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Abstract 

Programmers informally reason about object-oriented 
programs by using subtype relationships to classify the 
behavior of objects of different types and by letting su- 
pertypes stand for all their subtypes. We describe for- 
mal specification and verification techniques for such 
programs that mimic these informal ideas. Our tech- 
niques are modular and extend standard techniques 
for reasoning about programs that use abstract data 
types. Semantic restrictions on subtype relationships 
guarantee the soundness of these techniques. 

1 Introduction 

The message-passing mechanism of an object-oriented 
language such as Smalltalk- [GR83] allows one to 
write polymorphic code; i.e., code that works for ob- 
jects of many types. However, reasoning about pro- 
grams that use message-passing is difficult because 
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there may be many different operations that could be 
executed by a message send. Furthermore, the same 
piece of code may call different operations during dif- 
ferent executions. 

To obtain the advantage of extensibility promised 
by object-oriented methods, specification and verifi- 
cation techniques must be modular in the sense that 
when new types of objects are added to a program, 
unchanged program modules should not have to be re- 
specified or reverified. 

We present a modular specification and verification 
technique for reasoning about message-passing pro- 
grams that is based on the concepts of subtype rela- 
tionships and nominal iype. Informally, the reasoning 
technique can be summarized as follows. 

One specifies the data types to be used in the 
program along with their subtype relationships. 

Functions are specified by describing their effects 
on actual arguments whose types are the same as 
the types of the corresponding formal arguments; 
however, arguments whose types are subtypes of 
the corresponding formal argument types are per- 
mitted. 

Subtype relationships must be verified to ensure 
that they have the appropriate semantics. Intu- 
itively, if a type S is a subtype of a type T, then 
every object of type S must behave like some ob- 
ject of type T. 

One associates with each expression in the pro- 
gram a type, called the expression’s nominal type, 
with the property that an expression may only 
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denote objects having a type that is a subtype of 
that expression’s nominal type. (These types may 
be introduced solely for program verification, or 
they may coincide with the types of the program- 
ming language.) 

l Verification that a program meets its specification 
is then the same as conventional verification, de- 
spite the use of message-passing. That is, one rea- 
sons about expressions as if they denoted objects 
of their nominal types. 

The key to the soundness of our method is the semantic 
requirements on subtype relationships [LeaSO]. The 
method has been refined from [Lea89]. 

The rest of this paper is organized as follows. In 
Section 2 we describe the programming language used 
in this paper. Next, in Section 3 we present some 
background. In Section 4 we describe the problem in 
more detail. In Section 5 we present our method, and 
in Section 6 we discuss the soundness of our method. 
Finally, in Sections 7, 8, and 9, we discuss related work, 
future work, and some conclusions. 

2 Programming Language 

In this paper we use an applicative programming lan- 
guage that can observe objects of immutable types by 
message-passing. (An immzdable type is an abstract 
type whose instances have no time-varying state.) 
This is a first step towards reasoning for more real- 
istic languages. The language is an extension of the 
simply-typed, applicative-order lambda calculus; the 
syntax of the language is given in Figure 1. The syn- 
tax uses fun instead of A, and a program is a function 
from input arguments to outputs. There is no syntax 
for implementing types (i.e., classes); in this paper we 
will focus solely on programs that use such types and 
the specifications of such types. Function identifiers in 
programs are written in a slanted font to distinguish 
them from message names written in typewriter font. 
Function identifiers are statically bound to functions; 
message names are dynamically bound as described 
below. 

Type checking for this language is based on sub- 
typing, using techniques from Reynolds’s category 
sorted algebras [Rey80] [Rey85]. Each expression is 
statically assigned a nominal type, determined from 
the information given in type specifications and pro- 
gram declarations. The type specifications deter- 
mine a partial function ResType, which maps mes- 
sage names and tuples of types to expected result 
types, and a user-specified reflexive and transitive re- 
lation among types, 5, called the subtype relation. 

(program) ~=~pfog ( (decls) > : (type) = 
ex r 

1 (ret fun def) (program) 

(decls) ::= (decl list) ] (empty) 
(decl list) ::= (decl) ] (decl list} , (decl) 

(decl) ::= (identifier) : (type) 

(empty) ::= 

(expr) ::= (identifier) 
1 (message name) ( (expr list) > 
] (function identifier) ( (exprs) ) 
] ( (function abstract} > ( (exprs) > 
I if (expr) then (expr) else (expr) fi 

I ( bw) ) 

(exprs) ::= (expr list) ( (empty) 
(expr list) ::= (exprs) I (expr list) , (expr) 

(function abstract) ::= fun ( (decls) > (expr) 

(ret fun def) ::= fun (function identifier) 
( (decl list) > : (type) = (expr) ; 

Figure 1: Programming language syntax. 

