

tozero 3 
2 

tozero _3 
_2 

tozero "0 {_2 _1 0 1 2 3) 
_1 0 _1 0 1 2 
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PROGRAMS: iterative Ga 
a=. 1 r=. 1 }: $.=. y. I 1 1 

b=. 'r=. r * 1+ I $.• 

factorial=. (a;b):: 11 

factorial 5 
120 

factorial"O i. 6 
1 1 2 6 24 120 

> a;b 
r=. 1 }: $.=. y. I 1 
r=. r * 1+ 1 $. 

a= . 1 r=. ( 0 , r) + ( r, 0) ' 
binomials=. (a;c)::'' 
binomia~s '+ 

1 4 6 4 1 
fib=.(a:•r=.r,+/{_2){.r 1 ):: 1 ' 

fib 10 
1 1 2 3 5 8 13 21 34 55 89 

d=. •r=. 1 }: $.=. :r:. fl 1' 
e=. 'r=. (r*1+y.=.y.-1)%1+fl$.• 
outof=. '•::(d;e) 
3 outof 5 

10 

PROGRAMS: recursive Gf 
{:a=.3 3$'abcdefghi' 

abc 
def 
ghi 

( t= . f-. "1 0 t= . i . & II ) a 
1 2 
0 2 
0 1 

<"2 (mir~ors;..f { 1&}."1) a 

1~{~~~~~~1 
p=.•S.=. 1+1=fly.' }: r=.'O{,y.' 
q;..'(0{"1 y.)- .. •$:"2 minors y.' 

{ :b;.. ?3 3$9 
1 6 4 
4 1 0 
6 6 8 

(det=.(p;q;r)::' ') b 
_112 
s=.'(0{"1 y.)+ .. •$:"2 minors y.' 

(permanent=.(p;s;r): :'') b 
320 

CONNECTIONS: arcs Ia 

arcs=. ? 22 2 $ 8 8 
8 {. arcs 

1 6 
3 4 
1 0 
5 5 
7 3 
4 6 
0 0 
4 5 

\. n=.arcs{r~odes=. 'ABCDEFGH• 
BDBFHEAEAAFHEFFGACGCHG 
GEAFDGAFDDEGADHCFFHBFF 

6{. bares=. <"1 n 

15 {. ,arcs 
1 6 3 4 1 0 5 5 7 3 4 6 0 0 4 

APL\? 

PROGRAMS: recursive Gd 
a=. •$.=. 2-0=y. 1 ; '1' 
b=. 'Y· * $: y.-1' 
ractoria~=. (a,<b)::•• 
factoria~ 5 

120 

d=. '(r,O)+O,r=. $: y.-1' 
binomiat=. (a,<d)::'' 
binomia~ 4 

1 4 6 4 1 

f=. 1 r,+/(_2}{.r=. $: y.-1' 
fibonacci=. (a,<f)::'' 
fibonacci 10 

1 1 2 3 5 8 13 21 34 55 89 

g=. lj',:, 2-0::r;, I j 1 1 I 

h=. •y.•:r:.~:r:.$:&<:y.' 
outof=. '': :(g,<h) 
outof"O\-i. 4 

1 1 1 1 
0 1 2 3 
0 0 1 3 
0 0 0 1 

GEOMETRY: 2-space Ha 
tength=. 'A:+/y.A2'::'' 
ter~gth 12 5 

13 
{: tri=. ? 2 3 $ 9 

3 4 7 
0 0 4 

1 -. "1 tri 
4 7 3 
0 4 0 

{:'Lsides=.ter~gth tri-1-."1 
1 5 5.65685 

{: semiper=. 2 ;-+/~sides 
5.82843 

area=. A:*lsemiper-O,'Lsides 
area 

2 
tri,1 

3 4 7 
0 0 4 
1 1 1 

2 ; ...... det tri,1 
2 

CONNECTIONS: cor1n. matri:r: 

'01234567' {- \, arcs 
1315740400574556026276 
6405360533460372557155 

b=. ' ( i . , "":& • } e . ' 

tri 

Ib 

cmFarcs=. • ':: (b, 'y.+ •• •:r:. ,1') 

em=. 8 amFarcs arcs 
em 

1 0 0 1 0 1 0 0 
1 0 0 0 0 0 1 0 
0 1 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
1 0 0 0 0 1 1 0 
0 0 0 1 1 1 0 1 
0 0 1 0 0 1 0 1 
0 0 0 1 0 1 1 0 

+/em 
3 1 1 3 2 6 3 2 

+/+/em 
21 
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PROGRAMS: recursive Ge 
a=;•$.=.1+0<r~=.:r:.-1' 
b=, It !2{ •Y• I 

c=.•(n$:0 2 1{y.),(1$:y.),' 
hanoi=.••::(a;b;c,'n$:-.y.') 

