
Techniques for Efficient Inline Tracing on a Shared-Memory
Multiprocessor

Susan J. Eggers, David R. Keppel, Eric J. Koldinger, and Henry M. Levy
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195

Abstract

While much current research concerns multipro-
cessor design, few traces of parallel programs are
available for analyzing the effect of design trade-
offs. Existing trace collection methods have serious
drawbacks: trap-driven methods often slow down
program execution by more than 1000 times, sig-
nificantly perturbing program behavior; microcode
modification is faster, but the technique is neither
general nor portable.

This paper describes a new tool, called
MPTRACE, for collecting traces of multithreaded
parallel programs executing on shared-memory mul-
tiprocessors. MPTRACE requires no hardware or mi-
crocode modification; it collects complete program
traces; it is portable; and it reduces execution-time
dilation to less than a factor 3. MPTRACE is based
on inline tracing, in which a program is automat-
ically modified to produce trace information as it
executes. We show how the use of compiler flow
analysis techniques can reduce the amount of data
collected and therefore the runtime dilation of the
traced program. We also discuss problematic issues
concerning buffering and writing of trace data on a
multiprocessor.

This work was supported in part by the National Science
Foundation under Grants No. CCR-8619663, CCR-8904190
and CCR-8907666, and by The Boeing Corporation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish. requires a fee
and/or specific permission.
0 1990 ACM 089791-359-0/90/0005/tXI37 $1.50

1 Introduction

Trace-driven simulation is one of the most widely
used techniques for architectural evaluation; in par-
ticular, it has been invaluable to analyses of cache
memories [Smith 82, Hill 87, Przybylski et al. 88,
Eggers & Katz 891. The data with which a cache
simulation is driven consists of a trace of all instruc-
tion and data references gathered from the execu-
tion of one or more application programs. Typi-
cally, this trace is gathered using an interpretive
technique; a trap is taken preceding the execution
of each instruction, the instruction is ana.lyzed by
software loaded with the program, and trace infor-
mation about the instruction is written to a buffer.

While trap-oriented trace generation is sufficient
for use in uniprocessors, its application for multi-
processor tracing is somewhat questiona.ble. The
problem is that traps and subsequent instruction
analysis drastically slow the execution of a program,
often by two or three orders of magnitude [Shustelr
78, Wiecek 821. This dilation is not import,a.nt, in
the uniprocessor case, because the trace content is
independent of the dilation factor; in other words,
data gathered by the trap analysis is identical to
data that would be gathered in real-time by a hard-
ware monitor.

However, for multiprocessors, a drastic reduction
in the execution speed of coopera.ting threa.ds nmy
completely change the behavior of t,he program.
This change occurs because the additional time per
instruction used in trace generation overwhelms the
normal timing differences between the execution of
different instructions (e.g., that caused by ca.che hit,s
versus misses). Consequently, ah instructions al>-
pear to take the same amount of time. The original,
global (cross-thread) order of instruction execution
is perturbed, altering the order in which threads
gain access to shared data and process messages t,o
each other.

A more efficient alternative to trap-oriented trace

37

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98457.98501&domain=pdf&date_stamp=1990-04-01

generation is microcode modification on a micropro
grammed computer. One such tool, called ATUM,
has been used on both uniprocessors and multipro-
cessors [Agarwal et al. 86, Sites & Agarwal 881. An
advantage of microcode alteration is that all exe-
cuting code, including the operating system, can be
traced. An obvious disadvantage of this approach,
however, is that many current RISC processors are
not microprogrammed, and even on CISCs, access
to microcode is typically restricted to the vendor.
Even with the microcode approach, the dilation
may be as high as 20, because a special microrou-
tine is invoked on every reference [Agarwal et al.
861.

This paper describes a software tool, called
MPTRACE, that provides another alternative for
tracing the execution of multi-threaded applications
on a shared-memory multiprocessor. Three goals
of MPTRACE were (1) to produce a portable soft-
ware trace tool for multiprocessors that requires no
hardware monitoring or modification; (2) to reduce
runtime dilation well below that of other software
techniques, and even below that of the microcode
schemes; and (3) to produce accurate traces. Accu-
racy means both that the trace should be a com-
plete list of addresses referenced by the program
and that the address trace should be as close as
possible to the trace that would be obta.ined with a
nonintrusive tracing technique. MPTRACE is based
on inline tracing, a software approach that entails
no hardware modification. The technique automat-
ically modifies the assembly language version of the
compiled target application, inserting code to col-
lect traces. Thus, at execution time, the program
traces itself.