For example, consider the message-passing expression 
add(a,b). The nominal types of the arguments a 
and b are given in their declarations, say Fraction 
and Integer. The nominal type of the result is then 
ResType(add, (Fraction, Integer)). To ensure that 
nominal types can be thought of as upper bounds 
and that operations of supertypes may be applied to 
subtypes, ResType must be monotone in the follow- 
ing sense: for all message names g, and for all tuples 
of types s’ < ?, if ResType(g,f) is defined, then so 
is ResType(g, 3, and ResType(g, 9 5 ResType(g, ‘i!‘). 
(This is a constraint on the types used in a program.) 
Arguments to functions are allowed to have types that 
are subtypes of the declared argument types. 

3 Background 

In this section we discuss subtype polymorphism, and 
how it differs from the polymorphism found in more 
conventional languages. 
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fun sqrt(x:Fraction) : Fraction = 
sqrtlter(1 ,x) ; 

fun sqrtlter(guess,x:Fraction) : Fraction = 
if good(guess ,x> 

then guess 
else sqrtIter(improve(guess,x), x) fi; 

fun good(guess,x:Fraction): Boolean = 
lt(abs(sub(x, mul(guess,guess))), 

create(Fraction,f,lOOO)); 
fun improve(guess ,x:Fraction) : Fraction = 

meancguess, div(x,guess)); 
fun mean(a,b:Fraction) : Fraction = 

div(add(a,b), 2); 

Figure 2: Implementation of the function sqrt. 

The polymorphism in Smalltalk- programs is a 
result of Smalltalk’s dynamic overloading of message 
names. Wadler and Blott’s method dictionaries pro- 
vides a good explanation of this style of message pass- 
ing [WB89]. A method dictionary is a map from the 
names of overloaded operators to the operations spe- 
cific to a given type. The method dictionaries are as- 
sociated with objects in Smalltalk-80, and a message 
send is evaluated by consulting the receiving object’s 
method dictionary and invoking the operation with the 
given message name. Thus an operation in Smalltalk- 
80 can be polymorphic, since a call to it is implicitly 
passed the method dictionaries needed to manipulate 
objects of different types. 

Our language has a more complex form of dynamic 
overloading, in which method dictionaries map mes- 
sage names to dispatchers, which are mappings from 
tuples of types to operations specific to a combination 
of argument types. As in the Common LISP Object 
System (CLOS) [Kee89], a dispatcher finds an oper- 
ation based on the run-time types of all the actual 
arguments. For example, the function sqrt of Figure 2 
(code adapted from [ASS85, Page 221) is polymorphic, 
because the implicit method dictionary passed to sqrt 
is defined for the message names It, abs, etc. used 
at run-time and because the relevant dispatchers are 
defined on tuples of types made from Fraction and 
its subtypes, such as Integer. So sqrt may take both 
Fraction and Integer arguments. 

Cardelli and Wegner have called the kind of poly- 
morphism exhibited by the implementation of sqrt in 
Figure 2 “inclusion polymorphism” [CW85], although 
we prefer the term subtype polymorphism. Subtype 
polymorphism is distinguished by two features from 
other kinds of parametric polymorphism: the dynamic 
binding of operation names to operations based on the 

prog (b: Boolean): Integer = 
num(sqrt (if b 

then 16 
else create(Fraction,3.4) 
fill 

Figure 3: Call to sqrt that shows the general case of 
message-passing. 

run-time types of their arguments, and the possibility 
that a given expression may denote objects with differ- 
ent types at run-time. With subtype polymorphism, 
it is impossible, in general, to statically determine the 
type of object a given expression will denote at run- 
time. For example, consider the program of Figure 3. 
When evaluating the program’s body, the formal pa- 
rameter of sqrt may denote an object either of type 
Integer (i.e., 16) or of type Fraction (i.e., 3/4), de- 
pending on the program’s input. There may be dif- 
ferent implementations of the operations add, etc. for 
each combination of argument types. This makes it 
difficult to reason about a program that uses subtype 
polymorphism. 

4 The Problem 

Our goal is to obtain a modular specification and verifi- 
cation method for programs that use message-passing 
and subtype polymorphism. Even if formal verifica- 
tion of such programs is not, practical, the desire for 
modularity in large programs makes it, important to 
give careful informal specifications of functions and 
to reason informally about their use. A better un- 
derstanding of formal techniques for specification and 
verification can serve as a guide to such informal rea- 
soning. 

An obvious approach is to adapt traditional reason- 
ing techniques. For example, the traditional, parame- 
terized specification of sqrt would have as parameters 
a type T, an object x of type T, and functions It, abs, 
sub, mul, and div that would allow the square root 
to be computed. (See, for example, [Gut80, Page 211, 
[Win83, Section 4.2.31, and [Gog84, Page 5371.) The 
functions It, abs, etc. can be grouped into a single 
parameter: a method dictionary. It is necessary to 
specify the behavior of the functions in this method 
dictionary, since otherwise one cannot prove that the 
implementation of sqrt is correct. The problem with 
this approach is that to use such a specification dur- 
ing verification, the actual method dictionary must be 
known statically, so that one can verify its behavior. 
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fun sqrt(x: Fraction) returns(r:fiaction) 
requires 0 5 x 
ensures (0 2 r) & (l(r * r) - xl 2 (l/100)) 

Figure 4: Specification of the function sqrt. 

