APL \backslash ?

Roger K. W. Hui

Kenneth E. Iverson

E. E. McDonnell

Arthur T. Whitney

This paper describes a version of APL based upon the dictionary [1], but significantly simplified and enhanced, and directly usable on any machine that provides ASCП characters. It also describes salient features of a C implementation that has been tested on several machines, and is available as freeware. There have been four primary motivations for this work:

1. To provide an APL system for use in teaching mathematics and related topics that is modern, free, and transportable.
2. To devise a spelling scheme based on the ASCII alphabet that preserves the major advantages of the one-letter words based on the special alphabet commonly used in APL.
3. To exploit the advantages of breaking from the strict conformance with earlier APL that is normally obligatory in commercial systems.
4. To explore an unusual style of C programming that makes heavy use of pre-processing facilities.
Examples of the use of the language in a variety of topics are provided in an appendix.
We are indebted to a number of colleagues for advice and help: Anthony Howe, David Steinbrook, Bob Bernecky, Mark Czerwinski, L.J. Dickey, Jiri Dvorak, James Hui, Eric Iverson, Paul Jackson, and Roland Pesch.

A. ORTHOGRAPHY

At the time of the first implementation of APL, the then-new IBM Selectric typewriter with its changeable type element offered a welcome escape from the limitations of the existing printers, which provided only a few symbols beyond a one-case alphabel, punctuation, and the decimal digits. The Selectric was exploited by designing an alphabet that provided single-character spelling of all words in the language (except for the literal names used for variables).
This spelling scheme offered several advantages, due to the fact that the words were:

1. Mnemonic, using the shapes of symbols to suggest the functions denoted, as in up- and down-arrows for the functions take and drop.
2. Universal, in avoiding mnemonic devices rooted in particular natural languages.

[^0]3. Disjoint from the literals used in variable names, so as to a) avoid the introduction of reserved words, b) improve readability, and c) obviate required spaces around words, as in $a \mid b$ instead of $a \bmod b$.
However, special alphabets pose serious display problems, and it is desirable to have a spelling scheme based on a widely available computer alphabet. We have here attempted to design a spelling scheme based on the ASCII alphabet that retains the advantages cited above for the older spelling scheme.
Words are spelled with one character or with two, the last of which is a period or a colon; words are formed by scanning from right to left, each colon or period (not in a number) combining with the character to its left to form a word. Any number of spaces may be used between words, but spaces are not required, except that in a number, a space or zero must precede a decimal point that is not preceded by a digit or negative sign.
The spelling scheme is shown in the language summary of Table 1, a study of which should clarify the application of the following guides used in its design:

1. Adopt mathematical symbols (such as $+-<>$: ~) and symbols whose shape or usage somehow suggest the mathematical notions, as in the number sign \# for number of items (in an argument, or selected in replication), and De Morgan's use of \wedge for power [2].
2. Use single characters for other primitives whose use should become common, as in \& ; " - and \backslash for composition, upon and defer, link, rank and under, negative sign, and scan and outer product.
3. Use a dot or colon with a common mathematical character that suggests the function, as in < . and > . for min and max, and in $=$, and $=$: for local and global assignment.
4. Use a dot with a letter that suggests a mathematical symbol or definition, as in 0 , for the family of circular functions, in e. for membership (because epsilon is used for it in mathematics), in i. for integers, and in x. and y. for arguments (because of the analogous use of x and y in mathematics).
5. Use related strings for related functions, as in \wedge for exponential, \wedge. for its inverse (natural \log), and \wedge : for root and square root; in \#. for base value, and \#: for its inverse; in + and $*$ for plus and times, and + . and *. for or and and (their analogs in logic); and in e for a conjunction that permutes axes, and Θ. and Θ : for other permutations.
6. Adopl mnemonic aids such as the three cases of $\$$ (which suggests an S) for Shape, Sequence list, and Self-reference; and .. for the Dot or Inner product. This adoption of the double dot obviates the spaces previously needed around the dot in some cases.

Anyone who is familiar with earlier spelling of APL words, or who is using earlicr APL literature, may find it helpful to pronounce them in the traditional way, as in iota for i. .
The function /. cuts its list argument into words according to rules appropriate to an APL sentence. Thus, $/ 1+1 / 345$ $\star i .3$ ' yields the boxed list + and $/$ and 345 and $*$ and i. and 3.

