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Abstract 

This paper describes a new technique that efficiently 
combines volume rendering and scanline a-buffer tech- 
niques. This technique is useful for combining all 
types of volume-rendered objects with scanline ren- 
dered objects and is especially useful for rendering 
scenes containing gaseous phenomena such as clouds, 
fog, and smoke. The rendering and animation of these 
phenomena has been a difficult problem in computer 
graphics. 

A new algorithm for realistically modeling and an- 
imating gaseous phenomena is presented, providing 
true three-dimensional volumes of  gas. The gases 
are modeled using turbulent flow based solid textur- 
ing to define their geometry and are animated based 
on turbulent flow simulations. A low albedo illu- 
mination model is used that takes into consideration 
self-shadowing of the volumes. 

CR Categories and  Subject  Description 1.3.3 [Computer 
Graphics]: Picture/Image Generation - Display Algorithms; 1.3.7 
[Computer Graphics]: Three-Dimensional Graphics and Realism. 
Additional Keywords:  volume rendering, a-buffer, gaseous phe- 
nomena, clouds, fog, solid texturing. 

INTRODUCTION 

The rendering of scenes containing clouds, fog, atmospheric dis- 
persion effects, and other gaseous phenomena has received much 
attention in the computer graphics literature. Several papers deal 
mainly with atmospheric dispersion effects [20, 15, 18], while 
many cover the illumination of these gaseous phenomena in de- 
tail [1, 9, 14, 11]. Most authors have used a low albedo reflection 
model, while a few, Blinn [1], Kajiya [9], and Rushmeier [18], 
discuss the implementation of  a high albedo model. 

A major shortcoming of  previous efforts in rendering scenes 
containing gaseous phenomena is that they have required that the 
same rendering techniques be used for all elements in the scene. 
This has made animations containing gaseous phenomena very 
computationally expensive and severely limited their usefulness. 
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Kajiya requires that everything be raytraced, which makes the ren- 
dering of  other objects in the scene very slow [9]. The approach of 
Rushmeier requires a radiosity solution of  the scene which yields 
a very accurate illumination model, but at a high computational 
cost [181. 

Most volume rendering systems also require that everything 
in the scene be volume rendered. Kaufman [10] allows the com- 
bination of surface geometry-defined objects with volume defined 
objects, but requires that the surface geometry-defined objects be 
converted to volumes before rendering, which is very inefficient. 
Levoy has used a similar approach to combine polygonal and 
volume data [12]. One volume rendering system that does not 
require that everything be volume rendered is described in [13]. 
This system uses raytracing for polygonal data. 

One solution to these problems is image compositing of scenes 
[3]. This solution would take volume-rendered objects and nor- 
mally-rendered objects and combine them in a post-process. How- 
ever, this is a limited solution, with only a few cases resulting in an 
accurate image. When compositing the sub-images, the volume- 
rendered image cannot cast shadows on the objects in the other 
scene. Also, compositing of an image containing semi-transparent 
volume-rendered objects with another image can only provide sat- 
isfactory results when the volume rendered object in the first image 
is totally in front of  or behind the objects in the other image. For 
example, compositing of volume-rendered fog with a street scene 
is not possible. This suggests that to get accurate images of scenes 
containing gaseous phenomena, image composifing techniques are 
not a suitable solution. 

The technique described in this paper solves these problems 
by allowing a fast scanline a-buffer technique to be used to ren- 
der objects described by surface geometries, while volume mod- 
eled objects are volume rendered. This technique even allows the 
volume modeled objects to accurately cast shadows on the other 
objects in the scene. 

Another issue is modeling the geometry of these gases. Some 
authors use a constant density medium [11, 15], but do allow 
different layers of  constant densities. To model the geometry of 
clouds, Kajiya uses a physically-based model [9], Gardner uses 
hollow ellipsoids [7], Voss uses fractals [19], and Max uses height 
fields [14]. This paper shows that realistic results can be obtained 
by using turbulent flow based functions to model the density of 
a variety of  gases. These functions axe based on Perlin's visual 
simulation of turbulent flow [16] and axe similar to the idea of 
hypertextures [17]. 

The techniques described in this paper seem to provide more 
realistic results than most previous efforts by providing visually 
realistic renderings and animations of gaseous phenomena and the 
shadows they cast. These techniques are based on a visual simula- 
tion of  turbulent flow, so it is a visual simulation of the turbulent 
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processes that determines the geometry of  gaseous phenomena. 
These techniques can also be extended to use a physically-based 
turbulent flow model and can be very efficient when simplifying 
assumptions are made. 