However, for a language like Smalltalk-80, the method 
dictionary cannot, in general, be determined statically 
during verification of a call such as the one in Figure 3. 
For our language or CLOS the method dictionary has 
dispatchers for all combinations of argument types. So 
the use of traditional reasoning techniques leads to an 
exhaustive case analysis that must be repeated when 
new subtypes are introduced. In other words, this ap- 
proach does not allow modular verification. 

5 Overview and Example of the 
Method 

Our approach extends traditional specification and 
verification techniques to cope with subtype polymor- 
phism in a modular fashion. We first discuss specifica- 
tion of functions and abstract types, and then program 
verification. 

5.1 Function Specifications 

Our function specification technique is illustrated by 
the specification of sqrt given in Figure 4. To ensure 
modularity, the behavior of sqrt is described explic- 
itly only for fixed types of arguments and results; that 
is,’ for the nominal types of the formals. But this 
specification is implicitly polymorphic, since the ac- 
tual arguments passed to a call of sqrt may have types 
that are subtypes of the corresponding nominal ar- 
gument types. For example, sqrt may take Integer 
arguments, since Integer is a subtype of Fraction. 

The ensures clause (i.e., the post-condition) of sqrt 
in Figure 4 states how the value of the result is related 
to the values of the argument, assuming that it is of 
type Fraction. The requires clause describes the 
pre-condition of sqrt. Such a specification is a two- 
tiered [Win871 or abstract-model style [BJ82] specifica- 
tion. In such specifications, the characteristics, or ab- 
s2racl valves, of objects are described mathematically, 
and the vocabulary of abstract values is used to spec- 
ify functions and the operations of abstract types. Fol- 
lowing Wing we describe the abstract values of types 
using Larch traits [GH86b]. The symbols “i”, “I . I”, 
a*,, u-n 

7 , and “/” used in the pre- and post-condition 
are the names of trait functions and are described in 

the trait IntAndRat (Figure 5). Trait functions can be 
used in assertions but not in programs. 

In the trait IntAndRat, the included traits Integer 

and Rational are found in [GH86a]. The names and sig- 
natures of additional trait functions are described after 
the keyword introduces. The constrains section is 
an equational specification of the trait functions. The 
terms in the exempts section are undefined. 

For a function specification to be meaningful when 
the arguments have a subtype of their specified types, 
the specifier of a subtype must ensure that the trait 
functions used to describe the abstract values of a su- 
pertype can also be applied to the abstract values of 
each of its subtypes. In essence, the meaning of a 
specification is given by dynamic overloading for trait 
functions’ (similar to message-passing). For example, 
consider the call sqrt(i6), in which the abstract value 
of the argument is 16. Because of the overloaded trait 
functions, a description of the result is obtained by 
substituting 16 for x in the post-condition, obtaining 
the formula “(0 < r) & (I(r * r) - 161 2 (l/100))“. 
Hence the value of the result r must be non-negative 
and sufficiently close to 4. Since the trait functions 
apply to subtypes, the resulting formula describes the 
result equally well, whether it is a Fraction or an 
Integer. Similarly, the pre-condition is meaningful 
for arguments of type Integer as well as arguments of 
type Fraction. 

An implementation of sqrt satisfies its specification 
if, whenever the arguments satisfy the pre-condition, 
it always terminates and the value of the result, when 
substituted for the formal result identifier (r), satisfies 
the post-condition. 

5.2 Type Specifications 

Type specifications describe the behavior of each type 
used in a program and also specify subtype relation- 
ships. The specification of a subtype relationship in- 
volves stating how each object of the subtype simulates 
the objects of its supertypes. 

The specifications of the types Fraction and 
Integer appear in Figures 6 and 7, respectively. The 
specification of a type has a header followed by spec- 
ifications for each of the operations provided by the 
type. The operation specifications are read like func- 
tion specifications. 

