
APL\?

Roger K. W. Hut

Kenneth E. Iverson

E. E. McDonnell

Arthur T. Whitney

This paper describes a version of APL based upon the dictionary
[1), but significantly simplified and enhanced. and directly usable
on any machine that provides ASCII characters. It also describes
salient features of a C implementation that has been tested on
several machines, and is available as freeware. There have been
four primary motivations for this work:

I. To provide an APL system for use in teaching mathematics
and related topics that is modern, free, and transportable.

2. To devise a spelling scheme based on the ASCII alphabet that
preserves the major advantages of the one-letter words based
on the special alphabet commonly used in APL.

3. To exploit the advantages of breaking from the strict con
formance with earlier APL that is normally obligatory in com
mercial systems.

4. To explore an unusual style of C programming that makes
heavy use of pre-processing facilities.

Examples of the use of the language in a variety of topics are
provided in an appendix.

We are indebted to a number of colleagues for advice and help:
Anthony Howe. David Steinbrook, Bob Bernecky, Mark Czer
winski, L.J. Dickey, Jiri Dvorak, James Hui, Eric Iverson, Paul
Jackson, and Roland Pesch.

A. ORTHOGRAPHY

At the time of the first implementation of APL, the then-new
IBM Selectric typewriter with its changeable type element offered
a welcome escape from the limitations of the existing printers,
which provided only a few symbols beyond a one-case alphabet,
punctuation, and the decimal digits. The Selectric was exploited
by designing an alphabet that provided single-character spelling
of all words in the language (except for the literal names used for
variables).

This spelling scheme offered several advantages, due to the fact
that the words were:

1. Mnemonic, using the shapes of symbols to suggest the func
tions denoted, as in up- and down-arrows for the functions lake
and drop.

2. Universal, in avoiding mnemonic devices rooted in particular
natural languages.

Permission to copy without fee all or part of this material is granted provided that
the copies ans not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice
Is given that copying Is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
•1990 ACM 089791·371-x/90/0008/0192 ... $1.50

APL\? 192

3. Disjoint from the literals used in variable names, so as
to a) avoid the introduction of reserved words, b) improve
readability, and c) obviate required spaces around words, as
in a I b instead of a mod b.

However, special alphabets pose serious display problems, and it
is desirable to have a spelling scheme based on a widely available
computer alphabet. We have here attempted to design a spelling
scheme based on the ASCII alphabet that retains the advantages
cited above for the older spelling scheme.

Words are spelled with one character or with two, the last of which
is a period or a colon; words are formed by scanning from right
to left, each colon or period (not in a number) combining with the
character to its left to form a word. Any number of spaces may
be used between words, but spaces are not required, except that
in a number, a space or zero must precede a decimal point that is
not preceded by a digit or negative sign.

The spelling scheme is shown in the language summary of Table
l, a study of which should clarify the application of the following
guides used in its design:

1. Adopt mathematical symbols (such as + - < > ! "'), and
symbols whose shape or usage somehow suggest the mathe
matical notions, as in the number sign # for number of items
(in an argument, or selected in replication), and De Morgan's
use of" for power[2].

2. Use single characters for other primitives whose use should
become common, as in & @ ; " _ and \ for composition,
upon and defer, link, rank and under, negative sign, and scan
and outer product.

3. Use a dot or colon with a common mathematical character
that suggests the function, as in <. and >. for min and max,
and in =. and =: for local and global assignment.

4. Use a dot with a letter that suggests a mathematical symbol
or definition, as in o. for the family of circular functions, in e.
for membership (because epsilon is used for it in mathematics),
in i. for integers, and in x. and y. for arguments (because
of the analogous use of x and y in mathematics).

5. Use related strings for related functions, as in " for expo
nential, "'· for its inverse (natural log), and 1\: for root and
square root; in II, for base value, and II : for its inverse; in +
and * for plus and limes, and +. and *. for or and and (their
analogs in logic); and in@ for a conjunction that permutes axes,
and @. and @: for other permutations.

6. Adopt mnemonic aids such as the three cases of .$' (which
suggests an S) for Shape, Sequence list, and Self-reference; and
• • for the Dot or lnnu product. This adoption of the double
dot obviates the spaces previously needed around the dot in
some cases.

APL90

http://crossmark.crossref.org/dialog/?doi=10.1145%2F97808.97845&domain=pdf&date_stamp=1990-05-01

Anyone who is familiar with earlier spelling of APL words, or who
is using earlier APL literature, may find iL helpful to pronounce
them in the traditional way, as in ioza for i ..

The function I. cuts its list argument into words according to
rules appropriate to an APL sentence. Thus, I. 1 +13 4 5
*i. 3 ' yields the boxed list + and I and 3 4 5 and * and
i.. and 3.

= NubC!assify ; Equal
< Box : LessThan
> Open : GreaterThan
_ NegativeSign/lnfinity

+ Conjugate : Plus
* Signum ;Times
- Negate ; Minus
% Reciprocal ; Divide

1\ Exponential ; Power
$ ShapeOf ; Shape
- Both ; Cross
J Magnitude ; Residue

:1\0T USABLE
NOT l.JSABLE

, Ravel ;Chainltems
Table ;Link (+Box)

II Tal.ly; Copy
@Atop-At
I Ins en : x Way lnsen
\ Scan ; Outerl'roduct

<{ Catalog ; From
} \1erge
" ConstCutRankLnder
& Composition-With

l Factorial ; OutOf
? Roll; Deal
(Open Parenthesis
) ClosePar-Label-Cmd

Q

e
i
0

:r:

y
E

X

Is (Local)
Floor : Minimum
Ceiling ; Maximum

; GCD (Or)
; LCM (And)
Reverse ; Rotate
Matrili.lnv ; MDiv

NaturalLog ; Log
SequenceList
Not (1-) ; Less

Det ; DotProd
Companion

Boxltems ; Link

Base2; Base
Dir-Cyc ; Permute
Words
Transpose

::\ub; Take
Raze; Drop
Execute ;Execute

Alphabet
; Epsilon (Member)
Integers ; lndexOf
PiTimes : Circular
First Argu.ment
Last Argument
: MemberOflnterval
External (Foreign)