In this paper, we discuss the efficient combination of volume 
rendering and a-buffer rendering techniques to provide realistic 
animations of  gaseous phenomena. The algorithm which com- 
bines these techniques is discussed first. From a review of  the 
literature, it appears that this is the first system that allows the 
combination of volume-rendered and scanline-rendered objects in 
the same scene. The following sections describe the volume ren- 
dering, illumination and modeling of the gases. Finally, a dis- 
cussion of  the realistic results obtainable by these techniques is 
presented along with future extensions. 

C o m b i n i n g  A - b u f f e r  a n d  V o l u m e  R e n d e r i n g  T e c h n i q u e s  

The rendering system described in this paper effliciemly combines 
scanline a-buffer rendering with volume rendering without any 
restrictions on the geometric positioning or overlap of the vol- 
ume and non-volume elements. The algorithm first creates the 
a-buffer for a scanline containing a list for each pixel of all the 
fragments that partially or fully cover that pixel. At this point, the 
illumination calculations for the fragments have not been done. 

The fragment structure is similar to that used by Carpenter in 
his original paper on the a-buffer [2]. The structure used is as 
follows: 

Fra,~ment Structure 
- minimum and maximum z values 
- percent coverage 
- normal vector 
- pointer to parent object 
- bitmask for geometry of coverage 
- color 
- lisht attenuation values for each light 

The additional information added when combining volume 
rendering with the a-buffer technique is an attenuation amount 
for each light source, which is used for shadowing of the frag- 
ment by the volume elements. In the system described in this 
paper, the volumes are defined by procedural functions. The data 
structure used for visibility calculations of the volume modeled 
objects is the a-buffer fragment structure described above. The 
following section describes how the volume modeled objects are 
broken into sections to create a-buffer fragments and combined 
with the surface-defined a-buffer fragments. 

If  a volume element is active for a pixel, the extent of  volume 
tracing that is required is determined in the following manner. 
First, the ray from the eye through the pixel projected into world 
space is calculated. Then each of the scanline-rendered a-buffer 
fragments are mapped back to world space. From the geometry 
of  the volume, the position of  these a-buffer fragments in world 
space, and the hither and yon planes for the scene, the extent of the 
volume that must be traced ean be computed. The starting point 
for the volume tracing is the maximum of the hither plane and the 
closest point of intersection of  the ray with the volume. The end 
point for the volume tracing is determined by the intersections of 
the ray with the volume, the yon plane, and the a-buffer fragments 
for this pixel. The a-buffer fragment list is traversed to determine 
the location in world space where full coverage of the pixel is 
obtained. Volume rendering will terminate at the minimum of 
this location, the yon plane, and the farthest intersection point of  
the ray and the volume. 

Each fragment in the fragment list also determines a starting 
or stopping point for separate volume elements to be added into 
the a-buffer fragment list. To get correct effects, the volume to be 
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rendered must be broken into sections that lie between, in front of, 
and behind the a-buffer fragments (see Figure 1). For example, 
if there is a transparent object covering a pixel containing fog, a 
separate a-buffer fragment must be created for the fog in front of 
the transparent object, fog inside the transparent object (if desired), 
and the fog behind the transparent object. This is necessary since, 
if only one fragment was created, the fragment would be sorted 
in front of, in, or behind the transparent objeot's fragments based 
on the average z value of the fog, resulting in an incorrect pixel 
value. 

The volume rendering for this pixel then takes place, creating 
new fragments for the a-buffer fragment list that are sorted into 
place. For each of the fragments, computations to determine the 
shadowing by the volumes are performed. 

After the volume rendering is complete for each pixel, the 
geome~es  of  the bitmasks are used to determine the visible frag- 
ments for the pixel. This is done similar to [2] except that the 
illumination, texturing, etc., calculations are only performed for 
visible fragments. For volume fragments, the bitmask will contain 
all l s  since only one ray is traced per pixel for volume elements. 
From the authors' experience, this resolution, although lower than 
that for surface-defined objects, provides quality images. 

