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ABSTRACT 
A low cost, embedded, reconfigurable device for motion detection 
of kinetically challenged persons has been developed. This paper 
presents the methods by which the device can be adapted to 
individual user’s needs. The accelerometer data inputs are 
processed by the determination of the dominant axis of each 
motion, and by the determination of thresholds and delays that 
can be used to customize the system to individual needs. The 
resulting system is a highly adaptable input device which 
maintains the low cost constraints of less than $70. 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles –
algorithms implemented in hardware, microprocessors and 
microcomputers, C.3 [Computer Systems Organization]: 
Special-Purpose and Application-Based Systems – real-time and 
embedded systems, signal processing systems, H.5.2 
[Information Interfaces and Presentation]: User Interfaces – 
evaluation/methodology, input devices and strategies, 
prototyping, training help and documentation, I.5.4 [Pattern 
Recognition]: Applications – signal processing, waveform 
analysis, K.4.2 [Computers and Society]: Social Issues – 
assistive technologies for persons with disabilities, handicapped 
persons/special needs. 

General Terms 
Algorithms, Measurement, Design, Human Factors. 

Keywords 
Embedded, Reconfigurable, Motion Detection, I/O device, 
Kinetically Challenged. 

1. INTRODUCTION 
The problem of motion detection and recognition has been 

considered from a number of perspectives, ranging from I/O for 
virtual reality environments to gesture recognition systems. 
Similarly, the problem of I/O devices for kinetically challenged 
persons has been addressed from a mechanical design perspective 
to a brain activity detection perspective. In this paper we present 
the adaptation and motion detection scheme of a low cost, 
embedded I/O device for kinetically challenged persons. The 
ultimate purpose of this work is to have shrink-wrapped hardware 
which can be customized and re-trained to individual needs 
without a re-compilation of the design but through 
reconfiguration, as needed. The hardware will adapt to the needs 
of different users through hardware reconfiguration, much like 
general-purpose computers address different problems through the 
execution of different programs. 

In [1] we presented the architecture of the system, and in [2] we 
presented an improved model in which the hardware efficiency is 
greatly improved by means of breakdown of complex motions 
into simple ones. The contributions of this work are: 

• The presentation of the low-complexity DSP scheme for the 
determination of the dominant axis of each motion, while the 
secondary axis maintains a limited freedom of motion 

• The adaptation of the system to different users’ needs 
without change of the hardware 

• The user interface for system training. 

The organization of the paper is as follows: Section 2 presents 
related work, which in general is either PC-based (not embedded) 
or high cost. Section 3 briefly presents the system architecture 
(which is fully detailed in [1] and [2]) for completeness. Section 4 
presents the motion representation scheme. Section 5 the motion 
detection, adaptation, and training methods, together with the user 
interface, followed by Section 6 with experimental results and 
conclusions.  

2. RELATED WORK 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
WBMA’03, November 8, 2003, Berkeley, California, USA. 
Copyright 2003 ACM 1-58113-779-6/03/00011…$5.00. 

Various assistive devices that are based on motion measurement 
and recognition have been developed for persons with motor 
disabilities [3], [4], [5]. Many of these devices are related to the 
control of a wheelchair. An electrical wheelchair that is guided by 
head movements is presented in [6]. An adaptive color face 
tracking system is used to determine head movements of the user. 
A color micro-camera acquires user’s face images, which are then 
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loaded in a PC memory. Specific head movements generate 
commands that control the wheelchair. 

Another technique for guiding a wheelchair records the potential 
between cornea and retina, during eye movement (EOG-
Electrooculography) [7] in order to obtain the gaze direction; this 
system uses EOG measurements acquired by electrodes placed on 
the head. Data are processed in a PC, which then guides the 
wheelchair to the direction the user looks at. 

A wireless method of controlling a wheelchair has been 
implemented in [8]. A head mounted computer unit provides a 
Graphical User Interface, in which the user is able to navigate by 
combining head movements and voice commands. After selecting 
the wanted action, the computer unit transfers the command to the 
wheelchair through the Bluetooth protocol. 