1s (Global)
Decrement ; LeOrEq
Increment : GtOrEq

; Nor
; Nand
:Match

SquareRoot ; Root
Sel.fReference
Nubsieve ; NotEqual
Custom

Definition
Itemize ; Laminate

Antibase2 ; Antibase
AtomPermute
Gradet.:p; Son
GradeDown ; Son

Right (Dex)
Left (Lev)
Format ; Format

Table 1: LANGUAGE SUMMARY

B. MAJOR CELLS1 REPLICATE, RESHAPE, and
Ol:TER PRODt:CT

Because of the importance of major cells, we will adopt the terms
izem and atom for the major cells and the scalars. We will also
adopt the symbol II for the item counz, or zally; lib is 1 if b is an
atom, and is otherwise equal to 0{$ b.

The dyadic case nlib is similar to the replicate function previously
provided (for historical reasons) by the derived function n/; the
successive atoms of n specify the number ofrepetitions of succes
sive items of b to be selected. The reshape ($) is also redefined
to apply to items rather than atoms; the old behaviour is obtained
by ravelling the right argument.

Catenation of the items of A and B by the expression A comma-bar
B is more useful than the catenation of 1-cells provided by the

APL QUOTE QUAD 193

comma; in particular, the catenation of 1-cells can be provided
by comma-bar of rank 1. Consequently, we will use the comma
for catenation of items (!.hat is, catenation along the leading axis),
and drop the symbol comma-bar. For similar reasons, the I and
\ will be adopted for the meanings that were assigned to I -bar
and \-bar, and the Iauer pair of symbols will be dropped.

The table function (previously provided by the monadic case of
the comma-bar) will be provided by the semi-colon, its dyadic
use being assigned to the link function. Thus, a; b is defined by
(<a) ,b, with the right argument b automatically boxed if it is
open.

The expression jot.f for outer product uses (for historical reasons)
a conjunction where an adverb would serve. We will adopt the
dyadic case of f\ for this purpose, and the jot and the notation
jot.f will be dropped.

C. USER-DEFTh'ED VERBS, ADVERBS
and CO~JU~CTIO~S

The conjunction denoted in the dictionary by the inverted Greek
Delta will be denoted by the double colon, and the right-arrow and
$ used to denote the sequence control· and self-reference will be
replaced by$. and$:. The forms m: :d and 1: :a and 2: :a
will be otherwise adopted.

As in the dictionary, assignment provides dynamic localization; for
example, the first execution of a= .g a in a function f applies
g to the global value of a, but produces a local copy. Unlike the
dictionary definition, the localization is strict, so that a local copy
is not available to user-defined functions that are invoked in f.
Global assignment is provided by the copula =: .

Strict localization provides significant advantages over the herita
ble localization of earlier APL. and is now practicable because of
the ease of passing parameters in boxed arguments. Direct defi
nitions arc easily provided by a simple cover function employing
the forms m: : ' ' and ' ' : :d.

D. FR0:\1, IOTA, and BASE

The monadic case of i. is defined like monadic iota, but extended
to list arguments as follows: i. 8 is (Is)$+\0, (*I Is)$1, but
reversed along each axis for which the corresponding element of
s is negative; the result for an empty argument is the scalar 0.
For example:

i. 2 3
0 1 2
3 4 5

i. 2 _3
2 1 0 0
5 4 3

' I I 1-. i. 4
3 2 1 0

A new monadic case of base-value is defined as the base-2 value;
that is, li .v is equivalent to 21i • v. An infinite rank monadic case
of anti-base is defined as (n$2) li: a, where n is the maximum
of the minimum lengths required to represent the (integer) atoms
of a.

E. PERMlJTATIONS

The words \ . and - • will be used for transposition and for
leading-axis reverse and rotate, the lines in the spelling indicating
the axes involved, as they did in the old symbols for these func
tions. Other permutations (modelled upon, and replacing, those in
the dictionary called cycle, mix, and mix index) will be repre
sented by @. and ~: .

Standard Direct and Cycle Representations. If p is a permu
tation of the atoms of i. n, then p is said to be a perrn.utazion
veczor of order n, and if n=fib, then p{b is a permutation of the
items of b.

The expression @. p yields a list of boxed lists of the atoms of
i . lip called the szandard cycle representation of p. If (as in the
example in the dictionary) p=. 4 5 2 1 0 3, then @. p yields

Hui, Iverson, McDonnell, Whitney

2 ; 4 0 ; 5 3 1 because the permutation p moves lo posilion 2
the item 2. to 4 the item 0, to 0 the item 4, to 5 the item 3, to
3 the item 1. and to 1 the item 5. The monad @. is self-inverse;
when applied to a standard cycle representation it produces the
corresponding direcr representation.

A given permutation could be represented by cycles in a variety
of ways, and the standard form is made unique by the following
restrictions:

The cycles are disjoint and exhaustive (that is, the atoms of
the boxed elements together form a permutation vector); each
boxed cycle begins with its largest element (possible because
any rolalion of a single cycle represents the same permutation);
and the boxed cycles are arranged in ascending order on their
leading elements (possible because the cycles are disjoint).

Non-Standard Representations. If d and c are direct and cycle
representations of order fib, then d@ .b and c@ .b produce the
corresponding permutations of the items of b. More generally,
since the item count of b determines the order of the permutation,
the arguments d and c may be non-standard in ways to be defined.
In particular, elements belonging to (i. 2* Nb)- Nb are permitted,
and are treated as their residues modulo fib.