The only additional computations performed for scanline-ren- 
dered fragments in combining these techniques is the inverse 
mapping of the fragment to world space and the shadow trac- 
ing through the volume. This inverse mapping needs to be done 
for most types of  texturing, so this is not an additional expense 
ff the world space coordinates of  the points are saved in the frag- 
ment structure. These shadow tracing calculations are needed for 
accurate shadowing. There is very little additional expense for 
scanline-rendered fragments when these techniques are combined 
in this way. Figure 3 shows an image of an art gallery, containing 
a volume modeled gaseous object as part of  a modem sculpture. 
This scene was rendered with and without the volume modeled 
object. Calculation times are given in the results section. It will 
become clear from these timings that the overhead of  combining 
the rendering techniques is negligible. The majority of  rendering 
time is spent in the texturing of  all the different objects. 

V o l u m e  r e n d e r i n g  

As mentioned above, only the visible portion of the volume is 
rendered. Volume tracing stops once full coverage of  the pixel 
is reached. I f  the volume is completely covered by a wall in the 
scene, for example, no volume rendering takes place. Depending 
on scene composition, this can have significant time savings. The 
volume rendering technique used here is similar to the one dis- 
cussed in [17]. The ray from the eye through the pixel is traced 
through the defining geometry of the volume. As described above, 
volume tracing stops once full coverage of  the pixel is obtained. 
If  there is partial coverage of the pixel by some fragments, the 
volume is broken into sections in front of  and behind the frag- 
ments until full coverage is reached. It is necessary to do this 
because each of the sections becomes a new element on the a- 
buffer fragment list. For each increment through the volume, the 
density function is evaluated. If the volume density function rep- 
resents a solid object, like the hypertexture functions described 
in [17], a slightly different algorithm is used than if the volume 
density functions represent a gas. The two algorithms differ in 
their illumination calculations and accumulation of  densities. If  
normal illumination techniques are going to be used (for s o l d  vol- 
umes), the normal to the surface is also calculated by the method 
described by Perlin [17]. I f  a gaseous illumination model is to be 
used these additional functional evaluations are not needed. The 
densities are also accumulated differently depending on whether 
the volume is a gas or a solid. 
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The basic algorithm for rendering solid volumes is the follow- 
ing: 

determine 2 mutually orthogonal directions 
to the ray 

for each section of volume 
get the density value at the previous point 
for each increment along the ray 

get color, density, & opacity of this element 
get density in 2 mutually orthogonal 

directions 
determine the normal to the surface based 

on previous density, current density 
density in dirl,denslty in dir2 

if self_shadowlng 
for each light source 
trace the ray to the light getting 

the light attenuation factor 
color = calculate the illumination of 

this volume using this normal and 
the color of the element 

tl = opacity* (1-sum_opaclty) ; 
final clr = final clr + tl*color; 
sum_opacity =sum ~paclty +tl; 
if sum_opacity =i 

stop tracing 
increment the sample_pt 
previous density - density 

create the a buffer fragment 

The opacity is determined from the density functions using the 
following formula from [17]: 

opacit71 = I -- (1 -- d e n s i t y 1 )  T M  

where c is a normalizing constant used to make opacity a function 
of  both density and step size. 

The algorithm for rendering gaseous volumes is the following: 

for each section of gas 
for each increment along the ray 

get color, density, & opacity of this element 
if self_shadowlng 

for each light source 
trace the ray to light getting the light 

attenuation factor 
color =calculate the illumination of gas 

using opacity, density and the 
appropriate model 

final clr = final clr + color; 
sum density -sum denslty +density; 
if( transparency 0.01) 

stop tracing 
increment sample pt 

create the a_buffer fragment 

Here, the opacity is the value returned from evaluating the 
density function multiplied by the step-size. This is needed since 
in the gaseous model, we are approximating an integral to calcu- 
late the opacity along the ray. The integral from [9] is 

- ~ - x f  ' j ' ~  ~=<,) ~(,) Kt))a, 
o p a e i t t ,  = 1 - e ~ '  . . . .  , 

where r is the optical depth of the material, P 0  is the density 
of the material, t , , ~  is the starting point for the volume tracing, 
and  t y ~  is t he  ending point. 

This is being approximated by 

- " × ~ i  : ' ~  ~=('),~('),K'))~' 
opaci tTI  = 1 - -  e . . . .  

As Kajiya suggests [8], the final increment along the ray may not 
be the same size as the res4 so its opacity is scaled proportionally. 

The system currently implemented renders function-based vol- 
ume densities, but can easily be extended to handle voxel-based 
volume objects. In sampling along the ray, a Monte-Carlo method 
is used in choosing the point. 

