
Reasoning about Object-Oriented
Programs that use Subtypes

(Extended Abstract)

Gary T. Leavens*
Department of Computer Science

Iowa State University, Ames, Iowa 50011 USA
leavens@atanasoff.cs.iastate.edu

William E. Weihl
Laboratory for Computer Science

Massachusetts Institute of Technology, Cambridge, Mass. 02139 USA
weihl@lcs.mit.edu

Abstract

Programmers informally reason about object-oriented
programs by using subtype relationships to classify the
behavior of objects of different types and by letting su-
pertypes stand for all their subtypes. We describe for-
mal specification and verification techniques for such
programs that mimic these informal ideas. Our tech-
niques are modular and extend standard techniques
for reasoning about programs that use abstract data
types. Semantic restrictions on subtype relationships
guarantee the soundness of these techniques.

1 Introduction

The message-passing mechanism of an object-oriented
language such as Smalltalk- [GR83] allows one to
write polymorphic code; i.e., code that works for ob-
jects of many types. However, reasoning about pro-
grams that use message-passing is difficult because

*The work of both authors was supported in part by the
National Science Foundation under Grant CCR-8716884, and
in part by the Defense Advanced Research Projects Agency
(DARPA) under Contract NOO014-89-J-1988. While a gradu-
ate student at MIT, Leavens was also supported in part by a
GenRad/AEA Faculty Development Fellowship, and at ISU he
has been partially supported by the ISU Achievement Founda-
tion.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
@ 1990 ACM 089791-41 l-2/90/0010-0212...$1.50

there may be many different operations that could be
executed by a message send. Furthermore, the same
piece of code may call different operations during dif-
ferent executions.

To obtain the advantage of extensibility promised
by object-oriented methods, specification and verifi-
cation techniques must be modular in the sense that
when new types of objects are added to a program,
unchanged program modules should not have to be re-
specified or reverified.

We present a modular specification and verification
technique for reasoning about message-passing pro-
grams that is based on the concepts of subtype rela-
tionships and nominal iype. Informally, the reasoning
technique can be summarized as follows.

One specifies the data types to be used in the
program along with their subtype relationships.

Functions are specified by describing their effects
on actual arguments whose types are the same as
the types of the corresponding formal arguments;
however, arguments whose types are subtypes of
the corresponding formal argument types are per-
mitted.

Subtype relationships must be verified to ensure
that they have the appropriate semantics. Intu-
itively, if a type S is a subtype of a type T, then
every object of type S must behave like some ob-
ject of type T.

One associates with each expression in the pro-
gram a type, called the expression’s nominal type,
with the property that an expression may only

212 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990

http://crossmark.crossref.org/dialog/?doi=10.1145%2F97945.97970&domain=pdf&date_stamp=1990-09-01

denote objects having a type that is a subtype of
that expression’s nominal type. (These types may
be introduced solely for program verification, or
they may coincide with the types of the program-
ming language.)

l Verification that a program meets its specification
is then the same as conventional verification, de-
spite the use of message-passing. That is, one rea-
sons about expressions as if they denoted objects
of their nominal types.

The key to the soundness of our method is the semantic
requirements on subtype relationships [LeaSO]. The
method has been refined from [Lea89].

The rest of this paper is organized as follows. In
Section 2 we describe the programming language used
in this paper. Next, in Section 3 we present some
background. In Section 4 we describe the problem in
more detail. In Section 5 we present our method, and
in Section 6 we discuss the soundness of our method.
Finally, in Sections 7, 8, and 9, we discuss related work,
future work, and some conclusions.

2 Programming Language

In this paper we use an applicative programming lan-
guage that can observe objects of immutable types by
message-passing. (An immzdable type is an abstract
type whose instances have no time-varying state.)
This is a first step towards reasoning for more real-
istic languages. The language is an extension of the
simply-typed, applicative-order lambda calculus; the
syntax of the language is given in Figure 1. The syn-
tax uses fun instead of A, and a program is a function
from input arguments to outputs. There is no syntax
for implementing types (i.e., classes); in this paper we
will focus solely on programs that use such types and
the specifications of such types. Function identifiers in
programs are written in a slanted font to distinguish
them from message names written in typewriter font.
Function identifiers are statically bound to functions;
message names are dynamically bound as described
below.

Type checking for this language is based on sub-
typing, using techniques from Reynolds’s category
sorted algebras [Rey80] [Rey85]. Each expression is
statically assigned a nominal type, determined from
the information given in type specifications and pro-
gram declarations. The type specifications deter-
mine a partial function ResType, which maps mes-
sage names and tuples of types to expected result
types, and a user-specified reflexive and transitive re-
lation among types, 5, called the subtype relation.

(program) ~=~pfog ((decls) > : (type) =
ex r

1 (ret fun def) (program)

(decls) ::= (decl list)] (empty)
(decl list) ::= (decl)] (decl list} , (decl)

(decl) ::= (identifier) : (type)

(empty) ::=

(expr) ::= (identifier)
1 (message name) ((expr list) >
] (function identifier) ((exprs))
] ((function abstract} > ((exprs) >
I if (expr) then (expr) else (expr) fi

I (bw))

(exprs) ::= (expr list) ((empty)
(expr list) ::= (exprs) I (expr list) , (expr)

(function abstract) ::= fun ((decls) > (expr)

(ret fun def) ::= fun (function identifier)
((decl list) > : (type) = (expr) ;

Figure 1: Programming language syntax.