= NubClassify : Equal	Is (Local)	Is (Global)
< Box: LessThan	Floor ; Minimum	Decrement ; LeOrEq
> Open ; GreaterThan . NegativeSign/lnfinity	Ceiling ; Maximum	Increment : GtOrEq
+ Conjugate : Plus	; GCD (Or)	; Nor
* Signum ; Times	; LCM (And)	; Nand
- Negate : Minus	Reverse; Rotate	; Match
\% Reciprocal ; Divide	MatrixInv : MDiv	
\wedge Exponential ; Power	NaturalLog : Log	SquareRool: Root
\$ ShapeOf ; Shape	SequenceList	SelfReference
\sim Both ; Cross	$\mathrm{Nol}(1-)$; Less	Nubsieve; NotEqual
\| Magnitude ; Residue		Custom
- NOT USABLE	Det ; DolProd	
: NOT LSABLE	Companion	Definition
, Ravel :Chainllems		Itemize : Laminate
; Table :Link (+Box)	BoxItems ; Link	
* Tally ; Copy	Base2 : Base	Antibase 2 : Antibase
E Alop-At	Dir-Cyc; Permute	AtomPermute
/ Insen: xWay Insen	Words	Gradel'p ; Son
\backslash Scan; OuterProduct	Transpose	GradeDown : Sort
\{ Catalog ; From	Nub: Take	Right (Dex)
$\}$ Merge	Raze ; Drop	Lefi (Lev)
" ConstCutRankL'nder	Execute; Execute	Format ; Format
\& Composition-With		
: Factorial ; OutOf		
3 Roll : Deal		
(Open Parenthesis		
) ClosePar-Label-Cmd		
a	Alphabet	
e	: Epsilon (Member)	
i	Integers; IndexOf	
0	PiTimes: Circular	
x	First Argument	
y	Last Argument	
E	; MemberOflnterval	
X	Extemal (Foreign)	

Table 1: LANGUAGE SUMMARY

B. MAJOR CELLS, REPLICATE, RESHAPE, and OLTER PRODLCT

Because of the importance of major cells, we will adopt the terms item and atom for the major cells and the scalars. We will also adopt the symbol \# for the item count, or tally; $n b$ is 1 if b is an atom, and is otherwise equal to $0\{\$ \mathrm{~b}$.
The dyadic case $n \| b$ is similar to the replicate function previously provided (for historical reasons) by the derived function $n /$; the successive atoms of n specify the number of repeutions of successive items of b to be selected. The reshape ($\$$) is also redefined to apply to items rather than atoms; the old behaviour is obtained by ravelling the right argument.
Catenation of the items of A and B by the expression A comma-bar B is more useful than the catenation of 1-cells provided by the
comma; in particular, the catenation of 1 -cells can be provided by comma-bar of rank 1. Consequently, we will use the comma for catenation of items (that is, catenation along the leading axis), and drop the symbol comma-bar. For similar reasons, the $/$ and $\$ will be adopted for the meanings that were assigned to /-bar and \backslash-bar, and the latter pair of symbols will be dropped.
The table function (previously provided by the monadic case of the comma-bar) will be provided by the semi-colon, its dyadic use being assigned to the link function. Thus, $a ; b$ is defined by $(<a), b$, with the right argument b automatically boxed if it is open.
The expression jot.f for outer product uses (for historical reasons) a conjunction where an adverb would serve. We will adopt the dyadic case of $f \backslash$ for this purpose, and the jot and the notation jot.f will be dropped.

C. USER-DEFRNED VERBS, ADVERBS and CONJLNCTIONS

The conjunction denoted in the dictionary by the inverted Greek Delta will be denoted by the double colon, and the right-arrow and $\$$ used to denote the sequence control and self-reference will be replaced by $\$$. and $\$:$. The forms $m:: a$ and $1:: a$ and $2:: a$ will be otherwise adopted.
As in the dictionary, assignment provides dynamic localization; for example, the first execution of $a=. g a$ in a function f applies g to the global value of a, but produces a local copy. Unlike the dictionary definition, the localization is strict, so that a local copy is not available to user-defined functions that are invoked in f. Global assignment is provided by the copula $=$:
Strict localization provides significant advantages over the heritable localization of earlier APL, and is now practicable because of the ease of passing parameters in boxed arguments. Direct definitions are easily provided by a simple cover function employing the forms $m:$ ' ' $^{\prime}$ and ' ': $: d$.

D. FROM, IOTA, and BASE

The monadic case of i. is defined like monadic iota, but extended to list arguments as follows: $i . s$ is $(\mid s) \$+\backslash 0,(* / \mid s) \$ 1$, but reversed along each axis for which the corresponding element of \boldsymbol{s} is negative; the result for an empty argument is the scalar 0 . For example:

$$
\begin{aligned}
& \text { i. } 23 \text { i. } 2 \text { _3 i. } 11 \text { i. _ } 4 \\
& \begin{array}{lllllll}
0 & 1 & 2 & 2 & 1 & 0 & 0
\end{array} \quad 3210 \\
& 345 \quad 543
\end{aligned}
$$

A new monadic case of base-value is defined as the base-2 value; that is, \#. v is equivalent to $2 \# . v$. An infinite rank monadic case of anti-base is defined as $(n \$ 2) *: a$, where n is the maximum of the minimum lengths required to represent the (integer) atoms of a.

