
A TOUR OF THE SUITE USER INTERFACE SOFTWARE

Prasun Dewan
Department of Computer Sciences

Purdue University
W. Lafayette, IN 47907

ABSTRACT

Suite offers several advanced interactive features missing from
contemporary interactive systems including a generic direet-
manipulation user interface; a flexible input model offering
benefits of both incremental and delayed feedback; customizable
system-provided dialogue managers which relieve applications
from managing their user interfaces; loose physical coupling
between an application and its dialogue manager, that is, execu-
tion of these components in different address spaces, residing
possibly on different hosts; interactive specification of customiz-
able properities of user interfaces; and IS-A and IS-PART-OF
inheritance to reduce the effort required to specify these properi-
ties. It complements recent work done in programming
languages, databases, operating systems, and distributed systems.
In this paper, we take the reader on a tour of the Suite user inter-
face software, highlighting its distinguishing features.

1. INTRODUCTION
Suite is being developed at Purdue for reducing the effort

required to create interactive applications. It offers a high-level
interaction model supporting several properties of direct manipu-
lation [17] including continuous display of objects of interest,
manipulation of objects by “physical operations” (e.g. selection
by a pointing device), and incremental response to operations on
these objects. It supports flexible incremental response, that is,
allows users to dynamically choose when a certain kind of feed-
back is received.

An application’s interaction with the user is managed by
a customizable system-provided dialogue manager, which
corresponds to a UIMS in the Seeheirn reference model [16].
The dialogue manager offers the application the abstraction of an
“active value” [15], that is. a value displayed on the screen
whose visual representation can be updated by the application to
display results and edited by the user to control the execution of
the application. Active values in Suite include not only simple
values such as integers and reals but also structured values such
as records and sequences. The application specifies only high-
level aspects of its user interface including the structure and
presentation of active values, validation routines defining con-
straints on these values, and update routines for reacting to user
changes to them, The dialogue manager handles all other aspects
of the application’s interaction with the user.

Suite provides an inheritance model for reducing the
effort required to specify user interface properties or attributes of
active values. The model classifies the active values of an appli-
cation into several value groups and allows an attribute to be
defined once for all members of a group. It arranges these
groups in multiple intersecting hierarchies based on the IS-A and
IS-PART-OF relationships among values and allows a subgroup
to inherit attributes from its supergroups. Attributes of value
groups may be specified both procedurally and interactively.

Suite provides an object layer supporting distributed,
shared, and persistent objects. Suite objects are similar to objects
supported by other distributed object-based systems such as Eden
111 and Clouds [5] in that they execute in separate address spaces
residing possibly on different hosts. However, unlike objects
supported by these systems, Suite objects are compatible with
conventional (UNtx-like) operating systems. In particular, they
can coexist with, access, and be accessed by existing components
of a conventional operating system; and are named, organized,
and accessed like conventional files. The object layer facilitates
loose physical coupling between application and its dialogue
manager by allowing them to be be created as separate objects.
Loose physical coupling between an application and its UlMS is
a generalization of the widely-accepted practice of logically
separating them [16, IS] and allows, for instance, the user inter-
face of an application to execute remotely and be dynamically
changed. The object layer also facilitates collaborative applica-
tions by allowing them to be created as a set of objects interact-
ing with different users and communicating with each other to
allow the users to share results in real-time.

The structure of internal, active, and persistent values of
an object is described by the type declarations of a conventional
programming language. Thus, Suite extends the idea of a data-
base programming language [2] by offering an application pro-
grammer a unified programming, database specification, and
user-interface specification language.

The current version of Suite has been implemented on a
network of workstations executing UNIX, TCP/IP, X, and Sun
NFS (Network File System). It uses X for displaying windows,
and TCP/IP and NFS for communication among and naming of
applications and dialogue managers.

A multiple inheritance model supporting both IS-A and
IS-PART-OF of inheritance distinguishes Suite from Incense
[14], Planit Ill], APT [13] and other systems supporting flexible

This research was supported in part by the National Science Foun-
dation sponsored Software Engineering Research Center at Purdue.