For example, consider the message-passing expression
add(a,b). The nominal types of the arguments a
and b are given in their declarations, say Fraction
and Integer. The nominal type of the result is then
ResType(add, (Fraction, Integer)). To ensure that
nominal types can be thought of as upper bounds
and that operations of supertypes may be applied to
subtypes, ResType must be monotone in the follow-
ing sense: for all message names g, and for all tuples
of types s’ < ?, if ResType(g,f) is defined, then so
is ResType(g, 3, and ResType(g, 9 5 ResType(g, ‘i!‘).
(This is a constraint on the types used in a program.)
Arguments to functions are allowed to have types that
are subtypes of the declared argument types.

3 Background

In this section we discuss subtype polymorphism, and
how it differs from the polymorphism found in more
conventional languages.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 213

fun sqrt(x:Fraction) : Fraction =
sqrtlter(1 ,x) ;

fun sqrtlter(guess,x:Fraction) : Fraction =
if good(guess ,x>

then guess
else sqrtIter(improve(guess,x), x) fi;

fun good(guess,x:Fraction): Boolean =
lt(abs(sub(x, mul(guess,guess))),

create(Fraction,f,lOOO));
fun improve(guess ,x:Fraction) : Fraction =

meancguess, div(x,guess));
fun mean(a,b:Fraction) : Fraction =

div(add(a,b), 2);

Figure 2: Implementation of the function sqrt.

The polymorphism in Smalltalk- programs is a
result of Smalltalk’s dynamic overloading of message
names. Wadler and Blott’s method dictionaries pro-
vides a good explanation of this style of message pass-
ing [WB89]. A method dictionary is a map from the
names of overloaded operators to the operations spe-
cific to a given type. The method dictionaries are as-
sociated with objects in Smalltalk-80, and a message
send is evaluated by consulting the receiving object’s
method dictionary and invoking the operation with the
given message name. Thus an operation in Smalltalk-
80 can be polymorphic, since a call to it is implicitly
passed the method dictionaries needed to manipulate
objects of different types.

Our language has a more complex form of dynamic
overloading, in which method dictionaries map mes-
sage names to dispatchers, which are mappings from
tuples of types to operations specific to a combination
of argument types. As in the Common LISP Object
System (CLOS) [Kee89], a dispatcher finds an oper-
ation based on the run-time types of all the actual
arguments. For example, the function sqrt of Figure 2
(code adapted from [ASS85, Page 221) is polymorphic,
because the implicit method dictionary passed to sqrt
is defined for the message names It, abs, etc. used
at run-time and because the relevant dispatchers are
defined on tuples of types made from Fraction and
its subtypes, such as Integer. So sqrt may take both
Fraction and Integer arguments.

Cardelli and Wegner have called the kind of poly-
morphism exhibited by the implementation of sqrt in
Figure 2 “inclusion polymorphism” [CW85], although
we prefer the term subtype polymorphism. Subtype
polymorphism is distinguished by two features from
other kinds of parametric polymorphism: the dynamic
binding of operation names to operations based on the

prog (b: Boolean): Integer =
num(sqrt (if b

then 16
else create(Fraction,3.4)
fill

Figure 3: Call to sqrt that shows the general case of
message-passing.

run-time types of their arguments, and the possibility
that a given expression may denote objects with differ-
ent types at run-time. With subtype polymorphism,
it is impossible, in general, to statically determine the
type of object a given expression will denote at run-
time. For example, consider the program of Figure 3.
When evaluating the program’s body, the formal pa-
rameter of sqrt may denote an object either of type
Integer (i.e., 16) or of type Fraction (i.e., 3/4), de-
pending on the program’s input. There may be dif-
ferent implementations of the operations add, etc. for
each combination of argument types. This makes it
difficult to reason about a program that uses subtype
polymorphism.

4 The Problem

Our goal is to obtain a modular specification and verifi-
cation method for programs that use message-passing
and subtype polymorphism. Even if formal verifica-
tion of such programs is not, practical, the desire for
modularity in large programs makes it, important to
give careful informal specifications of functions and
to reason informally about their use. A better un-
derstanding of formal techniques for specification and
verification can serve as a guide to such informal rea-
soning.

An obvious approach is to adapt traditional reason-
ing techniques. For example, the traditional, parame-
terized specification of sqrt would have as parameters
a type T, an object x of type T, and functions It, abs,
sub, mul, and div that would allow the square root
to be computed. (See, for example, [Gut80, Page 211,
[Win83, Section 4.2.31, and [Gog84, Page 5371.) The
functions It, abs, etc. can be grouped into a single
parameter: a method dictionary. It is necessary to
specify the behavior of the functions in this method
dictionary, since otherwise one cannot prove that the
implementation of sqrt is correct. The problem with
this approach is that to use such a specification dur-
ing verification, the actual method dictionary must be
known statically, so that one can verify its behavior.

214 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990

fun sqrt(x: Fraction) returns(r:fiaction)
requires 0 5 x
ensures (0 2 r) & (l(r * r) - xl 2 (l/100))

Figure 4: Specification of the function sqrt.

However, for a language like Smalltalk-80, the method
dictionary cannot, in general, be determined statically
during verification of a call such as the one in Figure 3.
For our language or CLOS the method dictionary has
dispatchers for all combinations of argument types. So
the use of traditional reasoning techniques leads to an
exhaustive case analysis that must be repeated when
new subtypes are introduced. In other words, this ap-
proach does not allow modular verification.

5 Overview and Example of the
Method

Our approach extends traditional specification and
verification techniques to cope with subtype polymor-
phism in a modular fashion. We first discuss specifica-
tion of functions and abstract types, and then program
verification.