E. PERMLTATIONS

The words \. and -. will be used for transposition and for leading-axis reverse and rotate, the lines in the spelling indicating the axes involved, as they did in the old symbols for these functions. Other permutations (modelled upon, and replacing, those in the dictionary called cycle, mix, and mix index) will be represented by e. and e: .

Standard Direct and Cycle Representations. If p is a permutation of the atoms of i. n, then p is said to be a permutation vector of order n, and if $n=\# b$, then $p\{b$ is a permutation of the items of b.
The expression @.p yields a list of boxed lists of the atoms of i. \#p called the standard cycle representation of p. If (as in the example in the dictionary) $p=.452103$, then $@ \cdot p$ yields
$2 ; 40 ; 531$ because the permutation p moves to position 2 the item 2, to 4 the item 0 , to 0 the item 4 , to 5 the item 3, to 3 the item 1 , and to 1 the item 5 . The monad Θ. is self-inverse; when applied to a standard cycle representation it produces the corresponding direct representation.
A given permutation could be represented by cycles in a variety of ways, and the standard form is made unique by the following restrictions:

The cycles are disjoint and exhaustive (that is, the atoms of the boxed elements together form a permutation vector); each boxed cycle begins with its largest element (possible because any rotation of a single cycle represents the same permutation); and the boxed cycles are arranged in ascending order on their leading elements (possible because the cycles are disjoint).
Non-Standard Representations. If d and c are direct and cycle representations of order $\# b$, then $a a . b$ and $c a . b$ produce the corresponding permutations of the items of b. More generally, since the item count of b determines the order of the permutation, the arguments d and c may be non-standard in ways to be defined. In particular, elements belonging to ($i .2 \star \# b)-\# b$ are permitued, and are treated as their residues modulo " b.
If q is not boxed, and if the elements of (\#b) $\mid q$ are distinct, then $q^{a} . b$ is equivalent to $d e . b$, where d is the standard form of a given by $\alpha=.((i, n) \sim . n \mid q), n \mid q$, where n is \#b. In other words, positions occurring in q are moved to the tail end.
If q is boxed, then the elements of (\#b) $\mid>j\{q$ must be distinct for each j, and the boxes are applied in succession. For example, (2 1;3 0 1) @.i.5 is equivalent to (<2 1) e. (<3 0 1) @. i. 5 , and the result of either is the standard direct permutation $12 \begin{array}{llll}2 & 0 & 4 .\end{array}$

Atomic Representation. If T is the table of all $: n$ permutations of order n arranged in lexical order (that is, $/: T$ is $i .: \# T$), then k is said to be the atomic representation of the permutation $k\{T$. Moreover, $k @: b$ permutes items of b by the permutation of order \#b whose atomic representation is ($: \| b) \mid k$. For example, 1e:b transposes the last two items of b, and $_1 e: b$ reverses the items, and $3 a: b$ and $4 a: b$ rotate the last three items of b. Finally, ($i ., n$) $: i . n$ produces the ordered table of all permutations of order n, as does the fork[3] used in the expression ($i .8: @: i$.) n.

The transformation between direct and cycle representations provided by the monad @. is extended to non-negative non-standard cases by treating any argument q as a representation of a permutation of order $1+>. /\} . q$. Similarly, the monad $@$: applied to any cycle or direct permutation yields its atomic representation. For example, e:0 321 is 5 , as are a:3 21 and $e: 0 ; 2 ; 3$ 1 and $@:<31$.

F. TRANSPOSITIONS and SECTIONS

The symbol \& will replace the hoof, with the noun cases of the conjunction (Defer and Prefer) modified so that ven defers axes n of the right argument before applying v, and $n e v$ defers axes of the left. Consequently, the expression a n0@v@n1 b defers axes of both arguments before applying v. The monadic cases of $v @ n$ and $n @ v$ are identical.
If the number of elements of n equals the rank of v, then $v @ n$ applies v to the cells selected by the axes specified by the atoms of v, and $v e n$ can therefore be said to apply v al n, as suggested by the name of the symbol $@$.
Because $\{:$ is an identity function, transposition alone can be obtained by using $\{: @ n$.
A boxed argument n provides sectioning, grouping the axes specified by a single box into a single result axis. For example, if b
has the shape i. 6 and $n=.2 ; 41 ; 0$, then the shape of $\{: @ n$ b is 35210 .