Permission to copy without fee all or part of this matertial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-410-4/90/0010/0057 $1.50 57

http://crossmark.crossref.org/dialog/?doi=10.1145%2F97924.97931&domain=pdf&date_stamp=1990-08-01

displays of data structures. Inheritance-based interactive
specification of displays of values distinguishes it from GRINS
[12], Peridot [15]. DialogEditor [4]. Serpent [3] and other sys-
tems supporting interactive specification of user interfaces. This
feature was also supported in Suite’s predecessor, Dost 181, and
has been refined in Suite. The input model, loose physical cou-
pling between an application and its DIMS, and integration with
operating systems, distributed systems, and database program-
ming languages separates it from other user interface software we
know of.

In other papers and reports we have discussed in detail
individual aspects of Suite including integration with program-
ming languages [9], the inheritance model [6], the design and
implementation of the object layer [7], and our experience using
the object layer to create interactive applications [lo]. This paper
gives a high-level overview of the Suite user interface software.
It uses the example of a prototype project management tool to
illustrate and motivate the distinguishing features of Suite.

The remainder of the paper is organized as follows. Sec-
tion 2 describes an example session with the tool, illustrating the
system from the point of view of end-users. Section 3 explains
how the tool is specified, illustrating the system from the point of
view of application-programmers. Section 4 illustrates facilities
provided by Suite for interactively specifying properties of the
user interface. These can be used by application-developers to
define an initial user interface and end-users to customize it.
Finally, Section 5 presents conclusions and directions for future
work.

2. USER INTERFACE

In this section, we illustrate the user interface of Suite
using the example of the prototype project management tool we
have built for managing some of the activities of the Purdue-
Florida Software Engineering Research Center (SERC). The tool
consists of three applications: a project object which manages a
list of projects, an affiliate object which manages a list of
affiliates, and a budget object which maintains budgetary infor-
mation including the contribution of each affiliate and the money
allocated to each project. These applications communicate with
each other using remote procedure calls and with users through
dialogue managers.

Assume that the budget, project, and affiliate objects have
been created on the host medusa _ cs . Purdue. edu under the
names budget, projects, and affiliates, respec-
tively, in the directory /ul3/rxc/pro j /demo, and we wish
to interact with them from the host
arthur . cs . Purdue. edu . We first create a dialogue
manager on arthur.cs.purdue.edu. The dialogue
manager displays a startup window (Figure 1) which allows users
to name the object with which they wish to interact. Let us
specify the name of the budget object in the startup window and
execute the Load command. In response, the dialogue manager
loads the active values of the budget object in the object window
and provides a menu window for editing these values (Figure 2).

Currently, no projects or affiliates have been assigned to
SERC, therefore the fields affiliate-budgets and
project-budgets in Figure 2 are empty. These data

Figure 1. The Startup Window Figure 2. Object and Menu Windows

w Reject Template:

Me: Inwstlgating the Hedning of L1fo
principalhwestigatas: 9+w Faculty
students: swer student
hr~5~lJawyW31~9i

:
1:

paI: Des&n Prototype of Life
plaredAtratim: (1 Jerwy 90 - 31 bj 90)
actual-duration: 0 Jmwy 0 - 0 Jaoay 0
*xltkdclayed: 0
permml :
persmamthsg1amd: 0
fwsm~mths~used: 0

2:
goal: 1mF4armt Rototype
planed-duratim: (1 Jvn 90 - 31 Ikcaba 90:
actualbration: 0 Jmwy 0 - 0 Jsurg 0
mnths-delayed: 0
psrm1:
Fersmpnths&hmed: 0
persul~mths~used: 0

allocated: 0
went: 0
balance: 0

rtwlt Pmjecw
---._.---

Figure 3: The Project Application

I I hratmc 1 Jauar 90 - 31 Daaba 91 I

n
nilsttmes: -

1:
Desig, Prutotype of Life

:<lJwaryW-
OJanuaryO-OJ

k goal: Desisl Protd~ of LIFE

dwah& 1: pem%mthsg1ti: pldAretim: acta&hration: nmths-delayd: : 2: 1: J-g -: rime: 90 sww Supsr -’ 0 0 31 (I student Faculty Jauay Decarbs Juway 0 0

Fe-m-d:

90 - 91 0 - Jarrsy percat pe%ult 31 by 30) 0 time: time: 50 50

-- -+I,. 0rr.A. n

Figure 4: Structure-based Commands

58

structures cannot be edited directly to add new projects or
affiliates, since they are managed by the project and affiliate
objects, respectively. To interact with the project object, we
create another dialogue manager and load the object. The object
window of the project object displays two top-level data struc-
tures: a project template, which can be edited to add a new pro-
ject, and a list of current projects (Figure 3).