In the header of a type specification the operations 
are divided into class and instance operations; class 
operations are typically used to create new instances 
of a type, and instance operations are called by sending 

‘The meaning of a specification is not given by coercing the 
abstract values of arguments, as in [Le&g]. 
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IntAndRat: trait 
includes Integer, 

Rational with [rat1 for 1, rat0 for 0] 
introduces #/#: Int,Int + R 

gcd: Int,Int + Int 
I#I: R + R 
numerator, denominator: R --f Int 
]#I, numerator, denominator: Int + Int 

#+#, #-#, #*#, #/#: R,Int + R 
#+#, #-#, #*#, #/#: I&R -+ R 
#==#: R,R + Boo1 
#==#: Int,Int -+ Boo1 

#==#, #i#, #1#, #>#, #<# 
: R,Int 4 Boo1 

#==#, #I#, #2#, #>#, #<# 
: Int,R + Boo1 

constrains I# 1, gcd, numerator, denominator, 
#==#, #*#: R,R + R, 
#/#: Int,Int --t R 

so that for all [n,m,d: Int, f,g,h: R] 
(l/l) = rat1 
(n/d) * (d/n) = rat1 

((n+m)/d) = (n/d) + b-44 
In] = if n<O then -n else n fi 
If] = if f<O then -f else f fi 
gcd(n,m) = gcd(m,n) 
gcd(n,m) = gcd(-n,m) 

gcd(n,O) = Inl 
gcd(n*d, m*d) = gcd(n,m)*d 
((numerator(f) = n) 

& (denominator(f) = d)) 
= (((n/d) = f) & (d > 0) 

& (gcd(n,d) = 1)) 
numerator(n) = n 
denominator(n) = 1 
(f == g) = 

((numerator(f) = numerator(g)) & 
(denominator(f) = denominator(g))) 

(n == m) = (n = m) 
(f == n) = (f == (n/l)) 
(n == f) = ((n/l) == f) 
f+n=f+(n/l) 
n+f=(n/l)+f 
% and so on for -, *, /, etc. 

exempts for all [n,m: Int] n/O, n/(0/m), 

(O/4/0 

Figure 5: The trait IntAndRat. 

Fraction immutable type 
class ops create 
instance ops num, denom, add, sub, mul, div, 

abs, It, equal 
based on sort R from trait IntAndRat 

OP 

OP 

OP 

OP 

OP 

OP 

OP 

OP 

OP 

oP 

create(c: FractionClass, n,d: Integer) 
returns(f: Fraction) 

requires ‘(d = 0) 
ensures f == n/d 

num(f: Fraction) returns(i: Integer) 
ensures i = numerator(f) 

denom(f: Fraction) returns(i: Integer) 
ensures i = denominator(f) 

add(fl,Q Fraction) returns(f: Fraction) 
ensures f == (fl + f2) 

sub(fl,fl: Fraction) returns(f: Fraction) 
ensures f == (fl - f2) 

mul(fl,f2: Fraction) returns(f: Fraction) 
ensures f == (fl * f2) 

div(fl,fz: Fraction) returns(f: Fraction) 
requires -(f2 == O/l) 
ensures f == (fl / f2) 

abs(f: Fraction) returns(g: Fraction) 
ensures g == If] 

lt(fl,f2: Fraction) returns(b: Boolean) 
ensures b = (fl < f2) 

equal(fl,fZ: Fraction) returns(b: Boolean) 
ensures b = (fl == f2) 

Figure 6: Specification of the type Fraction. 

messages to instances. The header of a type’s speci- 
fication includes two additional clauses: a based on 
clause, and an optional subtype of clause. The based 
on clause describes the abstract values of the objects of 
the type, by naming a sort and a Larch trait that spec- 
ifies that sort. The abstract values of objects of type 
Fraction are elements of the sort R, which is taken 
from the trait IntAndRat. The trait IntAndRat, which 
is described in Figure 5, relates the included traits In- 

teger and Rational by an additional infix trait function 
/ that takes two integers and returns a fraction. The 
trait IntAndRat also specifies mixed mode trait func- 
tions; these are necessary so that the specification of 
a binary operation says what happens when only one 
argument is an object of a subtype. It is hoped that in 
the future the mixed mode trait functions can be spec- 
ified more succinctly, perhaps by using order-sorted 
algebra [GM87]. 0 ne can always define them by first 
coercing all arguments to the supertype. 

The optional subtype of clauses describe a relation 
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Integer immutable type 
subtype of Fraction by n simulates n/l 
class ops one 
instance ops num, denom, add, sub, mul, div 

abs, It, equal 
based on sort Int from trait IntAndRat 

op one(c:IntegerClass) returns(i: Integer) 
ensures i = 1 

op num( i: Integer) returns (j : Integer) 
ensures j = i 

op denom(i: Integer) returns(j: Integer) 
ensures j = 1 

op add(il,i2: Integer) returns(i: Integer) 
ensures i = (il + i2) 

op sub(il,i2: Integer) returns(i: Integer) 
ensures i = (il - i2) 

op mul(il,i2: Integer) returns(i: Integer) 
ensures i = (il * i2) 

op div(il,i2: Integer) returns(f: Fraction) 
requires l(i2 = 0) 
ensures f == (il / i2) 

op abs(i: Integer) returns(j: Integer) 
ensures j = [iI 

op lt(il,i2: Integer) returns(b:Boolean) 
ensures b = (il < i2) 

op equal(il,i2: Integer) returns(b:Boolean) 
ensures b = (il = i2) 

Figure 7: Specification of the type Integer. 