G. FORMAT

The dyadic case of format ($\mathrm{n}:$) is defined with both ranks 1, and with each element e of the left argument controlling the representation of the corresponding element of the right argument as follows:
$\omega=.<. \mid e$ specifies the total width allocated; if this space is inadequate, the entire space is filled with asterisks.
$d=.<.10 \star(\mid e)-w$ specifies the number of digits following the decimal point (which is itself included only if d is not zero.)
Any negative sign is placed just before the leading digit.
If $e>: 0$, the result is right-justified in the space ω
If $e<0$, the result is put in exponential form (with one digit before the decimal point) and is left-justified except for two fixed spaces reserved on the left (including the one for a possible negative sign)
The monadic rank of ": is infinite, and the result is equivalent to the application of the dyadic definition with a left argument chosen to provide a minimum of one space between columns. Default output is equivalent to the use of the monadic case.

H. EXTERNAL COMMUNICATION

Communication with the keyboard, screen, and operating system files is provided by the conjunction X., whose many arguments provide considerable flexibility.

1. SOME IMPLICATIONS FOR TEACHING

The mere introduction of lists, scan, and outer product allows a wealth of interesting explorations, as in $+\backslash a=.012 \begin{array}{llll}0 & 1 & 4 & 5\end{array}$ for the triangular numbers, in $+\backslash 1+a+a$ to see that the odd numbers sum to squares, and in various outer products such as $a+\backslash a$ and $a \star \backslash a$ to see addition, multiplication, remainder, divisibility and other tables, including the binomial coefficients (Pascal's Triangle) provided by a! \a.
Lists are easily explained as the use of collective nouns, and the scan is easily explained as an adverb. Unfortunately, the simple and important notion of a function table required, in traditional APL, not just a further use of an adverb, but the use of a conjunction whose first argument could only be explained as an historical anomaly. The present use of an adverb for outer product avoids this difficulty.
Expressions such as $p r=.+\%$ provide a simple introduction of the notion of function definition (and of the hook[3]), and expressions such as $p r \backslash 1222222$ and $p r \backslash 37151$ show interesting uses of such a defined function in producing successive approximations to interesting quantitites.
Expressions such as sum=. $+/$ and sqrt $=. \wedge \& 0.5$ and $20 g=$. 108A. and neq=. $\sim . E=$ provide simple and interesting uses of adverbs and conjunctions. Moreover, the general form of definition provided by the : : conjunction permits a simple introduction to the use of iteration and recursion.
The generally useful notions of classification can be introduced by using the outer product $a<: ~ \bigvee o$ in expressions for producing barcharts and graphs, and can be explored further using the expression \#: $i .2 \wedge n$ to produce the complete classification table of order n. Thus if $C C T=. \#: i .2 \wedge \# v=.235$, then $v+\ldots \star C C T$ and $v \star \ldots \wedge C C T$ produce the sums and products over all subsets of v.
In a more specialized area, the functions @. and a : provide powerful facilities for the discussion of permutations. Thus,
($i, 14$) e: $i .4$ displays a complete table of permutations, and an expression such as \&. 43012 can provide an introduction to cycles and to the use of the LCM (*.) of their lengths to determine the power of a permutation. For examples in further topics, see the appendix.

J. THE C IMPLEMENTATION

The system is implemented in C , because it is an adequate language available on a wide variety of machines. The implementation is guided by two principles: clarity, and exploitation of underlying facilities. Efficiency is not a main objective.
Clarity does not mean the micro (and relatively insignificant) clarity of individual C statements, but the macro clarity of being close to the APL or mathematical definitions. The C code is written to be understandable by an APL-knowledgeable reader.
Facilities already available in the environment are exploited: for memory management, the C library functions malloc() and free () are used, the underlying virtual memory facilities being presumed to be adequate; for session management, the system reads from standard input and writes to standard output. This, together with the ASCII spelling, makes it possible to use any of several widely-available session managers, such as EMACS or SunView/OpenLook.
Organization. The system is organized along the lines suggested by the dictionary, in particular, by the parser [1, p. 38]. The parsing rules are expressed in C as follows:

$1:$
A sentence to be parsed is placed on a left stack, and as execution proceeds words are moved from the tail of the left stack to the front of a right stack. When the first four words of the right stack match a pattern (columns 0 to 3 of the table), the comesponding action (4) is triggered and applied to the indicated words (5,6), with the result replacing these words.
Data Structures. The fundamental data structure is the APL array, that is, the \mathbf{C} structure:

[^1]All objects, whether numeric, literal, or boxed, whether noun, verb, adverb, conjunction, or punctuation, are represented by this structure. Most C functions in the system accept APL arrays as arguments and return them as results.
Definitions and macros. Extensive use is made of C preprocessor definitions and macros; to augment the expressive power of C, to enforce uniformity, and to increase readability. Example: An "APL function" is a function which accepts one or two APL array arguments, and returns an APL array result. The macros F1 and F2 encapsulate this convention:

```
Udefine F (f) \(\boldsymbol{A} \mathrm{f}(\mathrm{w}, \mathrm{self}) \mathrm{A} \mathrm{w}, \mathrm{self}\);
```


(self is a pointer to function parts - rank, inverse, etc.)
A compact but readable programming style results from using such definitions. The implementation of,:y (itemize) and $x_{1}: \mathbf{y}$ (laminate) are cases in point:
Itemize: , :y adds a single unit axis to y, making the shape $1, \$ y$.

```
rl(laminj) (R reshape (over(one, shape(w)),ravel(w));)
```

Laminate: If the shapes of x and y are equal, then x, y is defined by $(,: x),(,: y)$. If one is an atom a, it is first replaced by $s\{a$, where a is the shape of the other.

```
F2(damin2) {R over (a,reshape (over (one, shape (AR (w) ?w:a))
    ,ravel(w))\;}
```

Statistics. Analysis of the C implementation as it stands on 1990 222 yields the following statistics. (Header files and variables without functions are excluded.)

C Fns	240	Lines	1345
Lines	1345	+/ Line lengths	44722
Average lines/fn	5.6	Average chars/line	33.3
Min	1	Min	1
Max	40	Max	89
Median	1	Median	32
One-liners	125	One-character lines	91

181 of the 240 functions are APL functions.
Therefore, the implementation consists of a large number of short functions, having short lines, with a well-defined uniform interface. These are characteristic of an APL programming style.

REFERENCES

1. Iverson, K.E., A Dictionary of APL, APL Quote-Quad, Volume 18, Number 1. September 1987, pp 5-40.
2. Cajori, Florian, A History of Mathematical Notations, The Open Court Publishing Co., 1928, Volume I, Paragraph 313.
3. McDonnell, E.E., and K.E. Iverson, Phrasal Forms, APL Quote. Quad, Volume 19, Number 4, August 1989, pp 197-199.

APPENDIX

The forty-five frames in the following appendix show examples of use of the system in a variety of topics. All were actually executed on the system in March 1990.