5.1 Function Specifications

Our function specification technique is illustrated by
the specification of sqrt given in Figure 4. To ensure
modularity, the behavior of sqrt is described explic-
itly only for fixed types of arguments and results; that
is,’ for the nominal types of the formals. But this
specification is implicitly polymorphic, since the ac-
tual arguments passed to a call of sqrt may have types
that are subtypes of the corresponding nominal ar-
gument types. For example, sqrt may take Integer
arguments, since Integer is a subtype of Fraction.

The ensures clause (i.e., the post-condition) of sqrt
in Figure 4 states how the value of the result is related
to the values of the argument, assuming that it is of
type Fraction. The requires clause describes the
pre-condition of sqrt. Such a specification is a two-
tiered [Win871 or abstract-model style [BJ82] specifica-
tion. In such specifications, the characteristics, or ab-
s2racl valves, of objects are described mathematically,
and the vocabulary of abstract values is used to spec-
ify functions and the operations of abstract types. Fol-
lowing Wing we describe the abstract values of types
using Larch traits [GH86b]. The symbols “i”, “I . I”,
a*,, u-n

7 , and “/” used in the pre- and post-condition
are the names of trait functions and are described in

the trait IntAndRat (Figure 5). Trait functions can be
used in assertions but not in programs.

In the trait IntAndRat, the included traits Integer

and Rational are found in [GH86a]. The names and sig-
natures of additional trait functions are described after
the keyword introduces. The constrains section is
an equational specification of the trait functions. The
terms in the exempts section are undefined.

For a function specification to be meaningful when
the arguments have a subtype of their specified types,
the specifier of a subtype must ensure that the trait
functions used to describe the abstract values of a su-
pertype can also be applied to the abstract values of
each of its subtypes. In essence, the meaning of a
specification is given by dynamic overloading for trait
functions’ (similar to message-passing). For example,
consider the call sqrt(i6), in which the abstract value
of the argument is 16. Because of the overloaded trait
functions, a description of the result is obtained by
substituting 16 for x in the post-condition, obtaining
the formula “(0 < r) & (I(r * r) - 161 2 (l/100))“.
Hence the value of the result r must be non-negative
and sufficiently close to 4. Since the trait functions
apply to subtypes, the resulting formula describes the
result equally well, whether it is a Fraction or an
Integer. Similarly, the pre-condition is meaningful
for arguments of type Integer as well as arguments of
type Fraction.

An implementation of sqrt satisfies its specification
if, whenever the arguments satisfy the pre-condition,
it always terminates and the value of the result, when
substituted for the formal result identifier (r), satisfies
the post-condition.

5.2 Type Specifications

Type specifications describe the behavior of each type
used in a program and also specify subtype relation-
ships. The specification of a subtype relationship in-
volves stating how each object of the subtype simulates
the objects of its supertypes.

The specifications of the types Fraction and
Integer appear in Figures 6 and 7, respectively. The
specification of a type has a header followed by spec-
ifications for each of the operations provided by the
type. The operation specifications are read like func-
tion specifications.

In the header of a type specification the operations
are divided into class and instance operations; class
operations are typically used to create new instances
of a type, and instance operations are called by sending

‘The meaning of a specification is not given by coercing the
abstract values of arguments, as in [Le&g].

October 21-25, 1990 ECOOPIOOPSLA ‘90 Proceedings 215

IntAndRat: trait
includes Integer,

Rational with [rat1 for 1, rat0 for 0]
introduces #/#: Int,Int + R

gcd: Int,Int + Int
I#I: R + R
numerator, denominator: R --f Int
]#I, numerator, denominator: Int + Int

#+#, #-#, #*#, #/#: R,Int + R
#+#, #-#, #*#, #/#: I&R -+ R
#==#: R,R + Boo1
#==#: Int,Int -+ Boo1

#==#, #i#, #1#, #>#, #<#
: R,Int 4 Boo1

#==#, #I#, #2#, #>#, #<#
: Int,R + Boo1

constrains I# 1, gcd, numerator, denominator,
#==#, #*#: R,R + R,
#/#: Int,Int --t R

so that for all [n,m,d: Int, f,g,h: R]
(l/l) = rat1
(n/d) * (d/n) = rat1

((n+m)/d) = (n/d) + b-44
In] = if n<O then -n else n fi
If] = if f<O then -f else f fi
gcd(n,m) = gcd(m,n)
gcd(n,m) = gcd(-n,m)

gcd(n,O) = Inl
gcd(n*d, m*d) = gcd(n,m)*d
((numerator(f) = n)

& (denominator(f) = d))
= (((n/d) = f) & (d > 0)

& (gcd(n,d) = 1))
numerator(n) = n
denominator(n) = 1
(f == g) =

((numerator(f) = numerator(g)) &
(denominator(f) = denominator(g)))

(n == m) = (n = m)
(f == n) = (f == (n/l))
(n == f) = ((n/l) == f)
f+n=f+(n/l)
n+f=(n/l)+f
% and so on for -, *, /, etc.

exempts for all [n,m: Int] n/O, n/(0/m),

(O/4/0

Figure 5: The trait IntAndRat.