As illustrated by Figures 2 and 3, Suite offers a form-like
interface providing prompts and default values for fields. Lie
contemporary form editors, it offers mouse- and menu- based
ccmmands for editing these values. In addition, it supports com-
mands that understand the structure of displayed data. For
instance, it supports the Up command for selecting the parent of
the currently selected data structure and the Elide command to
hide the fields of a structure value. Moreover, it allows new fields
to be added in an object window. For instance, in Figure 4, we
have used the Insert After command to add new subfields
in the personnel field of the object window of the project
object.

We now execute the Accept command to “commit”
the template. At this point several changes to the display occur
(Figure 5). In the object window of the project object, the new
project has been added to the list of current projects. Moreover,
the “dependent” fields of the project have been automatically
computed for the user. For instance, the
person-months_planned field has been computed based on
the information in the personnel field. Similarly, the allo-
cated, spent, and balance fields have been computed for
the user. In the object window of the budget object, a new entry
is made in the list of current project budgets, and the total allo-
cated amount and the balance are recomputed based on the
amount allocated to the new project.

In general, a dialogue manager does the following when
the user executes the Accept command. It first begins a syntax
phase, when, for each value whose presentation has been
changed, it checks the presentation for syntax errors based on the
type of the value. parses the value if it finds no syntax error, and

marks the value as parsed. If it finds no error in the syntax phase,
it begins a validation phase, when it checks each of the parsed
values for semantic errors by invoking the verify procedure asso-
ciated with the value, and if it finds no error, marks the value as
validated. Finally, if it finds no error in the validation phase, it
begins the update phase, when it commits each of the validated
values by invoking the update procedure associated with the
value, which can take (possibly irreversible) semantic actions
such as updating the display of other active values and sendig
messages to other objects. A value is considered changed if it has
been directly edited by the user or it is a parent of a changed
value. Values are visited in postorder in each of these phases, that
is. the children of a structure value are visited before their parent
is visited. In the remainder of this paper, we shall refer to the
feedback given by the syntax, validation, and update phases as
syntactic, semantic, and update feedback, respectively.

Figure 6 shows the response of the Accept command
when we try to commit erroneous values. No semantic actions are
taken since the update phase was not invoked.

By executing the Accept command, we received the
highest degree of feedback, since the system went through all
three phases: syntax, validation, and update. It is possible to
receive lower degrees of feedback. The Validate command
goes through only the syntax and validation phases, while the
Syntax commands goes through only the syntax phase.

Finally, to complete this example, we connect the affiliate
object to a dialogue manager and commit a new affiliate (Figure
7).

In this example, the project management tool was used in
the “single-user mode” since the dialogue managers of all three
objects were executed by a single user on the same host. In gen-
eral, they can be executed by multiple users and on multiple hosts.
However, currently, only one dialogue manager (and hence only
one user) can interact with a particular object at any one time.

name: Invut1gating the timing of Life
principcll-investigators: Super Faculty
students: sqer student
&ra~dwa1J~90-31DMllber91

-1: Design Prototype of Life
plamedAration: (1 Jmmy 90 - 31 Hay 90)
actual-duration: 0 Jwuaty 0 - 0 Jmwy 0
mnthxdelayd: 0
persana1:

goal: hphent Prom*
plwmd-bation: (1 Jtme 30 - 31 Decmbar 90)
actual-duration: 0 Jmwy 0 - 0 January 0
month.3~delaye-d: 0
wsomc1:
personn_mnths-plti: 0

&et:
orgdnization: SEK
affiIiateh&ets:
auallable: 0

Figure 5: Accepting the Project Template

1: name: a-dmry Student
2: nenc: Wdma-y Faculty

sm~mths~plamd: 0
pea-.