PROCRAMS: iterative Gc $a=. \quad r=1$ \}: \$.=. y; 1' $b=. \quad r=, r * 1+$. $s . ;$ factorial=. $(a ; b)::{ }^{\prime}$ factorial 5 120 factorial"0 i. 6 112624120 $>a ; b$ r=. 1 \}: \$.=. \boldsymbol{y}. 1 $r=. r$ * $1+\$$. $c=. \quad r=.(0, r)+(r, 0)$ ' binomials=. $(a ; c): ;$ binomials 4 14641 fib=.(a;'r=.r,+/(_2)\{.r')::'' fib 10 1123581321345589 a=. 'r=. 1): $\$=$. x. 1' $e=. \quad r=.(r * 1+y .=\cdot y,-1) \pi 1+\# \$.1$ outof=. ' $::(d ; e)$ 3 outof 5 10	PROGRAMS: recursive Gd $a=$. 's.=. 2-0=y.' ; ' 1 ' $b=. \quad ' \forall . \star \$: \psi \cdot-1$ ' factorial $=(a,<b):: 1$ factorial 5 120 $d=. \quad(r, 0)+0, r=. s: y \cdot-1 \prime$ binomial=. ($a,<d$): :" binomial 4 14641 $f={ }^{\prime} r,+/\left(_2\right)(. r=, 5: y \cdot-1 \prime$ fibonacci=. $(a,<f):: "$ fibonacci 10 1123581321345589	PROGRAMS: recursive Ge 2 hanoi 'ABC' $A C$ $A B$ $C B$ \. 4 hanoi 012 $\begin{array}{lllllllllllllll} 0 & 0 & 2 & 0 & 1 & 1 & 0 & 0 & 2 & 2 & 1 & 2 & 0 & 0 & 2 \\ 2 & 1 & 1 & 2 & 0 & 2 & 2 & 1 & 1 & 0 & 0 & 1 & 2 & 1 & 1 \end{array}$ \. ' $A B C$ '\{~ 4 hanoi 012 AACABBAACCBCAAC CBBCACCBBAABCBB	
PROGRAMS: recursive of \{:a=. 3 3\$'abcdefghi'	GEOMETRY: 2-space Ha length $=$.	GEOMETRY: 3-space Hb	
$a b c$	length 125	347	
def		004	
$g_{(f=. f \sim . " 10 f=. i .8 H) a}$		1 $11 \begin{aligned} & 1 \\ & 2 \% \sim \\ & \text { det tri, } \\ & \end{aligned}$	
12	004		
02	$1-.11$ tri	2\%~ det $102\{11$ tri,1	
	$\begin{array}{lll} 4 & 7 & 3 \\ 0 & 4 & 0 \end{array}$	$ـ_{2}^{2}$ \{: tetrahedron=. $0,11=\backslash \sim i .3$	
$e f$ $b c$ $b c$		$\begin{array}{lllll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}$	
$n i$ $h i$ $e f$	\{: semiper $=$. 2 \% +/2sides	0001	
$\begin{aligned} & p=. S==1+1=\\| z .1\}: r=.10\{, y . ', \\ & q=.(0\{11 y .)-. * 5: 12 \text { minors } y . \end{aligned}$	area=. $1: * /$ semiper-0, 2 sides	voirme=. detal.81) \% !dy	
		volume tetrahedron	
164	tri,1	_0.166667	
41	347		
668	004	\{: tet=. 734 \$ 9	
(det=.(p;q; r): :'') b	111	$\begin{array}{lllll}6 & 0 & 3 & 0 \\ 3 & 6 & 5 & 8\end{array}$	
$\begin{aligned} & \bar{s}={ }_{(1)}^{\prime}(0\{11 甘)+\ldots * \$: n 2 \text { minors } y . ' \\ & 320 \end{aligned}$	$2^{2 \pi \sim \operatorname{det} t r i, 1}$	$\begin{aligned} & 740.5 \\ & \text { volume tet } \\ & 11.5 \end{aligned}$	
CONNECTIONS: arcs Ia	CONNECTIONS: conn. matrix Ib	CONNECTIONS: family Ic	
arcs=. ? $222 \$ 8 \mathrm{~B}$	'01234567, \{~ ${ }^{\text {, }}$, arcs	$\begin{array}{lllllllll}1 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$	
8 \{. arcs	1315740400574556026276	10000010	
16	6405360533460372557155	01000100	
34	$b=.(i ., \sim x) e .$.	00000010000	
10	cmFarcs=. '': ${ }^{(b, ' y .+\ldots * x ., 1 ') ~}$	1000000110	
55		00001111	
$\begin{array}{ll}7 & 3 \\ 4 & \end{array}$	cm=. B cmFares arcs	0010100101	
46	cm	00010110	
0	11000100100		
45	$\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0\end{array}$	points=. 10000001	
\. $n=. \operatorname{arcs}$ (nodes=. 'ABCDEFGH'	0000010000	points +. .. *. cm	
BDBEHEAEAAFHEFFGACGCHG	10000010	10010110	
GEAFDGAFDDEGADHCFFHBFF	$\begin{array}{llllllllll}0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}$	points+.points+. .. *.cm	
6\{. barcs=. <"1 n	00010110	10010111	
$B G$ $D E$ $B A$ $F F$ $H D$ $E G$	$\begin{array}{llllll} & +/ c m \\ 3 & 1 & 1 & 3 & 2 & 6 \end{array}$	immfam=. ''::'x.+.x.+...*.y.' points immfam cm	
	21	10010111 fam=.' ': :'immfam\&y...(Hy.)x.' points fam cm 111111111	