2 hanoi 'ABC' 
AC 
AIJ 
CB 

\. 4 hanoi 0 1 2 
0 0 2 0 1 1 0 0 2 2 1 2 0 0 2 
2 1 1 2 0 2 2 1 1 0 0 1 2 1 1 

\. •ABC'{- 4 har~oi 0 1 2 
AACABBAACCBCAAC 
CBBCACCBBAABCBB 

o=.•r=.OI$.=.y.l1+n=.O' 
d=. •r=.r,{r~=.1+n) ,r' 
h=.(c;d)::' 1 

h 4 
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 

h 3 
1 2 1 3 1 2 1 

GEOMETRY: 3-space Hb 
tri,1 

3 4 7 
0 0 4 
1 1 1 

2; ..... det tri,1 
2 

2%- det 1 0 2 {"1 tri,1 
_2 

{: tetrahedron=. 0,"1 =\ ...... 
0 1 0 0 
0 0 1 0 
0 0 0 1 

vo'Lume=. det&(,&1) % !cU 

vo~ume tetrahedrorl 
_0.166667 

{: tet=. ? 3 4 $ 9 
6 0 3 0 
3 6 5 8 
7 4 0 5 

volume t;et 
11.5 

i. 3 

CONNECTIONS: fami'Ly Ic 
em 

1 0 0 1 0 1 0 0 
1 0 0 0 0 0 1 0 
0 1 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
1 0 0 0 0 1 1 0 
0 0 0 1 1 1 0 1 
0 0 1 0 0 1 0 1 
0 0 0 1 0 1 1 0 

points=. 1 0 0 0 0 0 0 1 

points+ . .. *·em 
1 0 0 1 0 1 1 0 

poir~ta+.points+ . .. *.em 
1 0 0 1 0 1 1 1 

immtam= . ' ' : : ' :r: . + . z . + ... * . y. ' 
points immfam am 

1 0 0 1 0 1 1 1 
tam=.''::' immfam&y ... (fly. ).:r.' 
points tam am 

1 1 1 1 1 1 1 1 
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CONNECTIONS: closure Id 
{: cm2=. 0=78 8 S 5 

1 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 
0 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 0 
1 0 0 0 1 1 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 0 

points=. 1 o 0 o o 0 o 1 
points tam cm2 

1 0 1 1 0 0 1 1 

cm2 tam cm2 
1 0 0 0 0 0 0 0 
0 0 1 0 0 0 :I. 0 
0 0 0 0 0 0 :I. 0 
1 0 0 0 0 0 0 0 
10001100 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
1 0 1 1 0 0 1 0 

SYMBOLICS: reduction and scan Ka 
o=. I ( I } : c=. ' ) ' } : s=. '-I 
minus=. '':: 'o,x. ,c,s,y.' 
'a' minus 'b' 

(a)-b 
Z ist;= . 1 de[g' 
minus I Zist 

(d)-(e)-(f)-g 
minus\Zist 

d 
(d)-e 
(d)-(e)-f 
(d)-(e)-(f)-g 

d,e,f,g=.<:f=.<:e=.<:d=.4 
4 3 2 1 

" minus I list 
2 

" minus \ 1.is-t 
4 1 3 2 

times=. '':: 'o,x. ,c,' '*'' ,y.' 
list times~O -. Zist 

(d)*g 
(e)*f 
(f)*e 
(g)*d 

COMPOSITIONS: under ( ") Lc 
+.\ a=. 0 0 1 0 1 1 0 0 0 

0 0 1 1 1 1 1 1 1 
+.\ - a 

0 0 0 1 1 1 1 1 1 
- +.\ -. a 

1 1 1 1 1 1 0 0 0 
+.\ " - a 

1 1 1 1 1 1 0 0 0 

I 
b=. 1 2 3 4 }: c=. 3 4 5 6 
b +&A. c 

1.09861 2.07944 2.70805 3.17805 
A b +&A. c 

3 a 15 2'+ 
b +"A, c 

3 a 15 2'+ 
{ :tezt=. 'i'; 'sing'; 'of'; 'o1.af' 

H sing J ofJ oZatJ 

-. "> tezt 
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CONNECTIONS: adjacency Ie 
a=. o 0 0 0 1 1 :I. 1 
b=. 0 0 1 1 0 0 :I. 1 
c=. o 1 o 1 o :I. o :I. 
Sd=. a,b,l:c 