October 21-25, 1990 

, 

There is a relation ??T for each type T. The relation 
7?$ says how the abstract values of objects of each type 
S _< T are to be viewed as objects of type T. For ex- 
ample, for each integer value 7t, n RFraction n/l, as 
specified in Integer’s subtype of clause. By conven- 
tion, the following additional relationships are implicit 
in such specifications. For each type T, the relation %?T 
includes the identity relation on the abstract values of 
objects of type T and all relations RS such that S 5 T; 
for example, the fraction n/d is related by RFraction 
to itself and RFraction relates the integer n to itself. 
Furthermore, the relationships compose transitively in 
the following sense: if S 5 T and a RS b %?T c, then 
a%$c. 

The family R is used to verify that 2 has the neces- 
sary semantic properties to be a subtype relation. The 
relation 5 can also be viewed as summarizing informa- 
tion about R. That is, if S 2 T, then it is required that 
for every object of type S, its abstract value is related 
by RT to the abstract value of some object of type 
T, and that R has the semantic properties described 
below. (In the programming language the relation 5 
is also used by the type-checker.) 

The binary operations provided by the type Integer 
have Integer as the type of their second argument, 
and most have Integer as the type of their result. 
Thus, for example, if a and b denote objects of type 
Integer, then add(a,b) must denote an Integer. 
The operation specification that determines the behav- 
ior of an invocation of add is the most specific specifica- 
tion whose argument types are supertypes of the types 
of the actual arguments, because message-passing is 
used at run-time. For example, the result of add(a,b) 
need only satisfy the specification of the add opera- 
tion of Integer if a and b denote Integers. On the 
other hand, if a denotes a Fraction, then the result 
of add(a,b) is determined by the specification of the 
add operation of Fraction. (The semantic restrictions 
on subtype relationships ensure that these behaviors 
are related.) Such specifications would be well suited 
for the specification of CLOS programs [Kee89], where 
generic operations can be defined for various combina- 
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_< among type symbols (the subtype relation), and a 
family of relations R between the abstract values of 
types (the simulation relation). For each supertype 
listed, one specifies for each object x of the subtype at, 
least one object of the supertype that z “simulates.” 
For example, the specification of the type Integer 
states that Integer is a subtype of Fraction, and 
that an integer with value n simulates a fraction with 
value n/l. 

Formally, the relation 2 is the reflexive, transitive 
closure of the subtype of relationships given in the 
type specifications. 



tions of argument types. 
The pre- and post-conditions of operations must not 

use equality (=), except between terms of visible type 
- built-in types for which no subtypes are allowed, 
such as Boolean and Integer. Assertions that satisfy 
this condition are called subtype-constraining. Techni- 
cally, this restriction is needed to ensure the soundness 
of program verification. However, the restriction is 
also intuitively necessary. Consider the pre-condition 
of the div operation in Figure 6. If the pre-condition 
were “$f2 = O/l)” instead of “7(f2 == O/l)“, then 
it would be satisfied when f2 denoted the Integer 
0, since the abstract value 0 is not the same as O/l; 
this is probably not what the specifier meant. The 
trait function “==” does not test equality of abstract 
values; thus “0 == (O/l)” is true, because “numera- 
tor(0) = 0” and “denominator(O) = l”, as specified 
in the trait IntAndRat. Equality (=) is not a trait 
function and cannot be redefined by subtypes. As an- 
other example, if the post-condition of div had been 
stated as “f = (fl / f2)“, then the abstract value of 
div(div(l,2),div(l,4)) would have to be 2/l (a 
Fraction), not 2 (an Integer). 

Inheritance of specifications by a subtype specifica- 
tion would be a useful extension to a practical specifi- 
cation language. For example, the specifications of the 
Integer operations num, denom and div are quite sim- 
ilar to their specification for Fraction arguments and 
could perhaps be inherited. One could then specify a 
subtype by specifying only the subtype’s class opera- 
tions and those instance operations that are added by 
the subtype or that need to be further constrained. 

5.3 Verification 

Our approach to modular verification is to allow one 
to reason about expressions based on nominal type 
information. 

Subtyping does not enter into the verification of a 
program directly. The only interaction is that the 
specified relation 5 must be verified to have certain 
properties (see Section 6 below) and the type system 
must ensure that each expression can only denote ob- 
jects whose type is a subtype of the expression’s nomi- 
nal type. This separation is achieved by ensuring that 
the trait functions used to describe the abstract val- 
ues of a supertype also apply to subtypes (with the 
appropriate semantics). 

Although our language is applicative, we use a Hoare 
logic for program verification, because we are ulti- 
mately interested in verification of imperative pro- 
grams. 