CONNECIIONS: elosure Id \{: cm2=. $0=78$ \& 5	CONNECTIONS: adjacency Ie $a=.0000011111$	SORTING Ja
10000000	$b=.0010100011$	$t=.1 i$ sing of ozaf glad and big'
001000010	$c=001010101$	\{: tt=. > /.t
00000000010	\$ $a=, a, b,: 10$	
10000000	38	sing
1000001100		of
00000000000	\{.e=. adj \. ${ }^{\text {d }}$	olaf
00000000	011101000	glad
00110010	$1 \begin{array}{llllllll}1 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$	and
	$1 \begin{array}{lllllllll}1 & 0 & 0 & 1 & 0 & 0 & 1 & 0\end{array}$	big
points=. 100000001	$\begin{array}{lllllllll}0 & 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}$	
points fam cm2	100000110	1: tt
101110011	0100010001	5640231
	00010010001	
cm2 fam cm2	000010110	$t t /: ~ t t$
10000000	ef' ${ }^{\prime}$ '	and
0001000010	** *	big
00000000010	* * *	grad
10000000	* * *	
1000000111000	** *	of
00000000000	* \quad *	olaf
00000000000	* * *	sing
10110010	$\star \star \quad \star$	
```SYMBOLICS: reduction and scan Ka o=.'(' }: c=.')' }: s=.'-' minus=. ''::'o,x.,c,s,y.' 'a' minus 'b' (a)-b```	COMPOSITIONS: and (8) La	COMPOSIIIONS: atop (@) Lb
	$\wedge \& 2 c=.1+i .4$	c ie- $10=1+2.4$
	14916	0123
	2\& ${ }^{\text {c }}$	10012
	24816	2101
(a)-blist=.'defg'minus / iist	pow=. ^12: $\wedge$ ^	3210
	pow $a$ pow $c$	
(d) $-(e)-(f)-g$minus ${ }^{\text {dist }}$	1. 1672965536	db=. 28*: : *
	c + $8 \%$ c	$t r=$. 3\&*:
	210.6666670 .5	
(a) -e	tr=. 38*: ${ }_{\text {* }}$	$a b$ tr $\ \sim c$
(d) $-(e)-f$	db=. 28*: : *	2468
(d) $-(e)-(f)-g$	ctr \& abc	$\begin{array}{lllll}4 & 8 & 12 & 16\end{array}$
d, e, $f, g=.<: f=.<: e=.<: d=.4$	4163664	$\begin{array}{llll}6 & 121824\end{array}$
4321	$c^{c} d b$ \& tr c	8 162432
	93681144	$d b \& t r \backslash \sim c$
2 ". minus $\backslash$ list	c $+8 \wedge . c$	$\begin{array}{llll}9 & 18 & 27 & 36\end{array}$
	01.386292 .197222 .77259	$\begin{array}{llll}18 & 36 & 54 & 72\end{array}$
	$\wedge c+8 \wedge$. $c$	$\begin{array}{llll}27 & 54 & 81 & 108\end{array}$
	14916	$\begin{array}{llll}36 & 72 & 108144\end{array}$
	$d b \& t r \backslash \sim c$	
(d) $* g$	$\begin{array}{llll}9 & 18 & 27 & 36\end{array}$	
(e) $\star f$	$\begin{array}{llll}18 & 36 & 54 & 72\end{array}$	
$(f) \star e$$(g) \star a$	$\begin{array}{lllll}27 & 54 & 81 & 108\end{array}$	
	3672108144	
COMPOSITIONS: under (") Lc $+. \ a=001011000$	COMPOSITIONS: fork (f g h) Ld $c(+$ * -) $d=.-. c=$. i. 4	COMPOSITIONS: hook (g h) Le $a=.5678$
$\begin{array}{lllllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ + & . & -1 & a & & \end{array}$	-9_3 398	$b=.1234$
	$q=.+$ - $/$	( *>: ) b /
$\begin{array}{ccccccccc}0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	$c 9 \backslash c \quad f \quad h$	
	$0-1-4-9 \sim N$	$a(\star>:) b$ 人
	$10^{1} 0-3-8 \quad x \quad y x y$	10182840 y
	$\begin{array}{llll}4 & 3 & 0 & -5\end{array}$	
111111000	98850	$a\left(*>\right.$ ) ${ }^{\text {a }}$, /
$\left.\begin{array}{l}b=12^{2} 2^{3} 4 \\ b+8 \wedge . c\end{array}\right\}: c=0456$	90	$10152025 \quad y \quad n$
	0 _1 _4 _9 f $\quad$ h	12182430
1.098612 .079442 .708053 .17805$\wedge p+8 \wedge . c$	$r=,-+\quad i \quad i$	$14212835 \quad y$
	$c r d y b$	16243240
$\begin{array}{llll}3 & 8 & 15 & 24\end{array}$	-3 3 -	$(+\%) / 122222$
	$-13$	1.4142
	13	(+\%) 122222
\{itext=,'i';'sing';'of';'olaf'	33	11.51 .41 .416671 .41379
	db=. 28*: ${ }_{\text {ck }}$	( + (\%) 3715