If q is not boxed, and if the elements of (Nb) I q are distinct, then
q@. b is equivalent to d@. b. where d is the standard form of q
given by d=.((i.n)"-'.nlq),nlq. where n is Nb. In other
words, positions occurring in q are moved to the tail end.

If q is boxed, then the elements of (fib) I > j { q must be distinct
for each j, and the boxes are applied in succession. For exam
ple, (2 1;3 0 1)@.i.5 is equivalent to (<2 1)@,(<3 0
1)@. i. 5, and the result of either is the standard direct permu
tation 1 2 3 0 4.

Atomic Representation. If T is the table of all ! n permutations
of order n arranged in lexical order (that is, I :Tis i. ! fiT). then
k is said to be the alomic representation of the permutation k{T.
Moreover, k@: b permutes items of b by the permutation of order
Nb whose atomic representation is (! fib) I k. For example, 1@ :b
transposes the last two items of b, and _1@: b reverses the items,
and 3@: b and 4@: b rotate the last three items of b. Finally,
(i. ! n) @: i. n produces the ordered table of all permutations of
order n, as docs the fork [3] used in the expression (i. & ! @: i.)
n.

The transformation between direct and cycle represemations pro
vided by the monad @. is extended to non-negative non-standard
cases by treating any argument q as a representation of a permu
tation of order 1 +>.I}. q. Similarly, the monad @: applied to
any cycle or direct permutation yields its atomic representation.
For example, @ : 0 3 2 1 is 5, as are @: 3 2 1 and @: 0 ; 2 ; 3
1 and @:<3 1.

F. TRA~SPOSITIOl'iS and SECTIO~S

The symbol @ will replace the hoof. with the noun cases of the
conjunction (Defer and Prefer) modified so that v@n defers axes
n of the right argument before applying v, and n@v defers axes
of the left. Consequently, the expression a n0@v@n1 b defers
axes of both arguments before applying v. The monadic cases of
v@n and n@v are identical.

If the number of elements of n equals the rank of v. then v@n
applies v to the cells selected by the axes specified by the atoms
of v, and v@n can therefore be said to apply v at n, as suggested
by the name of the symbol @.

Because { : is an identity function, transposition alone can be
obtained by using { : @n.

A boxed argument n provides sectioning. grouping the axes spec
ified by a single box into a single result axis. For example, if b

APL\? 194

has the shape i. 6 and n=. 2; 4 1; 0, then the shape of { : @n
b is 3 5 2 1 0.

G. FORMAT

The dyadic case of format (":) is defined with both ranks 1, and
with each element e of the left argument controlling the rep
resentation of the corresponding element of the right argument as
follows:

w=. < • I e specifies the total width allocated; if this space is
inadequate, the entire space is filled with asterisks.

d=.<.10*(le)-w specifies the number of digits following
the decimal point (which is itself included only if d is not
zero.)

Any negative sign is placed just before the leading digit.

If e>: 0, the result is right-justified in the space w

If e<O. the result is put in exponential form (with one digit be
fore the decimal point) and is left-justified except for two fixed
spaces reserved on the left (including the one for a possible
negative sign)

The monadic rank of ": is infinite, and the result is equivalent
to the application of the dyadic definition with a left argument
chosen to provide a minimum of one space between columns.
Default output is equivalent to the use of the monadic case.

H. EXTER:'\AL CO\f!\1U~ICATIO~

Communication with the keyboard, screen, and operating system
files is provided by the conjunction X., whose many arguments
provide considerable flexibility.

I. SOME I~PLICATIOl\S FOR TEACHI~G

The mere introduction of lists, scan, and outer product allows a
wealth of interesting explorations, as in +'a=. 0 1 2 3 4 5
for the triangular numbers, in +\1 +a+a to see that the odd num
bers sum to squares, and in various outer products such as a+\a
and a*\a to see addition, multiplication, remainder, divisibility
and other tables, including the binomial coefficients (Pascal's Tri
angle) provided by a! \a.

Lists are easily explained as the use of collective nouns, and the
scan is easily explained as an adverb. Unfortunately, the simple
and important notion of a function table required, in traditional
APL. not just a further use of an adverb, but the use of a conjunc
tion whose first argument could only be explained as an historical
anomaly. The present use of an adverb for outer product avoids
this difficulty.

Expressions such as pr=. +% provide a simple introduction of the
notion of function definition (and of the hook [3)), and expres
sions such as pr\1 2 2 2 2 2 2 and pr\3 7 15 1 show
interesting uses of such a defined function in producing successive
approximations to interesting quantitites.

Expressions such as sum= • +I and sqrt= . /\& 0 • 5 and 1. og=.
1 0& A. and neq= • "'. 9= provide simple and interesting uses of
adverbs and conjunctions. Moreover, the general form of defini
tion provided by the : : conjunction permits a simple introduction
to the use of iteration and recursion.

The generally useful notions of classification can be introduced by
using the outer product a<: '\b in expressions for producing bar
charts and graphs, and can be explored further using the expression
fi:i.2An to produce the complete classification table of order
n. Thus if CCT=.fi:i.2Aflv=.2 3 5, then v+. ·*CCT and
V* • • ACCT produce the sums and products over all subsets of v.

In a more specialized area, the functions @. and @ : provide
powerful facilities for the discussion of permutations. Thus,

APL90

(i . ! 4)@: i . 4 displays a complete table of permutations, and
an expression such as i. 4 3 0 1 2 can provide an introduc
tion to cycles and to the use of the LCM (*.) of their lengths
to determine the power of a permutation. For examples in funher
topics, see the appendix.

J, THE C IMPLEME~TATIO~

The system is implemented in C. because it is an adequate lan
guage available on a wide variety of machines. The implemen
tation is guided by two principles: clarity, and exploitation of
underlying facilities. Efficiency is not a main objective.