Figure 6: Errors

3. PROCEDURAL INTERFACE

lit Suite, interactive applications are created as objecfs.
An object is like a traditional application in that it is described by
an application program declaring data structures and the pro-
cedures that manipulate them. However, several important
differences distinguish it from a traditional application: It is asso-
ciated with remote procedures (also called rnethodr) and handlers
instead of a main procedure. Like a file, it is associated with a
hierarchical file name. A client application may open it to get an
object descriptor that refers to it, use the descriptor to invoke a
sequence of remote procedures in it, and later close it. An object
executes the initialization handler when it is created and the ter-
mination handler when it is removed from the system. Some of
its data structures can be edited by the user to control the
behavior of the object. Some of its data structures can also be
declared to be persistent- these are checkpointed on persistent
storage. At any time, it is in the active or passive state. In the
active state, it may be in the referenced or unreferenced state. It
is in the referenced state if some other object has it open for
communication, and unreferenced state otherwise. When an
object stays in the unreferenced state for more than a certain
period of time, it is automatically passivated and its persistent
data structures are saved on disk. A passive object is activated
and its persistent data structures restored when it is next opened
by some client. In the referenced state, an object may be in the
loaded or unloaded state. In the loaded state, it has been opened
by a dialogue manager, which can be used to interact with it. It
can define load and unload handlers to process transitions to and
from the loaded state.

Figure 8 shows an outline of a Cl-based program describ-
ing the budget object. Like a traditional program, it defines data
structures such as budget and procedures such as AddAf f i-
liate which manipulate these data structures. It also contains
special comments beginning with the words oc and dmc,
called object and dialogue annotations, respectively, which are
processed by the Suite object and dialogue compilers, respec-
tively. The object annotations

Initiate with Initiate

tells Suite that Initiate, which initializes budget, is the
initialization handler. The annotations

Method AddProject
Async Method AddAf f i liate

tell Suite that AddPro ject and AddAffiliate are remote

‘Currently, the Suite implementation supports only C, but the
design allows the addition of other Pascal-like languages.

Figure 7: The Affiliate Application

/*oc
Initiate with Initiate
Method AddPro ject
Async Method AddAffiliate
Eternal budget

*/
/*dmc

Editable Budget
Load with Load

*/
/* Declarations */

. . .
typedef struct {

String organization;
AffBudgets affiliate-budgets;
int available:
ProjectBudgets project-budgets;
int allocated:
int balance:

} Budget;
Budget budget;

void Initiate ()
I . . . 1

Load ()
I . . . 1

void AddAffiliate (aff)
Affiliate aff;
I . . - 1

int AddProject (proj)
Project proj;
1 . . . 1

void UpdatePro jectBudget
(path, budget-ptr)
char *path;
ProjectBudget *budget-ptr;
t * . * 1

/* Other Procedures */
. . *

Figure 8. The Hudget Application Program

procedures that can be called synchronously and asynchronously,
respectively. The former is invoked by the project object to
inform the budget object about a new project and returns the

amount allocated to the project, while the latter is invoked by an
affiliate object to inform the budget object about a new affiliate.
The affiliate object does not wait for completion of the procedure
since it has been declared to be asynchronous.

The following program segment extracted from the
affiliate object illustrates how a remote procedure is invoked by a
client:

Affiliate *aff ptr; -
. . .

budget-ob j = OpenOb ject (“budget”) ;
. . .

AddAffiliate (budget-obj, aff_ptr);
. . .

CloseObject (budget-obj) ;
. . .

The client uses the file name of the budget object to get a
descriptor to the budget object and uses it to invoke the remote
procedure AddAf f iliate .

In Figure 8, the annotation

Eternal budget

tells Suite that the variable budget is persistent and should be
checkpointed on secondary storage. The annotation

EditabIe Budget

tells Suite that variables of type Budget are editable. The
annotation

Load with Load

tells Suite that the procedure Load in the object program is the
load handler. The definition of Load follows:

Load ()
I

Dm-Submit (&budget, “budget”,
“Budget”) ;

Dm-SetAttr (“Type: Pro jectBudget”,
AttrUpdateProc,
UpdatePro jectBudget) ;