Hoare-triples are written P {v +- E} Q and consist 
of a pre-condition P, a result identifier v, an expres- 

sion E, and a post-condition Q. (The name of the re- 
sult identifier can be chosen at will, but cannot occur 
free in the pre-condition.) In an applicative language, 
expressions have results but do not change the envi- 
ronment in which they execute. So the post-condition 
describes the environment that results from binding 
the result identifier (v), which has a nominal type that 
is a supertype of E’s nominal type, to E’s value. In- 
tuitively, P {v +- E} Q is true if whenever P holds, 
then the execution of E terminates, and the value of 
E satisfies Q. 

To simplify the verification system, the following 
rule is used to verify a message-passing expression 
or function call that has general expressions as argu- 
ments. 

I- P {y c (fun (Z : $1 g(x’)) (,??)} Q 

t-p k--g(E)) Q (1) 

That is, to prove the desired triple (on the bottom) 
holds, one must show that the post-condition Q follows 
when the actual argument expressions are replaced by 
identifiers bound to the expressions’ values by a func- 
tion abstract. The names and types of these identifiers 
must be chosen so an appropriate axiom for the inner 
message send or function call will apply, and so that 
the application on the top type-checks. For example, 
to prove the following triple 

true {f t add(3.4)) f == 7 (2) 

where f has nominal type Fraction, it suffices to prove 
the following triple (with the parts displayed verti- 
tally) . 

true 
{f t (fun (fl,f2) add(fl,f2)) (3,411 (3) 
f==7 

With the above rule, the specifications of each type’s 
operations and each function specification can be taken 
as simple axioms. For example, there are two axioms 
for the message add: 

I- true {f t add(f 1 ,f2>} f == (fl + f2) (4) 

k true {i + add(il,i2)) i = (ii + i2). (5) 

The specification of sqrt generates the following axiom: 

02x 
I- {r t sqrt(x)} 

(0 5 rMl(r * r) - xl 5 (WOO)) 
(6) 

These axioms only apply when the actual argument 
expressions and the result identifier are the same as 
the formals used in the specifications; hence one must 
also use the previous rule, in general. 
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The axiom used for a message-passing expression 
during verification is determined by the nominal types 
of the argument expressions (that is, using static in: 
stead of dynamic overloading). 

Because of the above simplifications, the following 
inference rule2 does the real work for applications. 
This rule would be different in a language without sub- 
typing. 

I- RI & --- 8~ Rn {Y + Eo) Q[W 
I- P {VI + El) (&[n/xl])[x’lz7, 

(numerator(f) = 0) * (f = O/l), (11) 

where “f” has nominal type Fraction. This implica- 
tion can be proved from the axioms of the trait In- 
tAndRat, which means that if “f” denotes a Fraction, 
then the implication is valid. However, it is not valid 
if “f” denotes the Integer with value “0”. A solution 
is to use %=” instead of the second “=” to obtain a 
subtype-constraining assertion. 

I- P {vn + En} (Rn[vn/xn])[W 
t-P(y+(fm (x':s) Eo) (El,...,E,)}Q 

The other rules of the logic are fairly straightforward 
or standard. 

(7) 
The rule as a whole says that to prove that the de- 
sired triple holds, one chooses conjuncts R; that are 
sufficient to prove the desired post-condition from the 
body of the function abstract. Then one shows that 
these conjuncts characterize the argument values. For 
example, to prove Formula (3), it suffices to prove the 
following triples, where il and i2 have nominal type 
Integer. 

(fl == 3) & (f2 == 4) 
{f t add(fi,f2)} 
f==7 

(8) 

true {ii + 3) ii == 3 (9) 
true {i2+4} i2==4 (10) 

The assertions Ri may contain the formal argu- 
ment identifiers, xi, and thus may be written using 
the trait functions defined on the types Si. The as- 
sertions &[vi/xi] will type-check because the nominal 
type of vi is the nominai type of Ei, which must be a 
subtype of Si (i.e., the type of xi). It is crucial for the 
soundness of this rule that whenever Ri[vi/x;] holds, 
then fi holds as well. (The requirements placed on 
trait functions for subtypes in Section 6 ensure that 
this condition is met.) The idea is that @[vi/xi] char- 
acterizes the argument Ei at its nominal type (the type 
of vi), while the type of xi is a supertype of Ei’s type. 

An unusual feature of our formal system is that the 
rule of consequence 

F- (P 3 Pl), I- 4 {y + El &I, I- (Ql * Q) 
k P {Y + El Q 

2The notation (Ri[Vi/Xi])[Sf/Zj means the formula Ri with 
Vi replacing Xi throughout and then each Xi substituted for Zi. 
Fresh identifiers z’ are used to hide bindings of x’ in the asser- 
tions that characterize the arguments to the function abstract, 
so that in reasoning about Eo the proper scope applies. That 
is, bindings of the Xi in P or Q do not mean the same Xi that 
are local to the function abstract. The identifiers Zi must be 
fresh and the result identifier J must not be one of the Xi; these 
restrictions avoid capture problems. 

is only valid when the assertions involved are subtype- 
constraining. This restriction is necessary, as can be 
seen by the following example. Consider the implica- 
tion 

Our verification method allows a function implemen- 
tation to be verified once, without considering the dif- 
ferent combinationsof actual argument types. Instead, 
a function implementation is verified as if the actuals 
had the types specified for the formals. For example, 
the correctness of an implementation of sqrt would be 
verified by reasoning about the formal argument x as 
if it were a fraction. Such a verification guarantees 
correctness for arguments of a subtype, because of the 
semantic restrictions on subtype relations. (Termina- 
tion of recursive functions must be verified separately.) 