I l lumination o f  gaseous Phenomena  

The illumination algorithm that is used is based on [9]. We 
have implemented the low-albedo iUumination model. The phase- 
functions that are used are sums of Henyey-Greenstein functions 
as described in [1]. The illumination model is the following: 

-~*S TM ~=(~),~(,,),,(~)) xzx~ 
B = e ~-"  . . . .  x I x 

where I is 

t n e a r  

x 

x p h a , , ( a ) .  
i 

P h a s e ( O )  is t he  phase function, the function characterizing the 
total brightness of a particle as a function of the angle between the 
light and the eye [1]. I i ( z ( t ) , l j ( t ) , z ( t ) )  is t h e  amount of light 
from light source i reflected from this element. Self-shadowing of 
the gas is incorporated in this term by attenuating the brightness of 
the light. To approximate a high albedo model, an ambient term 
based on the albedo of the material can be added into I i. This 
ambient term accounts for the percentage of light reflected from 
the element due to second and higher order scattering effects. 

Shadowing  o f  the gas 

The simplest way of shadowing the gas is to trace a ray from each 
of  the volume elements to be rendered to the light, determining the 
opacity of  the material along the way using the above equation 
for opacity. This method is similar to shadowing calculations 
performed in ray tracing and can be very slow. Depending on 
scene composition (amount of gas in the scene), our experiments 
have shown that self-shadowing in this manner can account for 
75-95% of  the total computation time. 

Kajiya talks of the importance of self-shadowing to correctly 
visualize data [8]. However, he shows that low-albedo models for 
gases with albedos over 30% produce too much self-shadowing 
[9]. If the gas to be rendered has a very high albedo, the effects 
of  self-shadowing are negfigible compared to the secondary and 
higher order scattering of fight. Thus for gases with a high albedo, 
not performing self-shadowing can give realistic results at a much 
lower computational expense. For patchy fog or other gases with 
gaps of low density, shadowing earl be sped up by not calculating 
shadows for elements where the density is less than a threshold 
value. 

In order to speed up shadowing calculations a precalculated 
table can be used. Kajiya discusses this approach with the restric- 
tion that the light source be at infinity [9, 8] .  This restriction was 
necessm3, for the method in which the table was produced, but 
is removed in the technique we propose in this paper. Using this 
technique, the light source may even be inside the volume. Use of 
a preealculated table is definitely faster for gases that do not move 
from one frame to the next. However, even if the gas does move 
from one frame to the next, it still provides faster rendering. The 
main reason that the shadow tracing calculations account for so 
much calculation time is that a large percentage of  the calculations 
are repeated. In determining the shadowing for point p i, the ray 
from/~i to each light source is traced through the volume. While 
tracing this ray, the shadowing information for some points are 
also calculated, but not stored; therefore, shadowing calculations 
are repeated for these points. Shadowing calculations for points in 
the volume near the light source may be performed many times, 
depending on the order of processing. The amount of  repeated 
calculations can be seen from a simple example. Assume a cu- 
bic volume of gas surrounding the entire scene, an image size of  
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500x500, a sample size of 1/40th the volume size, the observer 
located along the positive Z axis, and the light source located 
directly above the volume. In determining the geometry of  the 
gas, 500xS00x40 = 10,000,000 volume-density function calcu- 
lations will be performed. To calculate the shadow value for each 
of the elements, an average of  20 volume-density function cal- 
culations will need to be performed, for a total of  200,000,000 
volume-density function calculations for shadowing. 

The obvious way to eliminate these repeated calculations is to 
store all the shadow values that are calculated in a large three- 
dimensional table. Then, when a ray is traced towards the light, 
ff the shadow value has already been calculated for the point 
currently being sampled, the shadow tracing stops and this shadow 
value is added to the shadow values already accumulated. The 
main reason this approach is infeasible is the size of the table. If  
the image size is 640x480 and 40 samples deep are being made, 
12 Mb of memory would be required to store the table if  only 
shadow values between 0 and 255 are being stored. However, 
this approach would become feasible if a reduced-resolution table 
were used, which is the approach the authors have chosen. 