Projects using virtual reality technology have also been developed 
for rehabiliation purposes [9]. The Gesture Control System is a 
tracking device that recognizes a predetermined collection of 
simple hand movements, each of which “fires” more complicated 
tasks. HumanGlove is a 20-position glove with sensors, which 
allows accurate recording of hand-joint movements [10]. Each 
sensor measures data related to a Degree of Freedom of the hand. 
The glove is connected to a PC, where a program displays an 
animated hand that mirrors movements of the user’s hand. 
Another project implements a prototype human-computer 
interface with emphasis on commands expressed as hand gestures 
[11]. The user is in front of a camera connected to a computer. 
The camera follows the movements of the hand and performs 
actions (like controlling the TV, turn on/off the lights, etc.) 
depending on the state and the motion of the hand. 

A camera-based system is also presented in [12]. Markers are 
attached to the eyelids of the user and a camera captures the 
movement of these markers, as the user moves his eyelids. The 
data are sampled by a micro-controller and further processed by a 
PC. The system determines the vertical displacement of each 
eyelid. 

Aiming at surgeon assistance, an active instrument that 
contributes to improved accuracy during vitreoretinal 
microsurgery is described in [13]. The instrument that comprises 
of accelerometers, rate gyros and actuators, senses and 
compensates physiological tremor and other unwanted movement. 
The motion captured by the sensors is processed in a PC in order 
desired and undesired components to be distinguished. Then the 
actuators move the tip of the instrument in opposition to the 
motion of the tremor in order to suppress the unwanted 
movement. 

On a different type of projects using reconfigurable logic [14], a 
wearable motion analysis system comprises of an Altera 
Flex10KE FPGA and digital accelerometers [15]. The PWM 
output of the accelerometers, which are mounted on both corners 
of an eyeglass frame and the left and right sides of a waist belt, is 
driven to counters implemented in the FPGA. The latter is 
connected to an embedded computer system with an Adaptive 
Systems Pentium-class processor module for further processing. 
The system is used to assess balance and mobility impairments 
for monitoring patients’ progress. 

A computer interface device for handicapped people, which uses 
an FPGA is presented in [16]. The movement of the head, on 
which an optical sensor is mounted, is used as a positioning signal 

of the computer cursor. Head movements are also used as input in 
an FPGA Wheelchair Controller [17]. A combination of an FPGA 
and a speed adaptor controls the velocity of the wheelchair, after 
receiving suitable commands from the user in the form of either 
head movements or voice commands. 

An adaptive integral system for assisted mobility has been 
developed using various sensors, FPGAs and DSPs[18]. A 
wheelchair is controlled by various electronic guidance 
alternatives, which include head movements, voice-commands, 
EOG commanding, digital joystick and breath-expulsion. An 
FPGA and accelerometers are also used in a project called “3D 
Eye Tracking Device” [19], which aims to measure head and eye 
movements. The FPGA acquires real time sensor data, which are 
then processed by a computer. 

It should be noted that essentially all of the above projects use at 
least one of the following: (a) Large or multiple FPGAs, (b) PC-
class fixed computer resources, or (c) expensive equipment to 
make all necessary data acquisition and calculations. In our 
system such approaches would not meet cost, size, and power 
consumption limits for an embedded application. 

3. SYSTEM DESCRIPTION 
Our system is based on accelerometers to sense hand motion in 
2D space. The general characteristics of the system, defined 
functionally and not in terms of implementation are: (a) low cost 
solid state (non-mechanical) sensors which are reliable and 
suitable for motion sensing, (b) real-time sampling of the data and 
(c) motion detection for a large number of motions (vocabulary), 
tunable to the needs of different persons. The system is presented 
in detail in [1]. 
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Figure 1. Architecture of the embedded system. 
 