Clarity does not mean the micro (and relatively insignificant)
clarity of individual C statements, but the macro clarity of being
close to the APL or mathematical definitions. The C code is
written to be understandable by an APL-knowledgeable reader.

Facilities already available in the environment are exploited: for
memory management, the C library functions malloc o and fr•• o
are used, the underlying virtual memory facilities being presumed
to be adequate; for session management, the system reads from
standard input and writes to standard output. This, together
with the ASCTI spelling, makes it possible to use any of sev
eral widely-available session managers. such as EMACS or Sun
View /OpenLook.

Organization. The system is organized along the lines suggested
by the dictionary, in particular, by the parser [1, p. 38]. The
parsing rules are expressed in C as follows:

fdefine RHS (NOON+VERB+ADV+CONJ)
ldefine EDGE (HARX+ASGN+LPAR)

•tatic atruct {I c[4);AF f;I b,e;)caaea[) • (

EDGE+ADV+VERB, VERB, NOON, ANY, verb,l, 2,
CONJ, NOON, VERB, NOON, verb,2, 3,
EDGE+ADV+VERB+NOON, NOON, VERB, NOON, ••r:b,l, 3,
ED.GE+ADV+VERB+NOON, NOON+VERB, ADV, ANY, adv, 1, 2,
EDGE+ADV+VERB+NOON, NOON+VERB, CONJ', NOCN+VERB,conj,l, 3,
EDGE+ADV+VERB+NOON,VERB, VERB, VERB, form,l, 3,
EDGE, VERB, VERB, ANY, form,l, 2,
NAME, ASGN, lUiS, ANY, ia, 0, 2,
UAR, RHS, Ill? All, ANY, punc,O, 2,
ANY, ANY, ANY, ANY, move,O, -1,

I;

A sentence to be parsed is placed on a left stack, and as execution
proceeds words are moved from the tail of the left stack to the
front of a right stack. When the first four words of the right stack
match a pattern (columns 0 to 3 of the table), the corresponding
action (4) is triggered and applied to the indicated words (5, 6),
with the result replacing these words.

Data Structures. The fundamental data structure is the APL array,
that is, the C structure:

typedef long I;
typedef atruct (I t,c,n,r,a[1);)*A;

t type
c reference count
n number of atoms in the ravelled array
r rank
• shape list
v atoms of the ravelled array (immediately following •)

APL QUOTE QUAD 195

All objects, whether numeric, literal, or boxed, whether noun,
verb, adverb, conjunction, or punctuation, are represented by this
structure. Most C functions in the system accept APL arrays as
arguments and return them as results.

Definitions and macros. Extensive use is made of C preprocessor
definitions and macros; to augment the expressive power of C.
to enforce uniformity, and to increase readability. Example: An
"APL function" is a function which accepts one or two APL array
arguments, and returns an APL array result. The macros FI and
F2 encapsulate this convention:

ldefin• Fl(f) A f(w,aelf)A v,ae1f;
ldefine F2(f) A f(a,v,aelf)A a,v,aelf;

(••lf is a pointer to function parts - rank, inverse, etc.)

A compact but readable programming style results from using
such definitions. The implementation of , :y (itemize) and x, :y

(laminate) are cases in point:

Itemize: , :y adds a single unit axis to y, making the shape 1, $y.

F1(lamin1) (a reahape(o•er(one,ahape(v)),ravel(v));)

Laminate: If the shapes of x and y are equal, then .z, :y is defined
by (, :.z), (, :y). If one is an atom a, it is first replaced by· a$a,
where • is the shape of the other.

F2(lamin2) (R o••r(a,reahape(over(one,ahape(Ail(w)?w:a))
,ra•d(v)));)

Statistics. Analysis of the C implementation as it stands on 1990
2 22 yields the following statistics. (Header files and variables
without functions are excluded.)
C Fns 240 Lines
Lines 1345 +/ Line lengths
Average lines/fn 5. 6 Average chars/line
Min 1 Min
Max 40 Max
Median
One-liners

1
125

Median
One-character lines

181 of the 240 functions are APL functions.

1345
1+4722

33.3
1

89
32
91

Therefore, the implementation consists of a large number of short
functions, having short lines, with a well-defined uniform inter
face. These are characteristic of an APL programming style.

REFERE~CES

I. Iverson, K.E., A Dictionary of APL, APL Quote-Quad, Volume
18, Number 1. September 1987, pp 5-40.

2. Cajori, Florian, A History ofMalhematical Notations, The Open
Court Publishing Co., 1928, Volume I. Paragraph 313.

3. McDonnell, E.E., and K.E. Iverson, Phrasal Forms, APL Quote·
Quad, Volume 19, Number 4, August 1989, pp 197-199.

APPENDIX

The forty-five frames in the following appendix show examples
of use of the system in a variety of topics. All were actually
executed on the system in March 1990.

Hui, Iverson, McDonnell, Whitney

ALPHABET A
$ a.

256
j=. a. i. 'aA 1

:1
97 65

j +\ i. 9
97 98 99 100 101 102 103 10~ 105
65 66 67 68 69 70 71 72 73

{.i+\i.30){a.
abadefghijktmnopqrstuvwzyz{:}
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A

a.{-j+\i. 30
abadefghijktmnopqrstuvwzyz{:}
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A

3 + 125 * 6 % 100
10.5

i. 2 5
0 1 2 3 ~
5 6 7 8 9

*\-Oj1 _1
_1 0:/_1

0:/_1 1

Oj_1 1
1 Oj1

Oj1 _1
_1 Oj_1 1 Oj1

0:11 _1 Oj_1 1

prices=. 3 1 ~ 2
orders=. 2 0 2 1

prices * orders
6 0 8 2

prices *\ orders
6 0 6 3
2 0 2 1
8 o e 4
4 0 4 2

TO RE/.IJ A TABLE,
BORDER IT BY ITS
ARGUMENTS:

3 : 6 0 6 3
1 : 2 0 2 1
~ : 8 0 8 4
2 : 4 0 4 2

TABLES Da

TABLES Dd
text=. 1 i sing of otaf 1

text=. text,•gtad and big'

atph=. ' abcdefghijktmno'
atph=. atph,'pqrstuvwxyz'

'01'{-10{.atph=\te:rt
1010000100100001000010001000
0000000000000100001001000000
0000000000000000000000000100
0000000000000000000000000000
0000000000000000000100010000
0000000000000000000000000000
0000000001000010000000000000
0000001000000000100000000001
0000000000000000000000000000
0100100000000000000000000010

2 13$+/"1 atph=\text
7 3 1 0 2 0 2 3 0 3 0 0 2
0 2 2 0 0 0 1 0 0 0 0 0 0

APL\?