Calculation of the shadow table 

To calculate the reduced-resolution shadow table values, a table 
of the same dimensions containing functional values is first com- 
puted. This is done to avoid repeated density functional evalu- 
ations. (If these functional evaluations are faster than a bilinear 
interpolation, this step would not save any time.) Next, the dis- 
tance squared from each point in the table to the light is calculated. 
These distances are then sorted, providing the order in which the 
shadow table values should be calculated. By calculating the 
shadow table values starting with the points closest to the light 
and proceeding to the points farthest from the light, only a bilinear 
interpolation is needed to determine each value. In determining 
the shadow value for a table entry, the ray to the light from this 
element is calculated (see figure 2). The ray from the point, Pi,j,k 
to the light will pass though one of  the faces of a parallelepiped 
formed by table entries ( i+ l , j+ l ,k+l ) ,  ( i+ l , j - l ,k+l ) ,  ( i+l, j- l ,k-1),  
( i - l , j+ l ,k+l ) , ( i - l , j - l ,k+ l ) ,  ( i- l , j - l ,k-1).  Now using the step sizes 
between table elements in world space and the normalized vector 
to the light, the face of the cube that surrounds this table element 
which will be pierced by the ray to the light can be determined. 
Once this is determined, the point of intersection of the ray and 
that plane can very quickly be determined since the table is aligned 
with the axes in world space. The restriction that the table aligns 
with the axes could easily be removed at the expense of some 
additional computations. This point of  intersection now lies be- 
tween 4 table entries that already contain the shadow information 
for those points since the entries are calculated in sorted order. By 
adding the functional values of  the entries times the step size to 
their shadow table values and bilinearly interpolating these sums, 
the shadow value for the current element can be found. 

To use the shadow table when volume tracing, the location 
of the sample point within the shadow table is determined. This 
point will lie within a parallelepiped formed by eight table entries. 
These 8 entries are tri-linearly interpolated to obtain the sum of the 
densities between this sample point and the light. To determine 
the amount to attenuate the light, the following formula is used. 

l i g h t _ a t t e r t  = 1 - e - r  x s u m _ d e n s l t i e s  X s t e p - s i z e  

This method is faster than tracing rays to each light if multiple 
volume density functional evaluations are slower than a tri-linear 
interpolation plus a fraction of  the time needed to create the table. 
The average number of  functional evaluations that are needed in 
determining the shadowing of an element by tracing the ray to the 
light will depend on the step size chosen for the volume tracing 
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(normally tens of functional evaluations). The functions that the 
authors use are based on turbulent flow and are much slower than 
the above. These functions will be discussed in a later section. 
Time comparisons can be found in the results section. 

M O D E L I N G  AND ANIMATING T H E  GASES 

Surface defined gases 

The authors originally used solid texturing of  polygonal mesh 
objects for modeling gaseous phenomena [6], The solid texturing 
functions are based on the turbulence function from [16]. To 
simulate gaseous phenomena, solid texturing was used to control 
the transparency of objects that define the space that the gaseous 
substance occupies. In this way, solid textured transparency can 
be used to simulate fog, smoke, and clouds. For a cloud layer, one 
flat plane can be used. The transparency of this plane creates the 
clouds. The transparency is controlled by a turbulent flow based 
solid texturing function. A similar result could be obtained by 
having solid textured ellipsoids occupying the same solid texturing 
space. By using the ellipsoids, it is possible to get results similar 
to Gardner [7]. Gardner uses flat planes for creating cloud layers 
and ellipsoids for creating individual clouds positioned in space. 

A simple function to generate clouds is the following: 

clouds (pnt, pixel_size, frequency, power) 
xyz_td pnt; /* the location of the point in 

* the solid texture space */ 
float pixe l_si ze, frequency,power; 

{ 
/* add some noise to the pnt */ 

pnt.x +-noise(pnt); pnt.y += nolse(pnt); 
/* use a sine wave for the basis of the shape */ 

tmp=sin((turbulence(pnt, pixel_slze)*frequency)); 
return(l.O -pow(tmp+l.O,power)*.5); 
} 

By changing the parameters in this function, smile images 
of  fog, mist, or smoke can be created. The f r e q u e n c y  parame- 
ter controls the frequency of the sine wave through the turbulent 
space. The p o w e r  parameter controls the distribution of the trans- 
parency values, basically determining whether linear interpolation, 
quadratic interpolation, or other types of interpolation are used to 
generate the transparency value. The other parameter that greatly 
affects the shape of the gaseous substance is the size of the solid 
texture space relative to the shape-defining object. Increasing this 
relative size creates the effect of zooming in on a portion of  the 
gas. 