The key decision for the system was the usage of solid-state 
accelerometers. Although other sensors were considered (e.g. 
Hall-effect sensors), accelerometers were deemed to be 
sufficiently small in size, reliable, and low cost. Regarding the 
computational sub-system, we showed in [1] that a model of 
independently operating finite state machines (FSM) offers a 
good design tradeoff vs. the usage of micro-controllers (or 
microprocessors) alone for free space motion detection. 
Furthermore, we showed that the sampling and conditioning of 
real-time data is best performed by micro-controllers, leading to a 
hardware organization with fixed as well as reconfigurable 
resources. We also showed that reconfigurable logic is 
advantageous as compared to VLSI. The VLSI approach lacks the 
flexibility to solve the general problem at various levels of 
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4. MOTION REPRESENTATION SCHEME 
– THE USE OF A DOMINANT AXIS 

accuracy vs. number of detected motions at a fixed cost, as indeed 
is the case for the problem in question. Having the above 
observations in mind, we established the architecture shown in 
Figure 1. During preliminary clinical evaluation of the system, many 

experiments had been performed, and thirteen motions had been 
successfully sampled and processed [1]. However, it turned out 
that a large number of complex motions was undesirable to the 
user, regardless of system capability. For example, circular 
motions are more complicated than basic motions (such as “left”, 
or “forward”) and they require more effort in order to be realized. 
Therefore, we concluded that a vocabulary comprised of simple 
motions (forward, back, left, right movement) and their 
combination is preferable [2]. 

A digital two-axis accelerometer (Analog Devices ADXL210) is 
attached to the user’s hand in order to acquire data during hand 
motions. An 8-bit micro-controller (ATMEL AVR 90S8515) has 
been used for the sampling of sensor data in real time. The micro-
controller undertakes the task of converting the PWM outputs of 
the sensor to acceleration values. Then, the data are sent to an 
FPGA (Xilinx SpartanII XC2S100) via an 8-bit bus and to a PC 
via the serial port. The purpose of the embedded FPGA is to 
distinguish programmable types of motions. The ability to 
connect with the PC was employed as a rapid prototyping tool for 
algorithm evaluation, and as a user interface for system training 
(to adapt to individual needs), but not as a necessary component 
during field deployment. In the standalone operation of the 
system the personal computer is not connected. The total system 
cost is less than $70, an arbitrary limit, which nonetheless 
precluded certain types of solutions to the motion detection 
problem. We must notice that the accelerometer is calibrated 
when it is powered on. This way, the system can be adjusted to 
different orientations and also to different accelerometers (there 
are minor differences due to manufacturing variations), when the 
original sensor has to be replaced. Moreover, the system can 
operate in different temperature conditions.  

For the system to be able to recognize these predetermined hand 
motions, a motion representation scheme is necessary for the 
description of each movement. The sensor samples hand 
movement in 2D space. That is, the accelerometer acquires data in 
two different axes (called X and Y), which are orthogonal. A 
subset of the collected data in each sampling period corresponds 
to X axis, and another subset corresponds to Y axis. Therefore, 
each motion corresponds to a pair of sets. The first set includes 
sampling data for X axis, whereas the second set includes 
sampling data for Y Axis. 
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Figure 2. Acceleration charts for motions “forward” (Primary axis: Y) and “right” (Primary Axis: X) (Reference Person vs 
Kinetically Challenged Person), TK<TR. 

109



In terms of processing complexity, the obvious solution is to use a 
data processing unit per axis. However, experimental results have 
shown that we can avoid such an approach. As it is shown in 
Figure 2, one of the two axes (either X or Y) has higher values 
than the other, for each one of the simple motions. This dominant 
axis (which corresponds to greater hand mobility) contains a great 
percentage of the motion’s descriptive information. This axis will 
be called primary, while the other axis will be called secondary.. 
The latter does not contain stand-alone information, which can 
differentiate the specific motion from all other motions, due to the 
fact that the sampling data are characterized by low acceleration 
values. It can only provide supplementary data, which can be 
combined with the samples of the primary axis, in order to 
compose useful information. The above observations stand for the 
motions of a kinetically challenged person, as well as for the 
motions of a reference person (with no kinetic problems). 