Fraction immutable type
class ops create
instance ops num, denom, add, sub, mul, div,

abs, It, equal
based on sort R from trait IntAndRat

OP

OP

OP

OP

OP

OP

OP

OP

OP

oP

create(c: FractionClass, n,d: Integer)
returns(f: Fraction)

requires ‘(d = 0)
ensures f == n/d

num(f: Fraction) returns(i: Integer)
ensures i = numerator(f)

denom(f: Fraction) returns(i: Integer)
ensures i = denominator(f)

add(fl,Q Fraction) returns(f: Fraction)
ensures f == (fl + f2)

sub(fl,fl: Fraction) returns(f: Fraction)
ensures f == (fl - f2)

mul(fl,f2: Fraction) returns(f: Fraction)
ensures f == (fl * f2)

div(fl,fz: Fraction) returns(f: Fraction)
requires -(f2 == O/l)
ensures f == (fl / f2)

abs(f: Fraction) returns(g: Fraction)
ensures g == If]

lt(fl,f2: Fraction) returns(b: Boolean)
ensures b = (fl < f2)

equal(fl,fZ: Fraction) returns(b: Boolean)
ensures b = (fl == f2)

Figure 6: Specification of the type Fraction.

messages to instances. The header of a type’s speci-
fication includes two additional clauses: a based on
clause, and an optional subtype of clause. The based
on clause describes the abstract values of the objects of
the type, by naming a sort and a Larch trait that spec-
ifies that sort. The abstract values of objects of type
Fraction are elements of the sort R, which is taken
from the trait IntAndRat. The trait IntAndRat, which
is described in Figure 5, relates the included traits In-

teger and Rational by an additional infix trait function
/ that takes two integers and returns a fraction. The
trait IntAndRat also specifies mixed mode trait func-
tions; these are necessary so that the specification of
a binary operation says what happens when only one
argument is an object of a subtype. It is hoped that in
the future the mixed mode trait functions can be spec-
ified more succinctly, perhaps by using order-sorted
algebra [GM87]. 0 ne can always define them by first
coercing all arguments to the supertype.

The optional subtype of clauses describe a relation

216 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

Integer immutable type
subtype of Fraction by n simulates n/l
class ops one
instance ops num, denom, add, sub, mul, div

abs, It, equal
based on sort Int from trait IntAndRat

op one(c:IntegerClass) returns(i: Integer)
ensures i = 1

op num(i: Integer) returns (j : Integer)
ensures j = i

op denom(i: Integer) returns(j: Integer)
ensures j = 1

op add(il,i2: Integer) returns(i: Integer)
ensures i = (il + i2)

op sub(il,i2: Integer) returns(i: Integer)
ensures i = (il - i2)

op mul(il,i2: Integer) returns(i: Integer)
ensures i = (il * i2)

op div(il,i2: Integer) returns(f: Fraction)
requires l(i2 = 0)
ensures f == (il / i2)

op abs(i: Integer) returns(j: Integer)
ensures j = [iI

op lt(il,i2: Integer) returns(b:Boolean)
ensures b = (il < i2)

op equal(il,i2: Integer) returns(b:Boolean)
ensures b = (il = i2)

Figure 7: Specification of the type Integer.

October 21-25, 1990

,

There is a relation ??T for each type T. The relation
7?$ says how the abstract values of objects of each type
S _< T are to be viewed as objects of type T. For ex-
ample, for each integer value 7t, n RFraction n/l, as
specified in Integer’s subtype of clause. By conven-
tion, the following additional relationships are implicit
in such specifications. For each type T, the relation %?T
includes the identity relation on the abstract values of
objects of type T and all relations RS such that S 5 T;
for example, the fraction n/d is related by RFraction
to itself and RFraction relates the integer n to itself.
Furthermore, the relationships compose transitively in
the following sense: if S 5 T and a RS b %?T c, then
a%$c.

The family R is used to verify that 2 has the neces-
sary semantic properties to be a subtype relation. The
relation 5 can also be viewed as summarizing informa-
tion about R. That is, if S 2 T, then it is required that
for every object of type S, its abstract value is related
by RT to the abstract value of some object of type
T, and that R has the semantic properties described
below. (In the programming language the relation 5
is also used by the type-checker.)

The binary operations provided by the type Integer
have Integer as the type of their second argument,
and most have Integer as the type of their result.
Thus, for example, if a and b denote objects of type
Integer, then add(a,b) must denote an Integer.
The operation specification that determines the behav-
ior of an invocation of add is the most specific specifica-
tion whose argument types are supertypes of the types
of the actual arguments, because message-passing is
used at run-time. For example, the result of add(a,b)
need only satisfy the specification of the add opera-
tion of Integer if a and b denote Integers. On the
other hand, if a denotes a Fraction, then the result
of add(a,b) is determined by the specification of the
add operation of Fraction. (The semantic restrictions
on subtype relationships ensure that these behaviors
are related.) Such specifications would be well suited
for the specification of CLOS programs [Kee89], where
generic operations can be defined for various combina-

ECOOP/OOPSLA ‘90 Proceedings 217

_< among type symbols (the subtype relation), and a
family of relations R between the abstract values of
types (the simulation relation). For each supertype
listed, one specifies for each object x of the subtype at,
least one object of the supertype that z “simulates.”
For example, the specification of the type Integer
states that Integer is a subtype of Fraction, and
that an integer with value n simulates a fraction with
value n/l.

Formally, the relation 2 is the reflexive, transitive
closure of the subtype of relationships given in the
type specifications.

tions of argument types.
The pre- and post-conditions of operations must not

use equality (=), except between terms of visible type
- built-in types for which no subtypes are allowed,
such as Boolean and Integer. Assertions that satisfy
this condition are called subtype-constraining. Techni-
cally, this restriction is needed to ensure the soundness
of program verification. However, the restriction is
also intuitively necessary. Consider the pre-condition
of the div operation in Figure 6. If the pre-condition
were “$f2 = O/l)” instead of “7(f2 == O/l)“, then
it would be satisfied when f2 denoted the Integer
0, since the abstract value 0 is not the same as O/l;
this is probably not what the specifier meant. The
trait function “==” does not test equality of abstract
values; thus “0 == (O/l)” is true, because “numera-
tor(0) = 0” and “denominator(O) = l”, as specified
in the trait IntAndRat. Equality (=) is not a trait
function and cannot be redefined by subtypes. As an-
other example, if the post-condition of div had been
stated as “f = (fl / f2)“, then the abstract value of
div(div(l,2),div(l,4)) would have to be 2/l (a
Fraction), not 2 (an Integer).