Volume-modeled gaseous phenomena 

The abeve technique has been extended to volume modeling of 
the gaseous phenomena. The turbulent flow based functions now 
control the density and geometry of the gases rather than the trans- 
parency of  a polygonal object. In volume modeling these phenom- 
ena, a 3D solid defines the space that these gases occupy. Any 
ray-traceable solid can be used. One problem with this approach 
is that the solid's boundaries can be observed. However, by con- 
trolling the density functions, the defining shape of  the solid can 
be made undetectable (if desired). This is easily accomplished by 
decreasing the density based on the location within the volume. 

Animating the gaseous phenomena 

There are two obvious ways that the above technique which sim- 
ulates gaseous phenomena can be animated. The first technique 
animates the turbulent space. The second technique moves the 
objects through the turbulent space. The first would be better for 
a true physically-based simulation of turbulent flow. However, 
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since the method described here is not a physically-based simu- 
lation of turbulent flow, animating the turbulent space would be 
artificial and not worth the computational expense. The second, 
moving the objects through the turbulent space, is the approach 
described here since it is computationally more efficient and still 
gives effective results. 

A surface based version of animating solid textured gases was 
implemented to create the swirling fog in the animation "Once a 
Pawn A Foggy Knight..." [4]. A sample image from this film is 
in figure 4. Three planes are positioned in the scene and are used 
to produce different movement patterns in the fog giving a more 
effective depth to the fog. Each plane has different parameters 
to the fog function to create varying amounts of transparency 
and motion. More planes would produce more complex motion 
but gready increase the computational expense. These planes all 
reside in a large solid texture space that surrounded the entire 
scene. The turbulence function is defined over this solid textured 
space. Each point on these planes that corresponds to a pixel 
location to be rendered is moved through this turbulent space 
based on the frame number and other parameters of the function 
for each plane. To animate the fog, each of these points is moved 
along a helical path through the solid texture space. Each point 
on the plane is then actually tracing out a different 3D path over 
time. Since the points on the plane are moving through the solid 
space, the fog appears to be 3D since you are seeing different 
points of the three dimensional volume of fog over time. 

A similar technique is used to animate full three dimensional 
volume modeled gaseous phenomena Instead of using multiple 
planes, as mentioned earlier, a solid object is used to define the 
space the gas occupies. In this case, each point in the volume is 
moved along a helical path to provide swirling gases. Figure 6 
shows frames from a animation featuring volume-modeled steam 
rising from a glass. Notice the shadows east on the wall and 
on the inside of the glass by the steam. The steam itself has no 
self-shadowing. 

Many effects can easily be created from these simple func- 
tions. In the figure, the steam dissipates as it moves farther from 
the glass. This dissipating effect is created by decreasing the opac- 
ity as a function of the distance from the glass. The results section 
contains information about resolution and calculation times for 
the figures. Figure 7 shows frames from an animation featuring 
volume-modeled fog rolling in from the left of the screen. This 
also shows a chess piece moving through the fog. This attests 
to the true three dimensionality of the fog. To create the effect 
of fog moving in, each point in the volume was compared to a 
value, f ,  indicating the front of the fog. If the point's x value 
was greater than f ,  the density was set to 0. f changes based on 
the frame number, the turbulence value of the point, and the three 
dimensional location of the point in world space. This is done so 
that the front of the fog does not appear as a plane. It is actually a 
deformed plane where the deformation is controlled by turbulence 
and a table of random numbers. To create the fog thickening, the 
maximum density of the fog increases from zero at the front of 
the fog to one after a certain distance. The maximum density of 
the fog could also be increased based on the frame number so 
that the fog grows from thin wisps to dense patches. To create 
these effects, functions similar to the following are used. This 
function will create fog whose density increases over time and 
moves horizontally. 

chess_fog (pnt, density, plxel_size, parms, pnt_w, vol ) 
xyz td pnt, pnt_w; 
float *density, *parms, pixel_slze; 
vol td vol; 

{ 
float trap, factor, front of fog, factor2; 
extern int frame num; 
extern float offSet[OFFSET_SIZE]; 
xyz_td direction, cyl; 

int indx; 

/* apply some turbulence to the point 
* so that it appears more random */ 

tmp = turbulence(pnt, plxel_size); 
pnt.x += 2.0 + trap; 
pnt.y +- .5 +tmp; 
pnt.z += -2.0 - trap; 