As a result, we are able to describe a specific motion, based on the 
samples of its primary axis and on the combination of this data 
with the samples of its secondary axis. This approach decreases 
the workload of the processing unit, which focuses on the data of 
the primary axis. By this way, the necessary resources in 
reconfigurable logic (and the corresponding system cost) are 
decreased. More specifically, each motion is represented by a set 
of thresholds that need to be exceeded, for the motion to be 
recognized. The calculation of the value of these thresholds is 
based on the data of the primary axis. Regarding the secondary 
axis, we only need to designate upper and lower bounds for the 
acceleration. These bounds are predetermined for each motion 
and set to +0.3g and -0.3g respectively. The reason for such a 
choice is based on experiments and is presented in Figure 3. As 
we can see, a hard restriction on the secondary axis of a motion 
(Figure 3(a)), leads to inability to cope with errors during the 
execution of a motion. On the contrary, a very loose restriction on 
the secondary axis (Figure 3(c)) permits too many false positives 
during the execution of the motion. In this case, overlapping of 
the motions may take place. In order to avoid both these cases, we 
determined “middle-of-the-road” bounds for the secondary axis, 
at 0.3g. This choice ensures that our system can detect motions 
similar to the one presented in Figure 3(b), i.e. small deviations 
are acceptable. 

 

Figure 3. Examples of a motion with various restrictions to its 
secondary axis 

Focusing on the thresholds of the primary axis, we mainly 
describe acceleration peaks. Since these peaks are observed in 
different time spaces, we need to insert a delay between the 
detection of two consecutive thresholds, in order to avoid local 
minima (from irregular motion or noise). Therefore, the final 
motion representation scheme comprises of acceleration 
thresholds for some axis of interest, each of which is followed by 
inactive time intervals. The scheme is shown in Figure 4. In this 

example, the primary axis is Y and the thresholds exceed when an 
acceleration sample is smaller than -0.4g (1st threshold), another 
one is greater than –0,4g (2nd threshold), a third one is greater 
than 0,4g (3rd threshold) and a final acceleration sample is smaller 
than 0,4g (4th threshold). It is obvious that the scheme is flexible, 
regardless a motion complexity. More complex motions can be 
represented by more thresholds and less complex motions are 
represented by less thresholds. 
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5. MOTION DETECTION AND SYSTEM 
ADAPTATION 

5.1 Motion Detection Model 
The computational model of the system is based on the motion 
representation scheme and is that of parallel FSMs (Finite State 
Machines), each of which is comprised of stages for detection of 
values/ranges of X-Y data, followed by stages to wait for a 
predefined period of time (including zero time). This way each 
motion is represented in terms of thresholds, which need to be 
exceeded for the state to be active, followed by periods of “not 
examining the input” [1]. 

As it has already been mentioned, a simple vocabulary of motions   
that can be used in succession can lead into more options for the 
user. Therefore, the model in which we concluded, is based on the 
concept that sequences of the four simple motions (forward, back, 
left, right movement) are used in order to produce a complex 
“vocabulary” [2]. This approach allows for a succession of two 
motions with n possibilities each, to produce n2 distinct complex 
motions (n is the number of the FSMs implemented). The FSMs 
that are integrated in the design are only those that led to the 
detection of the four simple motions. The complex motions are 
segmented to two simpler motions and the four FSMs (of the 
simple motions) are re-used for each segment. 
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Figure 5. Complex Motion Vocabulary 
In order to avoid false positives by successions of the same 
motion (e.g. “forward – forward”), these cases are not considered 
as complex motions, leading to n2 - n well–defined complex 
motions. The maximum number of complex motions that the 
system can detect is 42 – 4 = 12, which are presented in Figure 5. 
In addition, it recognizes the simple motions as such (e.g. we 
detect “forward” but do not look for “forward-forward”), leading 
to 16 well-defined motions (four simple and twelve complex). 