SPELLING B
sentence=. 1 inde::=. a. i. 1 •a:A 1 • •

/.sentence

1 index 1 =·I a ·I i ·I . aA. 1
S /.sente7'1ce

5

>/.sentence
index

a.
i.
'aA'

11 sentence
97 65

11 'abc -. 3 1 4 2'
3 1 ~ 2

abo
3 1 ~ 2

n=. 0 :1 2 3
n +\ n

0 1 2 3
1 2 3 I+
2 3 4 5
3 4 5 6

*\ - n
0 0 0 0
0 1 2 3
0 2 ~ 6
0 3 6 9

A\- i.
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

+.\- 0
0 1
1 1

+:\- 0
1 0
0 0

~

1

1

TABLES Db

CLASSIFICATION Ea
x=. 1 2 3 4 5 6 7
y=. (:r-3) * (:r-5)
y

8 3 0 _1 0 3 8

range=. m-i. 1+(m=. >./y)-<./y
range

8 7 6 5 4 3 2 1 0 _1

be=. range <:\ y
be

1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 0 0 0 1 1
1 1 0 0 0 l 1
1 1 0 0 0 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

196

GRAMMAR C
fahrenheit =. SO
(fahrenheit - 32) * 5 % 9

10
prices -· 3 1 ~ 2
orders -. 2 0 2 1
orders * prices

6 0 8 2
+/ orders * prices

16
+\ 1 2 3 4 5

1 3 6 10 15
2 3 * \ 1 2 3 4 5

2 4 6 8 10
3 6 9 12 15

deer=. - & 1
deer _1 0 1 2 3

_2 _1 0 1 2
PA.RXS OF SPEECH

so fahrenheit Nouns/Pronouns
+ - * % deer Verbs/Proverbs
I \ Adverbs
& Conjunction
-. Verb-to-be
{) Punctuation

TABLES Do
l\ - l+i. 5

0 0 0 0 0
1 0 1 0 1
1 2 0 1 2
1 2 3 0 1
1 2 3 ~ 0

+/ 0= :\ - j=. 1+i.. 15
1 2 2 3 2 ~ 2 ~ 3 4 2 6 2 ~ ~

2=+/0=:\ - j
0 1 1 0 1 0 1 0 0 0 1 0 1 0 0

(2=+/0=:\- j) fl j
2 3 5 7 11 13

=\-i. 4
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

<:\-i. ~
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

CLASSIFICATION Eb
x=. 1 2 3 ~ 5 6 7
y=. {:r-3) * {.:c-5)
y

8 3 0 _1 0 3 8

range=. m-i. >:(m=. >.ly)-<./y
range

8 7 6 5 4 3 2 1 0 _l

be=. range <:'\ y
bo { ' *'

* *
* *
* *
* *
* *
** **
** **
** **
*** ***

<\ 0 0 0 1 0 1 1 0 1
0 0 0 1 0 0 0 0 0

APL90

CI:.ASSIFICA:!ION: graphs Ec
be

1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 0 0 0 0 0 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 0 0 0 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

<\ bo
1 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 0 0

CI:.ASSIFICA:!ION dot products Ef

2 3 5 ' o 5 3 a 2 7 5 10 '
4 2 1 ' 0 1 2 3 4 5 6 7 ' ------:-----------------

' 0 0 0 0 1 1 1 1 I
I 0 0 1 1 0 0 1 1 I

I 0 1 0 1 0 1 0 1 I

rowO -. 2 3 5 }: cotS=. 1 o 1

rowo * cotS
2 0 5

+/ rowO * cotS
7

rowO +. ·* cat
0 5 3 8 2 7 5 10

rowe*··" cat
1 5 3 15 2 10 6 30

rowO " cotS
2 1 5

*/ rowo " ao1.5
10

words

tt=. > words
tt

i
sing
of
otaf
gtad
and
big

s tt
7 4

APL QUOTE QUAD

STRUCTURES open Fa

1
0
0
0
0
0
0
0
0
0

*

<\be
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

' *'

* *

* *
*

*

CI:.ASSIFICA:!ION: graphll Ed

0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
1 0 0
0 0 0

<- <\be

CI:.ASSIFICA:!ION +,* on sl.lbsets Ee

a=. 0 0 0 0 1 1 1 1
b=. 0 0 1 1 0 0 1 1
c=. o 1 0 1 0 1 0 1

act=. a,b,, :a
cot

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

2 3 5 +. ·* cot
0 5 3 a 2 7 5 10

2 3 5 *·,I\ cat
1 5 3 15 2 10 6 30

+/cot
0 1 1 2 1 2 2 3

{:c2=.(2=+/oct)tl"1 cot
0 1 1
1 0 1
1 1 0

2 3 5 > ••• * o2
5 5 3

STRUCTURES: boz Fa STRUCTURES: each Fb
tezt tezt

i sing of otaf gtad and big i sing of o1.af g7.ad and big

-. tezt
gib dna datg tato to gnis i

< 'gtad'

lgtadl

u=. (<'gtad'),(<'and'),<'big'
u

-. u

lbig,andjgtadl

tl u
3

•gtad•;•and';'big'