Inheritance of specifications by a subtype specifica-
tion would be a useful extension to a practical specifi-
cation language. For example, the specifications of the
Integer operations num, denom and div are quite sim-
ilar to their specification for Fraction arguments and
could perhaps be inherited. One could then specify a
subtype by specifying only the subtype’s class opera-
tions and those instance operations that are added by
the subtype or that need to be further constrained.

5.3 Verification

Our approach to modular verification is to allow one
to reason about expressions based on nominal type
information.

Subtyping does not enter into the verification of a
program directly. The only interaction is that the
specified relation 5 must be verified to have certain
properties (see Section 6 below) and the type system
must ensure that each expression can only denote ob-
jects whose type is a subtype of the expression’s nomi-
nal type. This separation is achieved by ensuring that
the trait functions used to describe the abstract val-
ues of a supertype also apply to subtypes (with the
appropriate semantics).

Although our language is applicative, we use a Hoare
logic for program verification, because we are ulti-
mately interested in verification of imperative pro-
grams.

Hoare-triples are written P {v +- E} Q and consist
of a pre-condition P, a result identifier v, an expres-

sion E, and a post-condition Q. (The name of the re-
sult identifier can be chosen at will, but cannot occur
free in the pre-condition.) In an applicative language,
expressions have results but do not change the envi-
ronment in which they execute. So the post-condition
describes the environment that results from binding
the result identifier (v), which has a nominal type that
is a supertype of E’s nominal type, to E’s value. In-
tuitively, P {v +- E} Q is true if whenever P holds,
then the execution of E terminates, and the value of
E satisfies Q.

To simplify the verification system, the following
rule is used to verify a message-passing expression
or function call that has general expressions as argu-
ments.

I- P {y c (fun (Z : $1 g(x’)) (,??)} Q

t-p k--g(E)) Q (1)

That is, to prove the desired triple (on the bottom)
holds, one must show that the post-condition Q follows
when the actual argument expressions are replaced by
identifiers bound to the expressions’ values by a func-
tion abstract. The names and types of these identifiers
must be chosen so an appropriate axiom for the inner
message send or function call will apply, and so that
the application on the top type-checks. For example,
to prove the following triple

true {f t add(3.4)) f == 7 (2)

where f has nominal type Fraction, it suffices to prove
the following triple (with the parts displayed verti-
tally) .

true
{f t (fun (fl,f2) add(fl,f2)) (3,411 (3)
f==7

With the above rule, the specifications of each type’s
operations and each function specification can be taken
as simple axioms. For example, there are two axioms
for the message add:

I- true {f t add(f 1 ,f2>} f == (fl + f2) (4)

k true {i + add(il,i2)) i = (ii + i2). (5)

The specification of sqrt generates the following axiom:

02x
I- {r t sqrt(x)}

(0 5 rMl(r * r) - xl 5 (WOO))
(6)

These axioms only apply when the actual argument
expressions and the result identifier are the same as
the formals used in the specifications; hence one must
also use the previous rule, in general.

218 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

The axiom used for a message-passing expression
during verification is determined by the nominal types
of the argument expressions (that is, using static in:
stead of dynamic overloading).

Because of the above simplifications, the following
inference rule2 does the real work for applications.
This rule would be different in a language without sub-
typing.

I- RI & --- 8~ Rn {Y + Eo) Q[W
I- P {VI + El) (&[n/xl])[x’lz7,

(numerator(f) = 0) * (f = O/l), (11)

where “f” has nominal type Fraction. This implica-
tion can be proved from the axioms of the trait In-
tAndRat, which means that if “f” denotes a Fraction,
then the implication is valid. However, it is not valid
if “f” denotes the Integer with value “0”. A solution
is to use %=” instead of the second “=” to obtain a
subtype-constraining assertion.

I- P {vn + En} (Rn[vn/xn])[W
t-P(y+(fm (x':s) Eo) (El,...,E,)}Q

The other rules of the logic are fairly straightforward
or standard.

(7)
The rule as a whole says that to prove that the de-
sired triple holds, one chooses conjuncts R; that are
sufficient to prove the desired post-condition from the
body of the function abstract. Then one shows that
these conjuncts characterize the argument values. For
example, to prove Formula (3), it suffices to prove the
following triples, where il and i2 have nominal type
Integer.

(fl == 3) & (f2 == 4)
{f t add(fi,f2)}
f==7

(8)

true {ii + 3) ii == 3 (9)
true {i2+4} i2==4 (10)

The assertions Ri may contain the formal argu-
ment identifiers, xi, and thus may be written using
the trait functions defined on the types Si. The as-
sertions &[vi/xi] will type-check because the nominal
type of vi is the nominai type of Ei, which must be a
subtype of Si (i.e., the type of xi). It is crucial for the
soundness of this rule that whenever Ri[vi/x;] holds,
then fi holds as well. (The requirements placed on
trait functions for subtypes in Section 6 ensure that
this condition is met.) The idea is that @[vi/xi] char-
acterizes the argument Ei at its nominal type (the type
of vi), while the type of xi is a supertype of Ei’s type.