5.2 System Adaptation to Individual needs 
It can be said that the general form of each simple motion is the 
same, regardless the specific user. However, even if this 
procedure is similar for all users, it is not exactly the same. 
Clinical tests (of limited scope) have shown that the motions of a 
kinetically challenged person are not as even as the respective 
motions of a healthy one. The speed of execution may vary even 
during the same motion. Thereby, a motion can be too fast in the 
beginning of the execution and too slow at the end, or vice-versa. 
The above observations led to the conclusion that the system must 
have the capability to adapt to the different executions of the same 
motion by different users. 

The idea of adaptation primarily affects the FSMs that are 
responsible for motion recognition and more specifically the 
determination of the FSMs’ thresholds that must change 
according to each user. The procedure that has been implemented 
for the calculation of the thresholds is an unsupervised learning 
method. It comprises of two sub-processes: (a) digital 
representation of the motion’s accelerations graph and (b) 
calculation of the appropriate thresholds, based on the previous 
approximation. 

5.2.1 Digital representation of a motion 
The basic problem that we had to overcome was the local extrema 
that may appear during the execution of a motion, as it is shown 
in Figure 6. Due to many factors, like physiological tremble, 
wrong movement, and deviations from the calibration norm, 
motions are not even. Local maxima or minima may appear and 
significantly influence the result. The best way to address this 
problem is to find the areas of samples that have such a behavior 
and ignore them. In order to find such samples, we compare each 
sample with the four previous ones. If the difference between the 
value of the current sample and the value of its previous ones is 
greater than a predefined acceleration value, which is considered 
as the physiological difference between adjacent samples, then the 
sample belongs to an area of local extrema and is ignored. The 
above procedure is a kind of bouncy filtering, which offers a good 

solution to a specific problem and keeps the processing 
complexity low. 1 st
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Having in mind the consideration of local extrema, described 
above, we can go on with the approximation of the accelerations 
in the graph. As the acceleration samples regard two axes (X, Y), 
the procedure could be repeated twice. However, according to the 
motion representation scheme described previously, we need to 
determine thresholds only for the primary axis of the motion.  

 

Figure. 6. Local Extrema of a motion 
We find the primary axis of the motion, by checking the peak-to-
peak distance of the two axes. Then, we approximate the 
respective acceleration graph. The basic concept is to divide the 
graph in windows of constant size and transfer the problem to the 
approximation of these windows. Each of them can be 
incremental, decremental or stable. We use three counters in order 
to find the category to which a window belongs, one per category. 
In each window, we examine the relation of each sample with its 
previous one and according to the result we increment the 
respective counter. As explained in the previous paragraph, we 
ignore samples that belong in areas of local extrema. After 
examining the last sample of the window, we can determine the 
category to which it belongs.  

The result of the approximation process is a vector, whose 
positions correspond to the respective windows, as it is shown in 
Figure 7. The value of each position determines the respective 
window category (1 for incremental, -1 for decremental, 0 for 
stable). Based on this vector, we are able to find sequences of 
windows that lead to threshold calculation.  

 

Figure 7. Example of motion approximation 
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5.2.2 Calculation of a motion’s representative 
thresholds 
In general, thresholds are assigned to sequences that correspond to 
a set of accelerations followed by a set of decelerations, which is 
the general form of a hand movement. More specifically, the 
algorithm that finds threshold positions and calculates thresholds 
is described in Table 1. 

Table 1. Sequences of windows that lead to threshold position 
detection 

 Windows  

State A B C D Action 
0 1(-1) -1(1)   Remove A (if inserted). 