JgtadJand,bigl

a

PROGRAMS: simpte Ga
root= . ' y. A :C2 ' : : ' y. " :C:z • '
root 64

3 root 6'+

rPr=. ':c; y. 1 : : '::. + :c; y. '
3 rPr 4

3.25
rPr I 1 2 2 2 2 2 2

1.4142
rPr \ 1 2 2 2 2

1 1.5 1.4 1.'+1667 1.'+1379
rPr \ 3 7 15

3 3.14286 3.14151
tripte=. '3*y. 1 ::''

tripte i.S
0 3 6 9 12

3 tripte 6
domain error

tr=. '3•y.'::•
tr i. 5

0 3 6 9 12
3 5 7 tr i. 3

0 5 14

197

words=. /. tezt

words

1 0 2 3 { words

I singjt:iotjotatl

- " > 1 0 2 3 { words

lgnisliltojfatoJ

_1"< tezt

PROGRAMS: conditional Gb
p=. •$.=. 1+y.<0'
q=. 'Y· ",;21
r=. '''DOMAIN ERROR'' 1

conditional.=. (p;q;r)::••

conditional. -49
DOMAIN ERROR

conditiona"l. 49
7

tozero=.(p;•y.-1 1 ;'y.+1')::••

tozero 3
2

tozero _3
_2

tozero "0 {_2 _1 0 1 2 3)
_1 0 _1 0 1 2

Hui, Iverson, McDonnell, Whitney

PROGRAMS: iterative Ga
a=. 1 r=. 1 }: $.=. y. I 1 1

b=. 'r=. r * 1+ I $.•

factorial=. (a;b):: 11

factorial 5
120

factorial"O i. 6
1 1 2 6 24 120

> a;b
r=. 1 }: $.=. y. I 1
r=. r * 1+ 1 $.

a= . 1 r=. (0 , r) + (r, 0) '
binomials=. (a;c)::''
binomia~s '+

1 4 6 4 1
fib=.(a:•r=.r,+/{_2){.r 1):: 1 '

fib 10
1 1 2 3 5 8 13 21 34 55 89

d=. •r=. 1 }: $.=. :r:. fl 1'
e=. 'r=. (r*1+y.=.y.-1)%1+fl$.•
outof=. '•::(d;e)
3 outof 5

10

PROGRAMS: recursive Gf
{:a=.3 3$'abcdefghi'

abc
def
ghi

(t= . f-. "1 0 t= . i . & II) a
1 2
0 2
0 1

<"2 (mir~ors;..f { 1&}."1) a

1~{~~~~~~1
p=.•S.=. 1+1=fly.' }: r=.'O{,y.'
q;..'(0{"1 y.)- .. •$:"2 minors y.'

{ :b;.. ?3 3$9
1 6 4
4 1 0
6 6 8

(det=.(p;q;r)::' ') b
_112
s=.'(0{"1 y.)+ .. •$:"2 minors y.'

(permanent=.(p;s;r): :'') b
320

CONNECTIONS: arcs Ia

arcs=. ? 22 2 $ 8 8
8 {. arcs

1 6
3 4
1 0
5 5
7 3
4 6
0 0
4 5

\. n=.arcs{r~odes=. 'ABCDEFGH•
BDBFHEAEAAFHEFFGACGCHG
GEAFDGAFDDEGADHCFFHBFF

6{. bares=. <"1 n

15 {. ,arcs
1 6 3 4 1 0 5 5 7 3 4 6 0 0 4

APL\?

PROGRAMS: recursive Gd
a=. •$.=. 2-0=y. 1 ; '1'
b=. 'Y· * $: y.-1'
ractoria~=. (a,<b)::••
factoria~ 5

120

d=. '(r,O)+O,r=. $: y.-1'
binomiat=. (a,<d)::''
binomia~ 4

1 4 6 4 1

f=. 1 r,+/(_2}{.r=. $: y.-1'
fibonacci=. (a,<f)::''
fibonacci 10

1 1 2 3 5 8 13 21 34 55 89

g=. lj',:, 2-0::r;, I j 1 1 I

h=. •y.•:r:.~:r:.$:&<:y.'
outof=. '': :(g,<h)
outof"O\-i. 4

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

GEOMETRY: 2-space Ha
tength=. 'A:+/y.A2'::''
ter~gth 12 5

13
{: tri=. ? 2 3 $ 9

3 4 7
0 0 4

1 -. "1 tri
4 7 3
0 4 0

{:'Lsides=.ter~gth tri-1-."1
1 5 5.65685

{: semiper=. 2 ;-+/~sides
5.82843

area=. A:*lsemiper-O,'Lsides
area

2
tri,1

3 4 7
0 0 4
1 1 1

2 ; det tri,1
2

CONNECTIONS: cor1n. matri:r:

'01234567' {- \, arcs
1315740400574556026276
6405360533460372557155

b=. ' (i . , "":& • } e . '

tri

Ib

cmFarcs=. • ':: (b, 'y.+ •• •:r:. ,1')

em=. 8 amFarcs arcs
em

1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 0
0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 1
0 0 0 1 0 1 1 0

+/em
3 1 1 3 2 6 3 2

+/+/em
21

198

PROGRAMS: recursive Ge
a=;•$.=.1+0<r~=.:r:.-1'
b=, It !2{ •Y• I

c=.•(n$:0 2 1{y.),(1$:y.),'
hanoi=.••::(a;b;c,'n$:-.y.')