The tracing code is highly portable; the machine-
dependent portions of the system are limited to 25
percent of the code, over two thirds of which is a de-
scription of the instruction set. (While the current
implementation of MPTRACE executes on the Se-
quent Symmetry [Lovett & Thakkar 881, which uses
Intel 80386 processors, RISC machines will have
much smaller descriptions, and therefore propor-
tionately less machine-dependent code.) If the OS
scheduler allows migration, then it must be modi-
fied so that when a process (thread) is rescheduled,
the scheduler will drop a timestamp and processor
number into the trace buffer. Such a change is typ-
ically only a few machine instructions. Execution
dila.tion for trace generation with MPTRACE, ex-
cluding trace storage, is only 2 to 3 times normal
execution time.

MPTRACE’S low dilation is achieved through
three means. First, as previously stated, inline trac-
ing eliminates the costly breakpoint and instruc-

tion decoding used by trap-based trace generators.
Second, MPTRACE uses compiler flow analysis tech-
niques to reduce the number of program points tha.t
need to be instrumented and the amount of da.ta
that is collected. Third, MPTRACE incorporates
a trace postprocessor that reconstructs a full trace
from the original source and the dynamic trace in-
formation.

The basic approach, inline tracing, has been used
in other tracing and performance tools. Our tech-
nique differs from these systems in both the applica-
tion targeted and the amount of dilation achieved.
Pixie [MIPS 861 is a profiling tool developed to an-
alyze basic block usage and execution time on the
MIPS R2000. TRAPEDS [Stunkelk Fuchs 891 is a
facility for performing trace-driven simula.tions on

non-shared memory multicomputers (e.g., the Intel
Hypercube). It modifies an assembly program, but
inserts both tracing instructions and calls to a run-
time simulator; the simulator processes and then
disposes of the trace data. Dilation for TRAPEDS
is 10 to 30 depending on the number of processors;
the time does not include instruction simulation but
does include a null procedure call where the sim-
ulation would occur. A similar system, based on
link-time code modification, has been constructed
for uniprocessor tracing and analysis on the TI-
TAN [Borg et al. 891. Its dilation, again exclud-
ing simulation, ranges from 8 to 12 times normal
program execution. Finally, a similar technique
has been used to implement a software instruction
counter for debugging [Mellor-Crummey & LeBlanc
891.

The objective of this paper is both to describe
MPTRACE and to evaluate the techniques it uses to
reduce dilation. The rest of the paper is orga.nized
as follows. The next section presents an overview of
MPTRACE, describing its operation and its process-
ing phases. Section 3 describes the optimizat,ions
that are made to reduce tracing overhead. Section
4 discusses the buffering of trace data for I/O. Sec-
tion 5 evaluates the performance of MPTRACE and
shows the effect of several optimizations. Section G
summarizes our results and discusses future clirec-
tions. An example of MPTRAcE-modified code is
shown in Appendix A.

2 Overview of MPTRACE

MPTRACE consists of three phases:

l The preprocessor reads the assembly version
of a source program and produces a modified
source to be executed. The modifica.tions in-
clude the insertion of tracing code a.nd the cre-

38

ation of a data structure for identifying types
of memory references. The latter is referred to
as the roadmap.

l The modified program is then linked with
MPTRACE run-time routines and is executed.
The execution produces an encoded trace file
that includes only that information that cannot
be reconstructed at post-generation time, such
as data references or control transfers based on
runtime data.

l The postprocessor examines the encoded trace
file, along with the roadmap provided by the
preprocessor, to produce the final trace data.

We provide an overview of these three phases be-
low.

2.1 Preprocessing

The principal objective of the preprocessing anal-
ysis is to minimize both the amount of trace code
inserted and the amount of data produced by the
modified program at run time. Both are needed to
ensure a low dilation factor. Because of the detail
involved in its source program analysis, the prepro-
cessor is the most complex part of MPTRACE. Pre-
processing a file is relatively quick. Compiling a C
program and preprocessing the resulting assembly
take about the same time.

The preprocessor has four main tasks. First, it
saves the addresses of data and instructions in the
unmodified source program. Although the source
will be expanded by the addition of tracing instruc-
tions, addresses in the final trace file should reflect
those in the original code.

Second, the preprocessor analyzes basic blocks to
determine which instruction addresses and registers
must be saved and then inserts tracing code to store
them. (The locations of the inserted code in the
original program are known as save points.) It at-
tempts to minimize save point overhead by consol-
idating the inserted tracing instructions. For ex-
ample, code for saving multiple registers appears
contiguously, before any of the registers are used,
rather than just prior to each separate use. All op-
timizations are described in section 3.