/* determine how to move the point through 
* the space (helical path) */ 

theta = (frame_num%SWIRL FRAMES) *SWIRL; (1) 
cyl.y = ELLIPSE1 * (float) cos(theta) ; 
cyl.z = ELLIPSE2 * (float) sin(theta) ; 
direction.x = pnt.x - (float) frame_num*DOWN; 
direction.y = pnt.x + cyl.y; 
direction.z = pnt.z + cyl.z; 
/* now determine the points transparency based 
* on its new location in the solid space * /  

tmp =turbulence (direction, pixel_size); 
/* have the fog grow more dense */ 

£actor = MIN ( (frame_num/FULL_FOG. 0), I. 0) ; 
*density = (tmp*opaque*factor) ; (2) 
*density = pow(*density, power) (3) 

) 

The section of code (|) calculates how to move the point along 
the helical path based on the frame number, the number of frames 
to trace out an ellipse in the y-z plane (SW]RL_FRAMES and 
SWIRL), the amount to move horizontally per frame (DOWN), 
and the major and minor diameters of the ellipse (ELUPSEI, 
ELUPSE2). These parameters eon~ol the amount and direction of 
the overall fog movement. The intricacies in the fog movement are 
created by the turbulence function. The parameters, opaque and 
power, in transparency calculation (2) and (3) are used to control 
the opaqueness of the fog. Adjusting these values can change the 
density distribution of the fog since it shifts the opaqueness levels. 
Tbefactor causes the density to increase from a maximum value 
of 0 to a maximum value of opaque over FULL.FOG frames. 
Varying opaque can be used to to get patchy fog as opposed to 
wispy fog. 

Use of  turbulent flow for gases 

Using turbulent flow based functions for the simulation of fog 
makes sense since the varying densities of the fog are created by 
turbulent flow. Turbulence also creates the path over which the 
fog moves. Currently, a visual simulation of turbulent flow is 
used. This system can easily be extended to use a physical-based 
simulation of turbulent flow, since all that is needed is a different 
function to determine the density based on atmospheric turbulent 
flow. Developing the function to model atmospheric turbulent 
flow is a separate nontrivial problem. 

DISCUSSION OF RESULTS 

This paper has shown that volume rendering and scanline a-buffer 
rendering can be efficiently combined. This new technique is very 
useful when combined with turbulent flow based volume-modeled 
gases to produce realistic scenes with gaseous phenomena. All re- 
salts were calculated on a Hewlett-Packard 9000/370 TSRX work- 
station with 16 Mb of memory. Table 1 shows rendering times 
for Figures 3 through 77. Table 2 shows rendering times for each 
of the images in Figure 8. All rendering times arc approximate. 
Figure 3 shows an art gallery scene containing a volume rendered 
gaseous sphere without volume shadowing. Table 1 provides cal- 
culation times for the image in figure 3 and the same scene wRhout 
the volume. From these times, it is clear that the addition of a 
volume rendered object in the scene only slightly increases the 
computation time. 

Figure 4 shows a scene from "Once a Pawn a Foggy Knight..." 
showing surface based solid texturing to create the fog. Figure 5 
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shows the results obtainable by extending the turbulent flow based 
solid texturing to volume modeling. This scene is from "Getting 
Into Art" [5], and has table-based volume shadowing. Figure 6 
shows 6 images of  volume-modeled steam rising out of  a glass 
casting shadow-traced shadows on the glass and the wall. The 
steam, however, does not shadow itself. These images represent 
every 30th frame of an animated sequence. Figure 7 shows 9 
frames of a chess scene similar to figure 4. In these images, the 
fog is volume rendered and is "rolling" in from the left of  the 
image. Notice the shadows of the fog on the rook change as it 
moves forward. Also notice the shadows of the fog move across 
the curved base of the rook, the top of the pawn, and the ground 
plane in the last 3 images. 

Figure I 
3 

R ~olutio n Rtnd~r/a 8 Tone 
(m/nines) 

1024 x 682 71 with voltmae 
(actual picture) 

1024 x 682 59 without volume 
1024 x 768 105 
1024 x 682 260 
420 x 400 95 each image 
320 x 240 165 each image 

Table 1: Rendering Times for Figures 3 through 7 

From this discussion of the results, it  is clear that the com- 
putational time increases proportionally to the amount of  gaseous 
volume in the image. Self-shadowing of the gases is also very 
expensive if  shadow tracing is used. Figure 8 shows 4 images of a 
glass with steam rising from it. The first image has no shadowing 
at all. The second image has shadowing of the volume onto the 
glass. The third and fourth images have self-shadowing of the vol- 
ume and shadowing of  the volume on the glass. In the third image, 
the shadow-table technique was used with shadow table dimen- 
sions of 64x64x64. In the fourth image, shadow-tracing was used. 
The calculation times are given in Table 2. This further illustrates 
the improvement in computational time with table-based shadow- 
ing. In the times for images with shadow-table based shadowing, 
the times include the time to create the shadow table. 