2 hanoi 'ABC'
AC
AIJ
CB

\. 4 hanoi 0 1 2
0 0 2 0 1 1 0 0 2 2 1 2 0 0 2
2 1 1 2 0 2 2 1 1 0 0 1 2 1 1

\. •ABC'{- 4 har~oi 0 1 2
AACABBAACCBCAAC
CBBCACCBBAABCBB

o=.•r=.OI$.=.y.l1+n=.O'
d=. •r=.r,{r~=.1+n) ,r'
h=.(c;d)::' 1

h 4
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

h 3
1 2 1 3 1 2 1

GEOMETRY: 3-space Hb
tri,1

3 4 7
0 0 4
1 1 1

2; det tri,1
2

2%- det 1 0 2 {"1 tri,1
_2

{: tetrahedron=. 0,"1 =\
0 1 0 0
0 0 1 0
0 0 0 1

vo'Lume=. det&(,&1) % !cU

vo~ume tetrahedrorl
_0.166667

{: tet=. ? 3 4 $ 9
6 0 3 0
3 6 5 8
7 4 0 5

volume t;et
11.5

i. 3

CONNECTIONS: fami'Ly Ic
em

1 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 0
0 0 0 1 1 1 0 1
0 0 1 0 0 1 0 1
0 0 0 1 0 1 1 0

points=. 1 0 0 0 0 0 0 1

points+ . .. *·em
1 0 0 1 0 1 1 0

poir~ta+.points+ . .. *.em
1 0 0 1 0 1 1 1

immtam= . ' ' : : ' :r: . + . z . + ... * . y. '
points immfam am

1 0 0 1 0 1 1 1
tam=.''::' immfam&y ... (fly.).:r.'
points tam am

1 1 1 1 1 1 1 1

APL90

CONNECTIONS: closure Id
{: cm2=. 0=78 8 S 5

1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0

points=. 1 o 0 o o 0 o 1
points tam cm2

1 0 1 1 0 0 1 1

cm2 tam cm2
1 0 0 0 0 0 0 0
0 0 1 0 0 0 :I. 0
0 0 0 0 0 0 :I. 0
1 0 0 0 0 0 0 0
10001100
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0

SYMBOLICS: reduction and scan Ka
o=. I (I } : c=. ') ' } : s=. '-I
minus=. '':: 'o,x. ,c,s,y.'
'a' minus 'b'

(a)-b
Z ist;= . 1 de[g'
minus I Zist

(d)-(e)-(f)-g
minus\Zist

d
(d)-e
(d)-(e)-f
(d)-(e)-(f)-g

d,e,f,g=.<:f=.<:e=.<:d=.4
4 3 2 1

" minus I list
2

" minus \ 1.is-t
4 1 3 2

times=. '':: 'o,x. ,c,' '*'' ,y.'
list times~O -. Zist

(d)*g
(e)*f
(f)*e
(g)*d

COMPOSITIONS: under (") Lc
+.\ a=. 0 0 1 0 1 1 0 0 0

0 0 1 1 1 1 1 1 1
+.\ - a

0 0 0 1 1 1 1 1 1
- +.\ -. a

1 1 1 1 1 1 0 0 0
+.\ " - a

1 1 1 1 1 1 0 0 0

I
b=. 1 2 3 4 }: c=. 3 4 5 6
b +&A. c

1.09861 2.07944 2.70805 3.17805
A b +&A. c

3 a 15 2'+
b +"A, c

3 a 15 2'+
{ :tezt=. 'i'; 'sing'; 'of'; 'o1.af'

H sing J ofJ oZatJ

-. "> tezt

APL QUOTE QUAD

CONNECTIONS: adjacency Ie
a=. o 0 0 0 1 1 :I. 1
b=. 0 0 1 1 0 0 :I. 1
c=. o 1 o 1 o :I. o :I.
Sd=. a,b,l:c

3 8
adj=. '1=y. + : \. Y•'::''
{. e=. adj \. d

0 1 1 0 1 0 0 0
1 0 0 1 0 :I. 0 0
1 0 0 1 0 0 1 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 1 0 0 1 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 :I. 0

e{ I *'
** *

* * *
* * *
** *

* **
* * *

* * *

* **
COMPOSITIONS: and (&) La

A&2 c=. 1+i.4
1 4 9 16

2&A c
2 4 B 16

pow=. A&2::A
pow c pow c

1.16 729 65536
c +&!'; c

2 1 0.666667 0.5
tr=. 3&*::*
db=. 2&*::*
c tr & db c

4 16 36 64
c db & tr c

9 36 81 144
C +&A, C

0 1.38629 2.19722 2.77259
A C +&A. C

1 4 9 16
db & tr \- c

9 18 27 36
18 36 54 72
27 54 81 108
36 72 108 144

COMPOSITIONS: fork
c(+ * -)d=.-.c=. i.

_9 _3 3 9
q=.+*-
c q '\ c

0 _1 _4 _9
1 0 _3 _8
4 3 0 _5
9 8 5 0

q c
0 _1 _4 _9

r=. -,+
c r d

_3 3
_1 3

1 3
3 3
db=. 2&*::*
tr=. 3&*::*
(db+tr} c

0 5 10 15
(db*tr) c

0 6 24 54
(db*db+tr) c

0 10 40 90

199

(f g h) Ld
4

g
I \

f h
/\ /\

z yz i:t'