Dm-Engage (“budget”) ;
I

It consists of invocations of three different remote procedures
defined by the dialogue manager. The call to Dm-Submit sub-
mits the variable budget for editing to the dialogue manager.
The first argument specifies the location of the value of the vari-
able, the second argument the name of the variable, and the third
argument the name of rhe type of the variable (which must be
one of the types that has been declared to be editable). The call
to Dm-SetAttr specifies the value of an attribute of a value
group which is either a type or a submitted variable (also called a
view in Suite). In this example, the call defines UpdatePro-
jectBudget as the value of the AttributeUpdateProc
attribute of the type Pro jectBudget . The attribute Attri-
buteUpdateProc of a type specifies the procedure to be called
when a value of that type is edited by the user. Finally, the call
to Dm-Engage asks the dialogue manager to engage the vari-
able, that is, display it to the user.

Here is the update procedure UpdatePro-
jectBudget, which is invoked when a new value of type
Pro j ectBudget is committed by the user.

void UpdateProjectBudget (path,
budgetgtr)

char *path:
Pro jectBudget *budget-ptr;

1
int change;
change = - budgetgtr->total-cost;
ComputeNewBudget (budget-ptr);
change += budget-ptr-Xotal-cost;
budget.allocated += change:
budget.balance -= change:

Dm-Update (

Dm-Update (

Dm-Update (

3

path, “Pro jectBudget”,
budget_ptr) ;
“budget. allocated”,
” int ‘* , &budget. allocated) ;
“budget. balance”, ” int”,
&budget.balance);

Like other update procedures, it takes two arguments: the first,
path, indicates the puth me of the variable that was edited by
the user (Suite associates each displayed variable (including des-
cendents of top-level variables submitted by an object) and its
type with a unique path name)) while the second,
budgetgtr, gives the address of the new value for the vari-
able. The procedure assumes that the user changes only the
independent fields of the project budget and calls Compu-
teNewBudget to calculate the new values of dependent fields
such as total cost. It then calls the remote procedure,
Dm Update, &-the dialogue manager to ask it to update the
display of the project budget. Changing the total cost of a project
budget also affects the value of the total amount allocated to the
various projects and the balance left. The update procedure com-
putes new values of these fields and calls Dm-Update to update
their displays.

In order to communicate data among objects, save them
on persistent storage, and display them, Suite needs to know the
type of the data. This presents a problem in weakly-typed
languages such as C since the type of a data structure is often
ambiguous. For instance, a variable declared as

char *ptr

may be a pointer to a character, character array, or string. Suite
lets a programmer explicitly specify the,type of such data More-
over, it uses several rules to determine types of values in the
absence of explicit programmer specification. One important rule
lets it support sequences- variable length arrays missing from C,
Pascal, and older languages. Suite lets a sequence be simulated
by a record containing a length field and an array pointer. For
instance, it lets a sequence of values of wpe Pro jectBudg-
et s be simulated by the record:

typedef struct {
unsigned num_pro ject s;
Pro jectBudget *pb-arr;

) Pro jectBudgets;

When uansmitting such a record as an argument to a remote pro-
cedure or saving it in persistent storage, Suite sends or saves,
respectively, only as many elements of the array as are specified
by the first field. Moreover, when displaying the record, it
regards the record as a list and allows elements to be inserted into
and deleted from the array field, updating the length field
appropriately. Sequences are used extensively in all the sample

61

objects built by us, including the budget, project, and affdiate
objects.

An object is created by invoking its program with a spe-
cial argument describing its file name. Thus the command

budget -name budget &

may be used to create the object budget which executes the
object file budget. The name argument is not necessary when
the name of the new object is the same as the program it exe-
cutes. We distinguish between the names of objects and the pro-
grams they execute since, in general, a program may be executed
to create multiple concurrent objects. For instance, the budget
program may be executed to create the objects
Purdue budget and ufl-budget for managing the Purdue
and Florida SERC budgets, respectively.

4. CUSTOMIZATION

In Suite, the user interface available to interact with an
object has three main components: (1) a generic componerU
shared by all user interfaces, which includes object-independent
commands such as DeleteCharacter, names of object-
dependent commands such as InsertAfter, and facilities
such as buttons in the menu window for invoking (object-
dependent/independent) commands, (2) a dqaault object-specific
component that includes the default implementation of object-
dependent commands and is “driven” by the type declarations in
the program describing the object, and finally, (3) a customized
component.