6 Soundness of the Method 

The soundness of the verification method discussed 
above rests on the syntactic restrictions on ResType 
and 5, the semantic restrictions on <_ and R and the 
following technical results [LeaSO]: 

Each expression of nominal type T can only de- 
note objects of a type S 5 T. This is ensured 
by type checking and the syntactic constraints on 
type specifications. 

An assertion P characterizing the values of actual 
parameters vi holds for the corresponding formals 
xi, provided P with the X; substituted for the vi 
type checks. This is ensured by dynamic over- 
loading of trait functions. For example, suppose 
“numerator(j) = 3” describes an actual parame- 
ter j, to which the formal f is bound; then “nu- 
merator(f) = 3” also holds. 

Subtype-constraining assertions that can be 
proved from the traits used in a type specifica- 
tion remain valid when an identifier x is allowed 
to refer to the values of a subtype of the nominal 
type of x. This property is ensured by semantic 
constraints on R. For example, the implication 

(numerator(f) = 0) 3 (f == O/l), (12) 
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(1/1,3/l) 
add 

t 2/l 

I 

R(Fraction,Fraction) 

t 
RFract ion 

(1>3) 
add 

z- 2 

Figure 8: The substitution property for add. 

is valid even if the value of f is an Integer. 

operations, but also for assertions and programs. In 
the study of the lambda calculus, this kind of theorem 
is known as the fundamental theorem (of logical rela- 
tions) [Sta85] [Mit86]. Showing that the substitution 
property holds for assertions is crucial to proving the 
soundness of the verification system. 

Disciplined use of subtypes cannot lead to surprising 
program behavior, because the substitution property 
also holds for program expressions and recursively de- 
fined program functions. Indeed, the relationships are 
preserved3 even if functions and operations are per- 
mitted to be nondeterministic [LeaSO]. 

l If q RT r, then a subtype-constraining assertion 
P characterizing the value of x : T holds when x 
is bound to q if and only if P holds when x is 
bound to T. This property is ensured by semantic 
constraints on R. 

The most important constraint on the family R is 
the substitution property - that simulation relation- 
ships are preserved by both message-passing and the 
trait functions. For example, the family IR described 
in the specifications of Integer and Fraction has 
the substitution property, since the following relation- 
ships, among others, hold: 

add(l, 3) RFraction add(l/l, 3/l) (13) 

sub(l, 3) RFraction sub(l/l, 3/l) (14) 
numerator(3) RInteger numerator(3/1) (15) 

The first relationship is illustrated by the commutative 
diagram in Figure 8 (assuming that add for Fractions 
returns a Fraction). These relationships can be veri- 
fied using the specifications of Integer and Fraction, 
regardless of the implementations of those types. 

More formally, R has the substitution property if 
and only if the following holds: let T be a type, and 
let g, v’, and v’ be tuples of types such that u’s Z? and 
v’ < g; then for all tuples of values 4’ : v’ and r’ : v’ 
such that $Rs r’, and for all trait function symbols or 

message names g such that ResType(g, 3) = T, 

da RT g(‘? (16) 

A family ‘R constructed as described above is a sim- 
ulation relation if it satisfies the substitution property. 
The construction of ‘R ensures other desirable proper- 
ties. Bruce and Wegner have stated a similar list of 
properties for their coercer functions [BW87], as does 
Reynolds [Rey80]. 

The semantics constraints on 5 require that the 
specified family R is a simulation relation. 

If R is a simulation relation, then the substitution 
property holds not just for single trait functions and 

7 Related Work 

Ours is the first formal verification technique for 
object-oriented programs that use message-passing 
that has been proven to be sound [Lea891 [LeaSO]. 

Cardelli was the first to formally describe subtype 
relationships and type checking for a fixed set of types 
[Car84]. Our work generalizes Cardelli’s to abstract 
data types. That is, given appropriate specifications 
of the types Cardelli discusses, the subtype relation- 
ships Cardelli describes for immutable record and vari- 
ant types are also subtype relationships in our sense 
[LeaSO]. However, our notion of subtypes is based on 
type specifications, and thus can handle arbitrary im- 
mutable abstract types. 