g
I \

f h

somiNG Ja

t=.'i sing of olaf glad and big'
{: t;t=. > /. t

sing
of
olaf
glad
and
big

/: t;;t;
5 6 4 0 2 3 1

tt /: tt
and
big
glad
i
of
olaf
sing

COMPOSITIONS: atop (@) Lb
a :i- \ c=. 1+ i. 4

0 1 2 3
1 0 1 2
2 1 0 1
3 2 1 0

db=. 2&*: :*
tr=. 3&*:: *

db II tr \ ... c
2 4 6 a
4 8 12 16
6 12 1a 24
8 16 24 32

db & tr \ ... c
9 18 27 36

18 36 54 72
27 54 81 108
36 72 108 144

COMPOSITIONS:
a=.5 6 7 8

hook (g h) Le

b=.1 2 3 4
(*>:) b

2 6 12 20
a(*>:) b

10 18 28 40

a(*>:)\ b
10 15 20 25
12 18 24- 30
14- 21 28 35
16 24- 32 40

(+~)/ 1 2 2 2 2 2 2
1.4142

(+~)\ 1 2 2 2 2

g
I \

:& h

g
I \

11 h

1 1.5 1.4 1.41667 1.41379
(+%)\ 3 7 15

3 3.14-286 3.14151
(+:;)\ :I. 1 l l 1

1 2 1.5 1.66667 1.6
(-%)\ 1 2 2 2 2 2

\
y

\

l 0.5 0.333333 0.25 0.2 0.166667
* ... (+:;)/ 1 ' 12 s 1 2

3

Hui, Iverson, McDonnell, Whitney

FUNCTIONAL PROGRAMMING Ma
be=. Ocl, + ,ciO
be 1

1 1
be be 1

1 2 1
be be be 1

1 3 3 1
q=. •$.=.1,y.l2'
r=. 'f=. {:• ; 'f=. z.clf'
power=. 2::(q;r)
be power 3 (1)

1 3 3 1
be .• 3 (1)

1 3 3 1
e3=. (Ocl,+,ciO) •• 3
e3 1

1 3 3 1
2&* •• 3"0 i. 5

0 8 16 24 32
2cl+ •• 3"0 i. 5

6 7 8 9 10
g=. *""= :-
5 g g 4

_11

SETS: union, etc. Nc
(even=. 0&=&(2&:))a=. i. 16

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
prime=. 1 2=+ 1 O=y. : "-:1 +i . y. 1 : : 1 1 "o

prime a
0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0

(prime a) fl a
2 3 5 7 11 13

afl-(prime•.even)a
2

afl-(prime>even)a
3 5 7 1:1 13

tripZe=.0&=&(3&:>
q:. even+.triple
(q a) tl a

[SET INTER
SECTION]

[SET
DIFFERENCE]

[SET UNION]

0 2 3 4 6 8 9 10 12 14 15
r=. prime +. even *· triple
(r a) tl a

0 2 3 5 6 7 11 12 13

INVERSES AND DUALITY Pa
eFt=. 1 (y.-32) * 5~9 1 :: 11

tFc=. 1 32 + (y. * 9%5) 1 :: 11

de=. 40 -- 20 * i. 8
fFe de

_40 _4 32 68 104 140 176 212
eFt tFc de

_40 _20 0 20 40 60 80 100
~ ~ 1 2 3

1 2 3
log=. 1 10 A.y.•::''
invZog=. '10 "y.•::''
log y=. 24 4 75 7

1.38021 0.60206 1.87506 0.845098
+I log y

4.70243
invlog +/ Z.og y

50400

APL\?

SETS: propositions Na
{: a=. 2%...., i. 11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
(2&<: *· <ciS) a

0 0 0 0 1 1 1 1 1 1 0
((2cl<: *· <ciS) a) I a

2 2.5 3 3.5 4 4.5
((2cl<: *· <&5) I{:) a

2 2.5 3 3.5 4 4.5
({: 1- 2&<: *· <&5) a

2 2.5 3 3.5 4 4.5
int=. = <.
int a

1 0 1 0 1 0 1 0 1 0 1
((2&<: *· int) a) I a

2 3 '+ 5
({: 1- 2&<: *· int) a

2 3 4 5
(f- 2&<: *· int) a

2 3 4 5

FAMILIES OF FUNCTIONS Oa
z=.1 2 3 4 5 6 7
Zfl2

1 4 9 16 25 36 49
Zfl3

1 8 27 64 125 216 343
(4*:&"2) + (_3*zA3)

1 _8 _45 _128 _275 _504 _833

2 3 """' :&
1 4 9 16 25 36 49
1 8 27 64 125 216 343

4 _3 + .. *2 3 """\:&
1 _B _45 _128 _275 _504 _833

e=. 0 1 2 3 4
vandermonde=. e A-\ z
vandermonde

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 4 9 16 25 36 49
1 8 27 64 125 216 343
1 16 81 256 625 1296 2401

INVERSES AND DUALITY Pb
r=. 2 3 4 } : s=. 2 4 5

inv'Log (log r) + (logs)
4 12 20

r * 8
4 12 20

A (fl. r) + (A. B)
4 12 20

r +11 A. 8

4 12 20

r +"% s
1 1.71429 2.22222

~ {~r) + (%s)
1 1.71429 2.22222

+"~ I r
0.923077

% +I ~ r
0.923077

200

SETS: relations Nb
i=.i.B }: p=. 2 3 5 7 11
belongsto=. +.1"1 I ~=\)
i be'l.ongsto p

0 0 1 1 0 1 0 1
e=. be'l.ongsto
p 6 i

1 1 1 1 0
e=. -.lv=. e&•aeiou'
alph=. 'abedefghi$k'l.mno'
alph=. atph,'pqrstuvwzya'
(v alph)latph

aeiou
(tl- c) alph

bcdfghjklmnpqrstvw:ya

FAMILIES OF FUNCTIONS Ob
c=. 4 2 _3 2 1
vandermonde

1 1 1 1 1 1 1
1 2 3 4 5 6 7
1 4 9 16 25 36 49
1 8 27 64 125 216 343
1 16 81 256 625 1296 2401

e+ .. •vandermonde
6 28 118 348 814 1636 2958

po'l.y=. ••::•z.+ .• •\.y.fl\i.l:&. 1

e po'l.y z
6 28 118 348 814 1636 2958

INVERSES AND DUALITY Pe
f=. +cl3
g=. -&3

{::=.£.4
0 1 2 3

f:r:
3 4 5 6

!f z
6 24 120 720

g!f :r:
3 21 117 717

l"f :I;

3 21 117 717

!"(+&3) :r:
3 21 117 717

!'1(•&2) :r:
o.s 1 12 360

APL90