An unusual feature of our formal system is that the
rule of consequence

F- (P 3 Pl), I- 4 {y + El &I, I- (Ql * Q)
k P {Y + El Q

2The notation (Ri[Vi/Xi])[Sf/Zj means the formula Ri with
Vi replacing Xi throughout and then each Xi substituted for Zi.
Fresh identifiers z’ are used to hide bindings of x’ in the asser-
tions that characterize the arguments to the function abstract,
so that in reasoning about Eo the proper scope applies. That
is, bindings of the Xi in P or Q do not mean the same Xi that
are local to the function abstract. The identifiers Zi must be
fresh and the result identifier J must not be one of the Xi; these
restrictions avoid capture problems.

is only valid when the assertions involved are subtype-
constraining. This restriction is necessary, as can be
seen by the following example. Consider the implica-
tion

Our verification method allows a function implemen-
tation to be verified once, without considering the dif-
ferent combinationsof actual argument types. Instead,
a function implementation is verified as if the actuals
had the types specified for the formals. For example,
the correctness of an implementation of sqrt would be
verified by reasoning about the formal argument x as
if it were a fraction. Such a verification guarantees
correctness for arguments of a subtype, because of the
semantic restrictions on subtype relations. (Termina-
tion of recursive functions must be verified separately.)

6 Soundness of the Method

The soundness of the verification method discussed
above rests on the syntactic restrictions on ResType
and 5, the semantic restrictions on <_ and R and the
following technical results [LeaSO]:

Each expression of nominal type T can only de-
note objects of a type S 5 T. This is ensured
by type checking and the syntactic constraints on
type specifications.

An assertion P characterizing the values of actual
parameters vi holds for the corresponding formals
xi, provided P with the X; substituted for the vi
type checks. This is ensured by dynamic over-
loading of trait functions. For example, suppose
“numerator(j) = 3” describes an actual parame-
ter j, to which the formal f is bound; then “nu-
merator(f) = 3” also holds.

Subtype-constraining assertions that can be
proved from the traits used in a type specifica-
tion remain valid when an identifier x is allowed
to refer to the values of a subtype of the nominal
type of x. This property is ensured by semantic
constraints on R. For example, the implication

(numerator(f) = 0) 3 (f == O/l), (12)

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 219

(1/1,3/l)
add

t 2/l

I

R(Fraction,Fraction)

t
RFract ion

(1>3)
add

z- 2

Figure 8: The substitution property for add.

is valid even if the value of f is an Integer.

operations, but also for assertions and programs. In
the study of the lambda calculus, this kind of theorem
is known as the fundamental theorem (of logical rela-
tions) [Sta85] [Mit86]. Showing that the substitution
property holds for assertions is crucial to proving the
soundness of the verification system.

Disciplined use of subtypes cannot lead to surprising
program behavior, because the substitution property
also holds for program expressions and recursively de-
fined program functions. Indeed, the relationships are
preserved3 even if functions and operations are per-
mitted to be nondeterministic [LeaSO].

l If q RT r, then a subtype-constraining assertion
P characterizing the value of x : T holds when x
is bound to q if and only if P holds when x is
bound to T. This property is ensured by semantic
constraints on R.

The most important constraint on the family R is
the substitution property - that simulation relation-
ships are preserved by both message-passing and the
trait functions. For example, the family IR described
in the specifications of Integer and Fraction has
the substitution property, since the following relation-
ships, among others, hold:

add(l, 3) RFraction add(l/l, 3/l) (13)

sub(l, 3) RFraction sub(l/l, 3/l) (14)
numerator(3) RInteger numerator(3/1) (15)

The first relationship is illustrated by the commutative
diagram in Figure 8 (assuming that add for Fractions
returns a Fraction). These relationships can be veri-
fied using the specifications of Integer and Fraction,
regardless of the implementations of those types.

More formally, R has the substitution property if
and only if the following holds: let T be a type, and
let g, v’, and v’ be tuples of types such that u’s Z? and
v’ < g; then for all tuples of values 4’ : v’ and r’ : v’
such that $Rs r’, and for all trait function symbols or

message names g such that ResType(g, 3) = T,

da RT g(‘? (16)

A family ‘R constructed as described above is a sim-
ulation relation if it satisfies the substitution property.
The construction of ‘R ensures other desirable proper-
ties. Bruce and Wegner have stated a similar list of
properties for their coercer functions [BW87], as does
Reynolds [Rey80].

The semantics constraints on 5 require that the
specified family R is a simulation relation.

If R is a simulation relation, then the substitution
property holds not just for single trait functions and

7 Related Work

Ours is the first formal verification technique for
object-oriented programs that use message-passing
that has been proven to be sound [Lea891 [LeaSO].

Cardelli was the first to formally describe subtype
relationships and type checking for a fixed set of types
[Car84]. Our work generalizes Cardelli’s to abstract
data types. That is, given appropriate specifications
of the types Cardelli discusses, the subtype relation-
ships Cardelli describes for immutable record and vari-
ant types are also subtype relationships in our sense
[LeaSO]. However, our notion of subtypes is based on
type specifications, and thus can handle arbitrary im-
mutable abstract types.

Bruce and Wegner [BW87] use coercion functions
with a substitution property, which are like our sim-
ulation relations, to give a definition of subtype rela-
tions. However, they do not discuss reasoning about
object-oriented programs. Using relations instead of
functions allows us to handle an abstract type whose
space of abstract values is not reduced (in the sense
that objects with two distinct abstract values may be-
have the same). Examples can be found in [LeaSO].
Bruce and Wegner also do not handle operations that
may fail to terminate.