I Figurc 

b 

Shadowin& I Rendering Ti.rr~ 
tara I (,ni=aez) 
none 80 
shadow-traced, lot 
no self-shadowing 
shadow-traced, 1800 
with self-shadowing 
table-based, 127 
with self-shadowing 

Table 2: Rendering Times for Figure 8. Resolution is 360x250 

The above calculation times are an upper limit on the com- 
putation time required to get the results seen in the figures. The 
same visual results might be achieved by using larger step sizes in 
volume tracing and shadow tracing and by using lower resolution 
shadow-tables, which would decrease the computation time. 

The combination of  the volume rendering and scanline a-buffer 
rendering has wide ranging applications beyond the rendering of 
gaseous phenomena. This technique allows any volume data to be 
rendered in scenes with traditional surface based objects. The use 
of an a-buffer seanline renderer is not necessary if  anti-aliasing 
is not desired. A normal scanline z-buffer could be used instead 
of the a-buffer; however, transparency will also not be handled 
easily, which is a normal problem with scanline z-buffer renderers. 

Many additional performance improvements are possible. The 
authors found that initially 65% of computation time was being 
spent in turbulence function evaluations. We have since achieved 

362 

a 60% performance improvement in the turbulence function evalu- 
ation alone. There are certainly more performance improvements 
possible in the volume rendering section of  this new system. An- 
other way to improve performance is to use a stored table of 
functional values with a lower resolution. This should provide 
improvements in computation time since volume density func- 
tional evaluations are the major computational expense. 

Animation using the above techniques is very suitable for dis- 
Iributed processing. The authors have used over 150 SUN and 
Hewlett-Packard workstations in computing the animation "Once 
a Pawn a Foggy Knight . . . . "  The same network distribution soft- 
ware used for this animation has been changed to handle the new 
techniques described above. Since the rendering time of a single 
frame is high, each workstation could also be given a range of 
seanlines to compute. The network distribution software took ap- 
proximately 20 minutes to distribute jobs to 150 machines. This 
time could easily be decreased if detailed information about the 
performance of machines was not kept. By using a large dis- 
tributed network like this, high resolution animations could easily 
be produced at the rate of  more than 10 seconds per day. 

F u t u r e  E x t e n s i o n s  

One extension to the above work is to extend the volume renderer 
to voxel-based volume rendering. This proposes no new problems 
in combining the volume rendering with the a-buffer. 

The authors are interested in extending the techniques for ren- 
dering and animating the gaseous phenomena to be physically- 
based. One idea is to control the overall fog movement based on 
a more global turbulent directional field. In this way, for exam- 
ple, the fog would move towards areas of low turbulence. A table 
containing barometric pressure readings could also be used to cre- 
am the dkectional movement of the gas by using the gradients of 
the values to control the speed and direction of the movement. In 
this way, you could begin to develop a physically-based model. 
The next step towards a physically-based model is to develop a 
physically-based turbulent flow model for various types of gases. 
This model seems to be eomputationally complex, but could easily 
be added into the current system since it is functionally based. As 
Perlin discusses, it is interesting how realistic the results obtained 
from a visual simulation of turbulent flow look [17]. The authors 
feel that developing a physically-based turbulent flow function, 
then simplifying the calculations to be tractable while maintain- 
ing the same visual quality is a good direction to take. 
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Figure 1: Volume element creation. Shaded areas are the three 
volume elements. 
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Figure 2: Shadow table Calculation. 
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Figure 3: The modem pioneer in an art gallery. 

Figure 4: A representative image from "Once a Pawn a Foggy Knight...". 
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Figure 5: A representative image from "Getting Into Art." 

Figure 6: Steam rising from a glass. The 6 images are every 30 fTames. 
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Figure 7: Scenes of fog rolling in. The first 6 are every 80 frames. The last 3 are every 40 fxames. 

Figure 8: Steam rising from a glass. (a) has no shadowing (b) has shadowing of the gas onto the glass. (c) has table-based volume 
shadowing and self-shadowing. (d) has shadow-traced volume shadowing and self-shadowing. 
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