3 8 
adj=. '1=y. + ..... : \. Y•'::'' 
{. e=. adj \. d 

0 1 1 0 1 0 0 0 
1 0 0 1 0 :I. 0 0 
1 0 0 1 0 0 1 0 
0 1 1 0 0 0 0 1 
1 0 0 0 0 1 1 0 
0 1 0 0 1 0 0 1 
0 0 1 0 1 0 0 1 
0 0 0 1 0 1 :I. 0 

e{ I *' 
** * 

* * * 
* * * 
** * 

* ** 
* * * 

* * * 

* ** 
COMPOSITIONS: and (&) La 

A&2 c=. 1+i.4 
1 4 9 16 

2&A c 
2 4 B 16 

pow=. A&2::A 
pow c pow c 

1.16 729 65536 
c +&!'; c 

2 1 0.666667 0.5 
tr=. 3&*::* 
db=. 2&*::* 
c tr & db c 

4 16 36 64 
c db & tr c 

9 36 81 144 
C +&A, C 

0 1.38629 2.19722 2.77259 
A C +&A. C 

1 4 9 16 
db & tr \- c 

9 18 27 36 
18 36 54 72 
27 54 81 108 
36 72 108 144 

COMPOSITIONS: fork 
c(+ * -)d=.-.c=. i. 

_9 _3 3 9 
q=.+*-
c q '\ c 

0 _1 _4 _9 
1 0 _3 _8 
4 3 0 _5 
9 8 5 0 

q c 
0 _1 _4 _9 

r=. -,+ 
c r d 

_3 3 
_1 3 

1 3 
3 3 
db=. 2&*::* 
tr=. 3&*::* 
(db+tr} c 

0 5 10 15 
(db*tr) c 

0 6 24 54 
( db*db+tr) c 

0 10 40 90 
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(f g h) Ld 
4 

g 
I \ 

f h 
/\ /\ 

z yz i:t' 

g 
I \ 

f h 

somiNG Ja 

t=.'i sing of olaf glad and big' 
{: t;t=. > /. t 

sing 
of 
olaf 
glad 
and 
big 

/: t;;t; 
5 6 4 0 2 3 1 

tt /: tt 
and 
big 
glad 
i 
of 
olaf 
sing 

COMPOSITIONS: atop (@) Lb 
a :i- \ c=. 1+ i. 4 

0 1 2 3 
1 0 1 2 
2 1 0 1 
3 2 1 0 

db=. 2&*: :* 
tr=. 3&*:: * 

db II tr \ ... c 
2 4 6 a 
4 8 12 16 
6 12 1a 24 
8 16 24 32 

db & tr \ ... c 
9 18 27 36 

18 36 54 72 
27 54 81 108 
36 72 108 144 

COMPOSITIONS: 
a=.5 6 7 8 

hook (g h) Le 

b=.1 2 3 4 
( *>:) b 

2 6 12 20 
a(*>:) b 

10 18 28 40 

a(*>:)\ b 
10 15 20 25 
12 18 24- 30 
14- 21 28 35 
16 24- 32 40 

(+~)/ 1 2 2 2 2 2 2 
1.4142 

(+~)\ 1 2 2 2 2 

g 
I \ 

:& h 

g 
I \ 

11 h 

1 1.5 1.4 1.41667 1.41379 
(+%)\ 3 7 15 

3 3.14-286 3.14151 
(+:;)\ :I. 1 l l 1 

1 2 1.5 1.66667 1.6 
(-%)\ 1 2 2 2 2 2 

\ 
y 

\ 

l 0.5 0.333333 0.25 0.2 0.166667 
* ... (+:;)/ 1 ' 12 s 1 2 

3 
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FUNCTIONAL PROGRAMMING Ma 
be=. Ocl, + ,ciO 
be 1 

1 1 
be be 1 

1 2 1 
be be be 1 

1 3 3 1 
q=. •$.=.1,y.l2' 
r=. 'f=. {:• ; 'f=. z.clf' 
power=. 2::(q;r) 
be power 3 (1) 

1 3 3 1 
be .• 3 (1) 

1 3 3 1 
e3=. (Ocl,+,ciO) •• 3 
e3 1 

1 3 3 1 
2&* •• 3"0 i. 5 

0 8 16 24 32 
2cl+ •• 3"0 i. 5 

6 7 8 9 10 
g=. *""= :-
5 g g 4 

_11 

SETS: union, etc. Nc 
(even=. 0&=&(2&:))a=. i. 16 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
prime=. 1 2=+ 1 O=y. : "-:1 +i . y. 1 : : 1 1 "o 

prime a 
0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 

(prime a) fl a 
2 3 5 7 11 13 

afl-(prime•.even)a 
2 

afl-(prime>even)a 
3 5 7 1:1 13 

tripZe=.0&=&(3&:> 
q:. even+.triple 
(q a) tl a 

[SET INTER
SECTION] 