For the language Eiffel [Mey88], Meyer requires that
the pre-condition of an instance operations of a su-
perclass T must imply the pre-condition of the in-
stance operation of the instance operation of each sub-
class of T with the same name; furthermore, the post-
condition of the subclass’s operation must imply the
post-condition of T’s operation. However, assertions
for Eiffel specifications are written using a type’s op-
erations. A subclass in Eiffel can redefine the oper-
ations of a superclass, so that while the implications
among the pre- and post-conditions may be valid, the

3The relationships of R are preserved by a nondeteministic
operation if for each possible result on the left hand side of
Formula (16), there is some possible result on the right hand
side for which the required relationship holds.

220 ECOOPIOOPSLA ‘90 Proceedings October 21-25, 1990

behavior of instances of the subtype may be surpris-
ing. The extreme of this problem occurs for deferred
types: types for which one or more of the operations
are not implemented (i.e., their implementation is de-
ferred to a subclass). Consider a class D where all the
operations are deferred. The pre- and post-conditions
of the operations of D are written using the operations
of D. But the operations of D are not implemented, so
the assertions that are used to define these operations
are meaningless. We can specify such deferred types,
because the trait functions used to specify operations
are specified independently of the operations.

P. America has independently developed a definition
of subtype relationships [Ame89]. Types are specified
by describing the abstract values of their instances,
and the post-condition of each operation relates the
abstract values of the arguments to the abstract value
of the result. The “trait functions” used to describe
a supertype’s abstract values need not be defined for
the subtype’s abstract values. Thus, for a subtype
relationship, America requires a “transfer function”,
f, that maps the abstract values of the subtype to
the abstract values of the supertype. Furthermore, for
each instance operation of the supertype, it is required
that

Pre(Super) o f + Pre(Sub) (17)
Post(Sub) + Post(Super) o f (18)

where the transfer function f is used to translate as-
sertions of the supertype so that they apply to the ab-
stract values of the subtype. In practice, the above re-
quirements often mean that the transfer function must
have a substitution property with respect to the pro-
gram operations. As with Reynolds and Bruce and
Wegner, since f must be a function, the set of ab-
stract values must be reduced, otherwise there might
not be a transfer function.

America’s definition of subtyping handles mutable
types, but not aliasing. America’s type specifications
do not have class operations, they only have instance
operations. The lack of class operations makes it diffi-
cult to specify types whose objects are created in one of
several states. Because of the lack of class operations,
America’s notion of subtype is identical to the notion
of refinement. A type S is a refinement of T if each
implementation of S is an implementation of T. We al-
low class operations but do not require that a subtype
implement the class operations of its supertypes. So
for us, a type can be a subtype without being a refine-
ment, although a refinement is necessarily a subtype.

8 Future Work

One area of future work is extending our approach
to deal with mutable types, Also needed for practical
use are symbolic methods for proving subtype relation-
ships. Another area is the verification of implementa-
tions of classes that use inheritance. Finally, programs
that test the types of objects are currently beyond the
capabilities of our verification method. The problem
is that functions that test argument types violate data
abstraction and can thus behave differently on differ-
ent types of arguments.

9 Conclusions

We have described, and illustrated with a simple ex-
ample, a method for specifying and verifying object-
oriented programs that use subtypes and message-
passing. This method applies directly to applicative
languages with immutable data types, but can be ea.+
ily extended to handle assignments.

Since subtyping imposes strong conditions on the
behavior of the types involved, it seems necessary to
design subtypes with subtyping in mind. Such strong
conditions also seem necessary for the soundness of
modular program verification, so that one can reason
about subtypes implicitly. Hence, we suggest that sub-
type relationships should be declared, rather than in-
ferred on the basis of structural information such as
signatures [BHJL86] or subclass (inheritance) relation-
ships among implementations [BDMN73].

Reasoning based on subtyping and nominal type in-
formation seems to be used informally by programmers
working with object-oriented languages [Sny86]. How-
ever, it is important for programmers to recognize that
subtyping is a rather strong behavioral constraint that
is independent of subclassing.

The principal advantage of our approach is that it
allows modular reasoning. Functions are specified only
once, and the form of a function specification is inde-
pendent of subtype relationships. In addition, the ver-
ification of a function implementation proceeds as if
the actual arguments’ types are the same as the types
of the formal arguments. Therefore, new subtypes may
be added to a program without affecting function spec-
ifications or the correctness of their implementations.

10 Acknowledgements

Thanks to Barbara Liskov for urging us to describe
simulation as a relationship among abstract values
that is specified along with types. Thanks to John
Guttag for suggesting the use of dynamic overloading

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 221

for specifications. Thanks to Kelvin Nilsen, William
Cook, T. B. Dinesh, Carl Waldspurger, and the refer-
ees for comments on various drafts.

References

[Ame

[ASS851

[BDMN73]

[BHJL86]

[BJ82]

[BW87]

[Car841

[CW85]

Pierre America. A behavioural approach
to subtyping in object-oriented program-
ming languages. Technical Report 443,
Philips Research Laboratories, Neder-
landse Philips Bedrijven B. V., January
1989.

Harold Abelson, Gerald Jay Sussman, and
Julie Sussman. Structure and Interpre-
tation of Computer Programs. The MIT
Press, Cambridge, Mass., 1985.

Graham M. Birtwistle, Ole-Johan Dahl,
Bjorn Myhrhaug, and Kristen Nygaard.
SIMULA Begin. Auerbach Publishers,
Philadelphia, Penn., 1973.