We have so far seen mainly the tist two components.
We did see one example of customization-the Dm SetAttr
call in Figure 8, which defines the update procedure%rvoked by
Accept. It is possible to customize several other parts of the
user interface. Moreover, it is possible to interactively customize
the user interface, thereby avoiding the edit-compile-execute
cycle required by procedural customization. In this section, we
illustrate the customizable aspects of a user interface and how
they can be specified interactively. Procedural specification of
these parameters is straightfonvard. and is done through
Dm-SetAttrcalls.

Interactive customization is done through an attribute
window. which allows a user to specify attributes of value
groups. This window displays four fields: Message, which
displays a message from the dialogue manager, Path, which
names a value group, Att r, which names an attribute, and
Value, which contains a value for the attribute. It also pro-
vides sevencommands: Load, Set, Inherit, Delete,
Path, Attr Menu, and Enum Menu. The Load and Set
commands are used to load and define the value of an attribute of
a value group, respectively. The Inherit command is like
Load except that it looks for an inherited value if the attribute is
not defined in the specified value group. The Delete com-
mand deletes the definition of the attribute of the value group.
The Path command lets a user select a value group instead of
typing its name. It loads the path of the selected data structure in
the presentation window in the Path field of the attribute win-
dow. The Attr Menu command displays a menu of attribute
values from which avalue canbe selected to set the Attr field.
Finally, the Enum Menu command shows the setoflegal values
for an enumeration attribute.

Let us try changing an attribute of a value. We can exe-
cute the Attr Menu command to display the list of attributes
(Figure lo), and select one of them, say ElideString. We
need to also specify the path of a value whose attribute we wish

to change. Therefore, we select the value in the object window
and execute the Path command in the attribute window to
display the name of the value in the path field (Figure 11).
Now we enter a valid string in the Value field and execute the
Set command. Next time we elide the project, the new value of
ElideString is displayed (Figurell).

Let us try the same process with some other attributes.
For instance, let us change the Titled attribute of the project
to False (Figure 12). Notice that the TitleString "1: "
disappears from the display. Notice also that all fields of the data
structure (except the milestone fields) have become untitled. This
is because Suite defines structural inheritance, which uses the
IS-PART-OF relationship to let a child inherit attribute values
from its parent. To restore the titles of the fields of the project
(but not the project itself) we can set the Titled attribute of
View Child: ((projects) [0]) to True.

Suite also defines type inheritance. which uses the IS-A
relationship to let a value inherit attribute values from its type.
The reason that the milestone fields did not become untitled in
the previous example is that the type Milestones had defined
the Titled attribute to be True. Wecansetitto False to
untitle values of type Milestones and their descendents
(because of structural inheritance), as shown in Figure 13.

The structural and inheritance schemes are two indepen-
dent schemes which can both influence the attributes of a value.
Suite resolves the multiple inheritance problem for most attri-
butes such as TitleString by giving the type inheritance
higher precedence than structural inheritance. It also supports
“structure-first”, “type-only”, “structure-only”, and “no-
inheritance” search schemes [6].

Not all attributes of a value determine the format of its
presentation. For instance, the Erroneous attribute determines
if the value is semantically invalid, and the ErrorString
attribute determines the error message that is displayed when a
value is found to be erroneous. Two important attributes deter-
mine how soon users get feedback from dialogue managers and
objects in response to changes they make to values. To illustrate.
let us changethe IncInputScheme attribute oftheofthe first
project budget in the budget window to the enumeration value
InputUpdate. When we next change a descendent of the
data structure such as the summer-salary field, the values of
dependent items are recomputed on every keystroke (Figure 14).
This is because the InputUpdate input scheme asks for impli-
cit invocation of the update phase on every keystroke. We can
set this attribute to InputValidate, InputSyntax, or
Input Delay, to receive semantic, syntactic, or no feedback,
respectively, on every keystroke.