i $\operatorname{sing}$ of olaf	$t r=.38 \star:: *$ $(d b+t r) c$	$\begin{array}{lllll} 3 & 3.14286 & 3.14151 \\ (+\%) & 1 & 1 & 1 & 1 \end{array}$
-."> text	051015	121.51 .666671 .6
	( $3 b \star t r$ ) $c$	(-\%) 122222
$i$ gris fo fazo	062454	$1 \begin{array}{lllllllll}1 & 0.5 & 0.333333 & 0.25 & 0.2 & 0.166667\end{array}$
	$\begin{aligned} & (d b \star d b+t r) c \\ & 0104090 \end{aligned}$	$3^{\star \sim(+\%) / 1,12 \$ 12}$


FUNCTIONAL PROGRAMMING Ma   bc＝．08，＋， 80   bc 1   11   bc bc 1   121   bc be bc 1   1331   q＝．＇$\$ .=.1, y \cdot \#^{\prime}{ }^{\prime}$   r＝．＇f＝．\｛：＇；＇f＝．x．df＇   power＝．2：：（ $q ; r$ ）   bc power 3 （1）   $1 \begin{array}{lll}1 & 3 & 3\end{array}$   bc．． 3 （1）   1331   $c 3=.(01,+, 10) \ldots 3$   c3 1   1331   28＊．．．3＂0 i． 5   08162432   28＋．．．3＂0 i． 5   678910   g＝．＊～：：－   ${ }_{5}$ g g 4   ＿11	SETS：propositions Na ```{: a=. 2%~ i. 11 0 0.511.522.5 3 3.544.5 5 (2&<: *. <$5) a 0000111111110 ((2&<: *. <d5) a) a 2 2.5 3 3.5 4 4.5 ((28<: *, <85) {:) a 2 2.5 3 3.54 4.5 ({: %~ 2&<: *. <&5) a 2 2.5 3 3.544.5 int=. = <. int a 10101010101 ((2b<: *. int) a) a 2 345 ({: #~ 2&<: *. int) a 2345 (#~ 2&<: *. int) a 2345```	```SETS: relations Nb i=.i.8 }: p=. 2 3 5 7 11 belongsto=. +./"1 ( (=\) i belongsto p 00110101 e=. belongsto pei 11110 c=. ~.थv=. es'aeiou' alph=. 'abcdefghijklmno' alph=, alph,'pqretuvwsyz' (v alph)#alph aeiou (#~ c) alph bcdfghjklmnpqrstvwxyz```
```SETS：union，etc．Ne （even＝． \(0 \&=\&(2 \& i)) a=\) ．i． 16 \\ 1010101010101010 prime＝．＇2＝＋／0＝y．i～1＋i．y．＇：：＇1＂0 prime a \\ 0011010100010100 （prime a）a \\ 23571113 \\ a＊～（prime＊．even）a［SET INTER－ \\ 2 \\ SECTION］ \\ a＊～（prime＞even）a \\ ［SET \\ 3571113 \\ DIFFERENCE］ \\ tripie \(=.08=1(38 i)\) \\ \(q=\) ．event．triple［SET UNION］ \\ （ \(a\) a）＂a \\ 023468910121415 \\ r＝．prime＋．even＊．triple \\ （ \(r\) a）\＃a \\ 023567111213```	FAMILIES OF FUNCTIONS Oa $x=.1234567$   ェ＾2   14916253649   ェ＾3   182764125216343   （4＊x＾＾2）＋（＿3＊x＾3）   1 ＿ 8 ＿ 45 ＿ 128 ＿ 275 ＿ 504 ＿ 833   e＝． 01234   vandermonde $=$ ，e＾～$x$ vandermonde $\begin{array}{rrrrrrr} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 4 & 9 & 16 & 25 & 36 & 49 \\ 1 & 8 & 27 & 64 & 125 & 216 & 343 \\ 1 & 16 & 81 & 256 & 625 & 1296 & 2401 \end{array}$	FAMIEIES OF FUNCTIONS Ob $c=.42$＿3 21 vandermonde   c＋．．．＊vandermonde   $\begin{array}{llllll}6 & 28 & 118 & 348 & 814 & 1636\end{array} 2958$   pozz＝．＇＇：：＇x．＋．．＊   c pozy $x$   $\begin{array}{llllllll}6 & 28 & 118 & 348 & 814 & 1636 & 2958\end{array}$
INVERSES AND DUALITY Pa CFf＝．＇（y．－32）＊5\％9＇：：＇＇ fFc＝．＇32＋（y．＊9\％5）＇：：＇＇ dc＝． $40 \sim 20$＊i ． 8 fFc dc ＿40＿－43268104 140175212 $c \overline{F f} f F c d c$ － 40 －20 020406080100 \％$\overline{7} 123$ 123 log＝．＇10 A．女．＇：：＇＇ invzog＝．＇10＾甘．＇：：＇＇ log $y=.244757$ 1.380210 .602061 .875060 .845098 $+/ 70 g y$ 4.70243 invlog＋／ $\log y$ 50400	INVERSES AND DUALITY Pb	INVERSES AND DUALITY PC $\begin{aligned} & f=.+\$ 3 \\ & g=,-\$ 3 \\ & \{: x=, i, 4 \end{aligned}$ 0123 $\begin{array}{ll}f x \\ & f \\ 4 & x\end{array}$ g！fx 321117717 ：＂（＋83）x 321117717 $\begin{gathered} !"(* \& 2) x \\ 0.5122360 \end{gathered}$

[^0]: Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

 - 1990 ACM 089791-371-x/90/0008/0192...\$1.50

[^1]: typedef long $I_{\text {; }}$

 t lype
 c reference count
 n number of atoms in the ravelled array
 x rank

 - shape list
 v atoms of the ravelled array (immediately following a)