[SET 
DIFFERENCE] 

[SET UNION] 

0 2 3 4 6 8 9 10 12 14 15 
r=. prime +. even *· triple 
(r a) tl a 

0 2 3 5 6 7 11 12 13 

INVERSES AND DUALITY Pa 
eFt=. 1 (y.-32) * 5~9 1 :: 11 

tFc=. 1 32 + (y. * 9%5) 1 :: 11 

de=. 40 -- 20 * i. 8 
fFe de 

_40 _4 32 68 104 140 176 212 
eFt tFc de 

_40 _20 0 20 40 60 80 100 
~ ~ 1 2 3 

1 2 3 
log=. 1 10 A.y.•::'' 
invZog=. '10 "y.•::'' 
log y=. 24 4 75 7 

1.38021 0.60206 1.87506 0.845098 
+I log y 

4.70243 
invlog +/ Z.og y 

50400 
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SETS: propositions Na 
{: a=. 2%...., i. 11 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
(2&<: *· <ciS) a 

0 0 0 0 1 1 1 1 1 1 0 
((2cl<: *· <ciS) a) I a 

2 2.5 3 3.5 4 4.5 
((2cl<: *· <&5) I{:) a 

2 2.5 3 3.5 4 4.5 
({: 1- 2&<: *· <&5) a 

2 2.5 3 3.5 4 4.5 
int=. = <. 
int a 

1 0 1 0 1 0 1 0 1 0 1 
((2&<: *· int) a) I a 

2 3 '+ 5 
({: 1- 2&<: *· int) a 

2 3 4 5 
(f- 2&<: *· int) a 

2 3 4 5 

FAMILIES OF FUNCTIONS Oa 
z=.1 2 3 4 5 6 7 
Zfl2 

1 4 9 16 25 36 49 
Zfl3 

1 8 27 64 125 216 343 
(4*:&"2) + (_3*zA3) 

1 _8 _45 _128 _275 _504 _833 

2 3 """' :& 
1 4 9 16 25 36 49 
1 8 27 64 125 216 343 

4 _3 + .. *2 3 """\:& 
1 _B _45 _128 _275 _504 _833 

e=. 0 1 2 3 4 
vandermonde=. e A-\ z 
vandermonde 

1 1 1 1 1 1 1 
1 2 3 4 5 6 7 
1 4 9 16 25 36 49 
1 8 27 64 125 216 343 
1 16 81 256 625 1296 2401 

INVERSES AND DUALITY Pb 
r=. 2 3 4 } : s=. 2 4 5 

inv'Log (log r) + (logs) 
4 12 20 

r * 8 
4 12 20 

A (fl. r) + (A. B) 
4 12 20 

r +11 A. 8 

4 12 20 

r +"% s 
1 1.71429 2.22222 

~ {~r) + (%s) 
1 1.71429 2.22222 

+"~ I r 
0.923077 

% +I ~ r 
0.923077 
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SETS: relations Nb 
i=.i.B }: p=. 2 3 5 7 11 
belongsto=. +.1"1 I ~=\) 
i be'l.ongsto p 

0 0 1 1 0 1 0 1 
e=. be'l.ongsto 
p 6 i 

1 1 1 1 0 
e=. -.lv=. e&•aeiou' 
alph=. 'abedefghi$k'l.mno' 
alph=. atph,'pqrstuvwzya' 
(v alph)latph 

aeiou 
(tl- c) alph 

bcdfghjklmnpqrstvw:ya 

FAMILIES OF FUNCTIONS Ob 
c=. 4 2 _3 2 1 
vandermonde 

1 1 1 1 1 1 1 
1 2 3 4 5 6 7 
1 4 9 16 25 36 49 
1 8 27 64 125 216 343 
1 16 81 256 625 1296 2401 

e+ .. •vandermonde 
6 28 118 348 814 1636 2958 

po'l.y=. ••::•z.+ .• •\.y.fl\i.l:&. 1 

e po'l.y z 
6 28 118 348 814 1636 2958 

INVERSES AND DUALITY Pe 
f=. +cl3 
g=. -&3 

{::=.£.4 
0 1 2 3 

f:r: 
3 4 5 6 

!f z 
6 24 120 720 

g!f :r: 
3 21 117 717 

l"f :I; 

3 21 117 717 

!"(+&3) :r: 
3 21 117 717 

!'1(•&2) :r: 
o.s 1 12 360 
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