State=3 

0 1(-1) 1(-1)   Remove A (if inserted), 
Insert B. State=0 

0 1(-1) 0   State=1 

1 1(-1) 0 -1(1)  Insert A, Insert C (if not 
inserted). State=0 

1 1(-1) 0 1(-1)  Remove A (if inserted), 
Insert C. State=0 

1 1(-1) 0 0  State=2 

2 1(-1) 0 0 -1 Insert A, Insert D (if not 
inserted). State=0 

3 1(-1) -1(1) -1(1)  Insert A, Insert C (if not 
inserted). State=0 

3 1(-1) -1(1) 0  Insert A, Insert B (if not 
inserted). State=1 

3 1(-1) -1(1) 1(-1)  State=4 

4 1(-1) -1(1) 1(-1) 0 Insert C (if not inserted). 
State=0 

4 1(-1) -1(1) 1(-1) 1(-1) Insert D (if not inserted). 
State=0 

Threshold positions are stored (temporarily or permanently) in a 
vector. When the scan of all the sequences has been completed, 
we are able to calculate the thresholds, based on this vector, as 
follows: 

-If a threshold position corresponds to an incremental window 
then the threshold value is the 80% of the maximum value of the 
window. 

-If a threshold position corresponds to a decremental window then 
the threshold value is the 80% of the minimum value of the 
window. 

 

5.2.3 Unsupervised Training Application  
By using the PC as the user interface, we collect data for each 
simple motion from individuals. These data are the patterns, on 
which the adaptation procedure is based. After calculating the 
appropriate thresholds for each simple motion following the 
procedure that was previously described, we download them to a 
nonvolatile memory, in order to be available for further use. The 
AVR micro-controller (which is used in the present version of the 
system) offers an on-chip memory (EEPROM). The micro-
controller loads the thresholds from his ROM on power-up and 
sends them to the FPGA, where they are stored in registers. The 
FSMs have access to these registers and can read the respective 
thresholds. In this way, they can recognize the motions that are 
similar to the initial patterns the user provided. This procedure 
leads to a system with capabilities to adapt to individual needs but 
without recompilation of the design. The FPGA is initialized with 
a fixed design and with changeable input data after it is 
configured. The training application that undertakes the procedure 
of obtaining the user’s patterns and calculating the appropriate 
thresholds, is presented in Figure 8. 

 

 

 

Figure 8. The Training Application Interface 
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We notice that in the case that no training has taken place, the 
operation of FSMs is based on default thresholds. The calculation 
of these fixed thresholds was based on experimental results. The 
default operation works very well for healthy persons, however it 
is likely to encounter problems when the user is kinetically 
challenged. 

6. EXPERIMENTAL RESULTS - 
CONCLUSIONS 
One of the significant results of the experiments was that the 
preferred motions for the person with kinetic challenges are 
forward, back, left, right, something that led to the motion 
detection model. The results of the experiments were valuable in 
more ways too. The motion representation scheme and detection 
model works very well for the (generally irregular) motions that a 
person with kinetic disorders can realize. 

The model can recognize simple motions with better than 95% 
success. Complex motions have 80%-95% recognition rate. 
Regarding those complex motions whose effectiveness is lower 
(80%), the change of the initial calibration norm, after the 
execution of the first segment of the motion contributes to this 
low percentage, as it is shown in Figure 9.  

 

Figure 9.Deviations from the Theoritical Execution of a 
Complex Motion 

Figure 10 presents examples of motion approximation and 
thresholds’ calculation for motions executed by a reference 
person and a kinetically challenged person. The results are 
satisfactory in both cases. 

Concluding, we have presented a 2D motion detection model, 
which is readily implementable in reconfigurable hardware for a 
low-cost solution. The motion representation scheme, in which we 
concluded, decreases processing complexity. Therefore, the 
system has diminished demands in reconfigurable resources, 
something that contributes to the low cost of the whole design. 
Furthermore, a simple vocabulary of motions can be used to form 
more complex motions. The model is a good compromise 
cost/performance-wise, as it can be trained to individual users’ 
needs and it can be extended to more motions, or more complex 
ones. 
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