Suite also lets a user postpone feedback until the value
has been “completely” edited without requiring explicit invoca-
tion of commands. It uses movement of the insertion point away
from the edited field as an implicit indication of completion of
the editing of the field. We can change the value of the IncIn-
putscheme attribute to InputDelay and the value of the
MovementInputScheme to IncUpdate. Since the input
scheme is InputDelay, the update procedure is not invoked
on every keystroke. However, since the movement scheme is
InputUpdate, it is invoked as soon as the user moves the
insertion point away from the edited field. Similarly, we can set
the value of this attribute to InputValidate, InputSvn- -
tax, or InputDelay to receive semantic, syntax, and no
feedback, respectively, on movement of the insertion point.
These two attributes support great flexibility in choosing the kind
of feedback given by the system. For instance, a user can choose

I*.I\:s: 4-e 10: Attribute Window . .

% FMiect Tenplate:

I

<Elided)
Cwrent Projects:

Figure 11: Changing ElideString
I

Ilid&
m-mt Pr0.kGt.s:

hvcstigating the Heming of- Life
Supsr Faculty
slpw student

Figure 13: Type Inheritance

InvestiSeUnS the haing of Life
h=;z

lJawdry33-31Dembw91
~ilestmes:

1:
goal: Iksisl Protot!p3 of L
planned-tiation: (1 Jarwar
actual&-atim: 0 Jarway
mnths~&layed: 0

2: rime: Sqw Faulty
Person~mthsslaned: 12

god: hp1amt Rototyps
pland_dratim: (1 Jwe 90

b’igure 12: Structural Inhctitance

acadeaic-salay: 0
pixalary: 13ooo
stlJd.mt~budsets:

1:
rwa: swer student
salary: So00

stuCknts&hry: SW0
salay-cost: nm
fringe-benefits: 0
feemissmn: 800
cm&ing~cha4x: 4X0
travel: loo0
suwlies: 0
quipmeat: 0

direct-cost: 26800
irdirectxast: 12528
total-cast: 39128

allccated: 39128
balwe: -9128

Figure 14: Feedback on Keystroke

to get syntactic feedback on every keystroke, semantic feedback on movement of the cursor point, and update feedback only on

63

explicit execution of the Accept command, by setting the
IncInputScheme attribute to Inputsyntax, and
MovementInputSchemeto InputValidate.

This section illustrates facilities provided by Suite for
interactive specification of user interfaces. These features can be
used by the end-users to customize the user interface defined by
the application programmer. More importantly, they can also be
used by the application programmer to interactively define the
user interface.

5. CONCLUSIONS AND FUTURE WORK

Suite is part of a response to a general need for reducing
the effort required to implement interactive applications. It
extends previous work by supporting (i) an input model that pro-
vides users and programmers the flexibility of choosing when a
particular kind of feedback is given in response to the
modification to an active value, (ii) an inheritance model support-
ing both IS-A and IS-PART-OF inheritance, (iii) loose physical
coupling between an application and its UJMS, and (iv) integra-
tion of user interface software with operating systems, distributed
systems, and database programming languages. In this paper, we
have motivated and highlighted the distinguishing features of
Suite by describing in detail a simple, realistic application that
uses them.

We have used our implementation for building user inter-
faces of several experimental applications. In addition to the pro-
ject management tool, we have built a simple “process tool”
which displays the list of current processes on a particular host.
A user can edit the process list to delete processes from that sys-
tem. Similarly, we have built a “line printer tool” which
displays the current line printer queue to the user. We have also
built a distributed multi-user calendar service, which allows users
to enter and display appointments; a prototype student database
application; and a distributed multiuser “accounting service”,
which displays common expenditures of a group of users.

We intend to explore how multiple dialogue managers
can be attached to objects and address the associated issues of
concurrency control and access control. Moreover, we plan to
explore attributes for specifying flexible graphical displays of
data structures.

ACKNOWLEDGEMENTS

Jeff Hostetler. Ray Humphrey, Dan Longacre, and Jyh-
Jong Tsay implemented an early version of the dialogue manager.
Eric Vasilik implemented most of the current version of the Suite
prototype. Rajiv Choudhary is involved in extending it and
measuring and improving its performance. Harry Duin, Joe
Heim, and Harlene Sepulveda helped us test its implementation.
Harlene Sepulveda built the line printer tool.

REFERENCES

VI G.T. Almes, A.P Black, E.D. Lazowska, and J.D. Noe,
“The Eden System: A Technical Overview,” IEEE
Transactions 011 Sofrware Engineering 11:l (January
1985), pp. 43-59.