Bruce and Wegner [BW87] use coercion functions 
with a substitution property, which are like our sim- 
ulation relations, to give a definition of subtype rela- 
tions. However, they do not discuss reasoning about 
object-oriented programs. Using relations instead of 
functions allows us to handle an abstract type whose 
space of abstract values is not reduced (in the sense 
that objects with two distinct abstract values may be- 
have the same). Examples can be found in [LeaSO]. 
Bruce and Wegner also do not handle operations that 
may fail to terminate. 

For the language Eiffel [Mey88], Meyer requires that 
the pre-condition of an instance operations of a su- 
perclass T must imply the pre-condition of the in- 
stance operation of the instance operation of each sub- 
class of T with the same name; furthermore, the post- 
condition of the subclass’s operation must imply the 
post-condition of T’s operation. However, assertions 
for Eiffel specifications are written using a type’s op- 
erations. A subclass in Eiffel can redefine the oper- 
ations of a superclass, so that while the implications 
among the pre- and post-conditions may be valid, the 

3The relationships of R are preserved by a nondeteministic 
operation if for each possible result on the left hand side of 
Formula (16), there is some possible result on the right hand 
side for which the required relationship holds. 
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behavior of instances of the subtype may be surpris- 
ing. The extreme of this problem occurs for deferred 
types: types for which one or more of the operations 
are not implemented (i.e., their implementation is de- 
ferred to a subclass). Consider a class D where all the 
operations are deferred. The pre- and post-conditions 
of the operations of D are written using the operations 
of D. But the operations of D are not implemented, so 
the assertions that are used to define these operations 
are meaningless. We can specify such deferred types, 
because the trait functions used to specify operations 
are specified independently of the operations. 

P. America has independently developed a definition 
of subtype relationships [Ame89]. Types are specified 
by describing the abstract values of their instances, 
and the post-condition of each operation relates the 
abstract values of the arguments to the abstract value 
of the result. The “trait functions” used to describe 
a supertype’s abstract values need not be defined for 
the subtype’s abstract values. Thus, for a subtype 
relationship, America requires a “transfer function”, 
f, that maps the abstract values of the subtype to 
the abstract values of the supertype. Furthermore, for 
each instance operation of the supertype, it is required 
that 

Pre(Super) o f + Pre(Sub) (17) 
Post(Sub) + Post(Super) o f (18) 

where the transfer function f is used to translate as- 
sertions of the supertype so that they apply to the ab- 
stract values of the subtype. In practice, the above re- 
quirements often mean that the transfer function must 
have a substitution property with respect to the pro- 
gram operations. As with Reynolds and Bruce and 
Wegner, since f must be a function, the set of ab- 
stract values must be reduced, otherwise there might 
not be a transfer function. 

America’s definition of subtyping handles mutable 
types, but not aliasing. America’s type specifications 
do not have class operations, they only have instance 
operations. The lack of class operations makes it diffi- 
cult to specify types whose objects are created in one of 
several states. Because of the lack of class operations, 
America’s notion of subtype is identical to the notion 
of refinement. A type S is a refinement of T if each 
implementation of S is an implementation of T. We al- 
low class operations but do not require that a subtype 
implement the class operations of its supertypes. So 
for us, a type can be a subtype without being a refine- 
ment, although a refinement is necessarily a subtype. 

8 Future Work 

One area of future work is extending our approach 
to deal with mutable types, Also needed for practical 
use are symbolic methods for proving subtype relation- 
ships. Another area is the verification of implementa- 
tions of classes that use inheritance. Finally, programs 
that test the types of objects are currently beyond the 
capabilities of our verification method. The problem 
is that functions that test argument types violate data 
abstraction and can thus behave differently on differ- 
ent types of arguments. 

9 Conclusions 

We have described, and illustrated with a simple ex- 
ample, a method for specifying and verifying object- 
oriented programs that use subtypes and message- 
passing. This method applies directly to applicative 
languages with immutable data types, but can be ea.+ 
ily extended to handle assignments. 

Since subtyping imposes strong conditions on the 
behavior of the types involved, it seems necessary to 
design subtypes with subtyping in mind. Such strong 
conditions also seem necessary for the soundness of 
modular program verification, so that one can reason 
about subtypes implicitly. Hence, we suggest that sub- 
type relationships should be declared, rather than in- 
ferred on the basis of structural information such as 
signatures [BHJL86] or subclass (inheritance) relation- 
ships among implementations [BDMN73]. 

Reasoning based on subtyping and nominal type in- 
formation seems to be used informally by programmers 
working with object-oriented languages [Sny86]. How- 
ever, it is important for programmers to recognize that 
subtyping is a rather strong behavioral constraint that 
is independent of subclassing. 

The principal advantage of our approach is that it 
allows modular reasoning. Functions are specified only 
once, and the form of a function specification is inde- 
pendent of subtype relationships. In addition, the ver- 
ification of a function implementation proceeds as if 
the actual arguments’ types are the same as the types 
of the formal arguments. Therefore, new subtypes may 
be added to a program without affecting function spec- 
ifications or the correctness of their implementations. 
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