Andrew Black, Norman Hutchinson, Eric
Jul, and Henry Levy. Object struc-
ture in the Emerald system. ACM SIG-
PLAN Notices, 21(11):78-86, November
1986. OOPSLA ‘86 Conference Proceed-
ings, Norman Meyrowitz (editor), Septem-
ber 1986, Portland, Oregon.

Dines Bjorner and Cliff B. Jones. Formal
Specificalion and Software Development.
Prentice-Hall International, London, 1982.

Kim B. Bruce and Peter Wegner. An
algebraic model of subtype and inher-
itance. To appear in Database Pro-
gramming Languages, Francois Bancilhon
and Peter Buneman (editors), Addison-
Wesley, Reading, Mass., August 1987.

Luca Cardelli. A semantics of multiple in-
heritance. In D. B. MacQueen G. Kahn
and G. Plotkin, editors, Semantics of Data
Types: International Symposium, Sophia-
Antipolis, France, volume 173 of Lecture
Notes in Computer Science, pages 51-66.
Springer-Verlag, New York, N.Y., June
1984. A revised version of this paper ap-
pears in Information and Computation,
volume 76, numbers 2/3, pages 138-164,
February/March 1988.

Luca Cardelli and Peter Wegner. On un-
derstanding types, data abstraction and

[GHSSa]

[GH86b]

[GM871

Kh841

[GR83]

[Gut801

[Kee89]

[Lea891

[LeaSO]

PW81

polymorphism. ACM Computing Surveys,
17(4):471-522, December 1985.

J. V. Guttag and J. J. Horning. A Larch
shared language handbook. Science of
Computer Programming, 6:135-157, 1986.

J. V. Guttag and J. J. Horning. Report
on the Larch shared language. Science of

Computer Programming, 6:103-134, 1986.

Joseph A. Goguen and Jose
Meseguer. Order-sorted algebra solves the
constructor-selector, multiple representa-
tion and coercion problems. Technical Re-
port CSLI-87-92, Center for the Study of
Language and Information, March 1987.

Joseph A. Goguen. Parameterized
programming. IEEE Transactions on
Software Engineering, SE10(5):528-543,
September 1984.

Adele Goldberg and David Robson.
Smalltalk-80, The Language and its Im-
plementation. Addison-Wesley Publishing
Co., Reading, Mass., 1983.

John Guttag. Notes on type abstractions
(version 2). IEEE Transactions on Soft-
ware Engineering, SE6(1):13-23, January
1980. Version 1 in Proceedings Specifi-
cations of Reliable Software, Cambridge,
Mass., IEEE, April, 1979.

Sonya E. Keene. Object-Oriented PTO-
gramming in Common Lisp. Addison
Wesley, Reading, Mass., 1989.

Gary Todd Leavens. Verifying object-
oriented programs that use subtypes.
Technical Report 439, Massachusetts In-
stitute of Technology, Laboratory for
Computer Science, February 1989. The
author’s Ph.D. thesis.

Gary T. Leavens. Modular verification of
object-oriented programs with subtypes.
Technical Report 90-09, Department of
Computer Science, Iowa State University,
July 1990.

Bertrand Meyer. Object-oriented Software
Construction. Prentice Hall, New York,
N.Y., 1988.

222 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

[Mit86] John C. Mitchell. Representation inde- [Win871 Jeannette M. Wing. Writing Larch inter-
pendence and data abstraction (prelimi- face language specifications. ACM Trans-
nary version). In Conference Record of actions on Programming Languages and
the Thirteenth Annual ACM Symposium Systems, 9(1):1-24, January 1987.
on Principles of Programming Languages,
St. Petersburg Beach, Florida, pages 263-
276. ACM, January 1986.

[~YW John C. Reynolds. Using category the-
ory to design implicit conversions and
generic operators. In Neil D. Jones, editor,
Semantics-Directed Compiler Generation,
Proceedings of a Workshop, Aarhus, Den-
mark, volume 94 of Lecture Notes in Com-
puter Science, pages 211-258. Springer-
Verlag, January 1980.

John C. Reynolds. Three approaches to
type structure. In Hartmut Ehrig, Chris-
tiane Floyd, Maurice Nivat, and James
Thatcher, editors, Mathematical Founda-
tions of Software Development, Proceed-
ings of the International Joint Conference
on Theory and Practice of Software De-
velopment (TAPSOFT), Berlin. Volume
1: Colloquium on Trees in Algebra and
Programming (CAAP ‘85), volume 185 of
Lecture Notes in Computer Science, pages
97-138. Springer-Verlag, New York, N.Y.,
March 1985.

Pw861 Alan Snyder. Encapsulation and in-
heritance in object-oriented programming
languages. ACM SIGPLAN Notices,
21(11):38-45, November 1986. OOPSLA
‘86 Conference Proceedings, Norman Mey-
rowitz (editor), September 1986, Portland,
Oregon.

[Sta85] R. Statman. Logical relations and the
typed X-calculus. Information and Con-
trol, 65(2/3):85-97, May/June 1985.

[WB89] Philip Wadler and Stephen Blott. How to
make ad-hoc polymorphism less ad hoc. In
Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Pro-
gramming Languages, pages 60-76. ACM,
January 1989.

[Win831 Jeannette Marie Wing. A two-tiered ap-
proach to specifying programs. Technical
Report TR-299, Massachusetts Institute
of Technology, Laboratory for Computer
Science, 1983.

October 21-25, 1990 ECOOPlOOPSLA ‘90 Proceedings 223