PI Malcolm P. Atkinson and 0. Peter Buneman. “Types
and Persistence in Database Programming Languages,”
ACM Computer Surveys 19:2 (June 1987).

[31

141

PI

161

[71

I31

f91

DOI

[Ill

WI

Len Bass, Erik Hardy, Reed Little, and Robert Seacord,
“Incremental Development of User Interfaces,”
Proceedings of IFIP TC2IWG 2.7 Working Conference
on Engineering fo<r Human-Computer Interaction, Napa
Valley, August 1989, North-Holland, 1990, pp. 155-176.

Luca Cardelli, “Building User Interfaces by Direct
Manipulation,” ACM SIGGRAPH Symposium on User
Interface Software and Technology, October 1988.

P. Dasgupta, R. C. Chen, S. Menon, M. P. Pearson, R.
Ananthanarayanan, U. Ramachandran. M. Ahamad, R.
J. LeBlanc, W. F. Appelbe, J. M. Bemabeu-Auban, P.
W. Hutto, M. Y. A. Khalidi, and C. J. Wilkenloh “The
Design and Implementation of the Clouds Distributed
Operating System ,” Usenix Computing Systems 3: 1
(Winter 1990) pp. 11-46.

Prasun Dewan, “An Inheritance Model for Specifying
Flexible Displays of Data Structures,” Technical
Report SERC-TR-54-P, Software Engineering Research
Center, Purdue University, November 1989.

Prasun Dewan and Eric Vasilik, “Supporting Objects in
a Conventional Operating System,” Proceedings of the
San Diego Winter ‘89 Usenix Conference, February
1989, pp. 273-286.

Prasun Dewan and Marvin Solomon, “An Approach to
Support Automatic Generation of User Interfaces,”
ACM Transactions on Programming Languages and
Systems 12:3 (to appear in October 1990). Preliminary
version presented at the ACM SIGSOFTISIGPLAN
Software Engineering Symposium on Practical Somare
Development Environments, SIGPLAN Notices 22~1 pp.
150-159 (January 1987).

Prasun Dewan and Eric Vasilik, “An Approach to
Integrating User Interface Management Systems with
Programming Languages,” Proceedings of IFIP
TC2IWG 2.7 Working Conference on Engineering for
Human-Computer Interaction, Napa Valley, August
1989. North-Holland, 1990, pp. 493-514 .

Prasun Dewan and Rajiv Choudhary. “Experience with
the Suite Distributed Object Model,” Proceedings of
IEEE Workshop on Experimental Distributed Systems,
to appear in October 1990.

Scott E. Hudson and Roger Ring, “Implementing a
User Interface as a System of Attributes,” Proceedings
of the ACM SIGSOFTISIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, SIGPLAN Notices 22:l (January 1987)
pp. 143-149.

Dan R. Olsen Jr., Elizabeth P. Dempsey, and Roy
Rogge, “Input Output Linkage in a User Interface
Management System,” Comparer Graphics: SIG-
GRAPH’85 Conference Proceedings 19:3 (July 1985),
pp. 225-234.

64

1131 Jock Ma&inlay, “Automating the Design of Graphical
Presentations of Relational Information,” ACM Tran-
sactions on Graphics 5:2 (April 1986), pp. 110-141.

1141 Brad A. Myers, “Incense: A System for Displaying
Data Structures,” Computer Graphics 17:3 (July 1983),
pp. 115-125.

1151 Brad A. Myers, “Creating User Interfaces Using Pro-
gramming by Example, Visual Programming, and Con-
straints,” ACM Transactions on Programming
Languages and Systems 122 (April 1990). pp. 143-177.

[I61 G. Pfaff, User Interface Management Systems, Springer
Verlag. Englewood Cliffs, NJ. 1985.

(171 Ben Shneiderman, “Direct Manipulation: A Step
Beyond Progr amming Languages,” IEEE Computer
16:8 (Aug 1983), pp. 57-69.

[I81 Michal Young, Richard N. Taylor, and Dennis B.
Troup, “Software Environment Architectures and User
Interface Facilities,” IEEE Transactions on Software
Engineering 14:6 (June 1988), pp. 697-708.

65