Third, the preprocessor generates information in
the roadmap that will be used by the postprocessor
to reconstruct the full trace from the generated, en-
coded trace. The roadmap contains the directions
for generating memory references as they would
have occurred during execution of the unmodified
program. It aids the postprocessor in examining the
encoded trace to follow control flow, det,ermine how

data is referenced, and compute its address. For
example, given a particular instruction address, the
roadmap specifies any static addresses referenced by
that instruction, and defines the calculations needed
to compute dynamic addresses, i.e., those based on
run-time register values. The roadmap also pro-
vides size and access type information for data ref-
erences.

Fourth, the preprocessor inserts code for mana.g-
ing buffers of trace output.

2.2 Trace Generation

The preprocessor-modified program is assembled
and linked with run-time routines that handle trace
output, and is then executed. The run-time rou-
tines preallocate a pool of shared buffers before call-
ing the application’s main program. When started,
each executing thread of the pa.rallel application
program dequeues a buffer from the pool, fills the
buffer with trace data, and places the full buffer
on a queue to be written to disk. Separate writer
threads empty the buffers and return them to the
free pool for reuse. (The preprocessor inserts in-
structions in the program to check for buffer over-
flow, to dequeue empty buffers when needed, and
to enqueue full buffers.)

2.3 Postprocessing

The postprocessor reconstructs a.ll memory refer-
ences generated by the original program. It steps
through the roadmap code, interpreting directions
for one instruction at a time, and retrieving val-
ues from the encoded trace file. The postproces-
sor adjusts all of the addresses placed in the final
trace to remove the bias caused by inserting the
tracing code. Postprocessing is the slowest of the
three phases, generating about 3,000 addresses per
second.

3 Optimizations for trace re-
duct ion

As previously stated, the primary objective of
MPTRACE was to reduce the time and spa.ce require-
ments of the run-time tracing code. In this section
we describe the analysis performed by our current
implementation. In section 5 we discuss the space
a.nd t,ime impa.& of some of these optimiza.tions.

39

3.1 Basic and superblock analysis

Fundamental to reducing the amount of inserted
trace code and saved trace data is the size of the
program segment that the preprocessor analyzes at
once. Since many of the particular optimizations
described below can be performed only once per
unit of analysis, it is important to choose as large
a unit as possible. Our minimal unit of analysis
is the basic block, a sequence of instructions with
one entry point and one exit point. MPTRACE also
attempts to identify sequences of contiguous basic
blocks, which we call superblocks. A superblock has
a single entry point but multiple exit points.

During trace generation MPTRACE saves only the
first address in a superblock. All other instruction
addresses can be inferred from information provided
by the roadmap during postprocessing. Once inside
a superblock, it is not necessary to mark the en-
trance into an internal basic block. Instead, after a
branch instruction the postprocessor compares the
branch target address to the next data element in
the trace file. That element is either the target ad-
dress, in which case the branch succeeded, or trace
information from the next internal block, indicating
that the branch failed.

The preprocessor also inserts code that checks for
trace buffer overflow only once per superblock. The
check takes into account the maximum size of all
data that must be saved in the superblock.

3.2 Minimizing save points and save
point code

Each save point has a prologue whose execution in-
curs overhead, e.g., for trace buffer pointer manipu-
lation and the saving of processor state (described in
section 3.4). This overhead can be minimized by re-
ducing the number of save points, which MPTRACE
does in several ways. First, all registers whose value
remains unchanged are saved only once, rather than
each time they are used. Second, multiple registers
are saved at a single save point; the save point oc-
curs before any of them are used. Finally, trace
buffer overflow checks are folded into the first save
point in a superblock, rather than appearing sepa-
rately.

3.3 Minimizing saved operands

Because of basic and superblock optimizations,
most of the trace data saved during program exe-
cution is for the computation of operand references.
An important optimization is to remove tracing of
operand references whose addresses can be deter-

mined at preprocessing time. For example, the lo-
cations of all global variables are fixed at compile
time; therefore references to them can simply be in-
serted in the final trace by the postprocessor from
information provided by the roadmap.

Many dynamically computed operand addresses
can also be optimized. For example, on some ma-
chines, local variables are referenced as an offset to a
fixed register (the frame pointer). Because this reg-
ister does not change within a procedure, it needs
to be saved only at procedure entry and exit.

Similarly, push and pop instructions adjust the
stack by a known amount, typically indicated by the
instruction opcode. Often these operations occur
in series, particularly at procedure calls. Rather
than saving the stack pointer before each sepa.rate
operation, MPTRACE saves it for the first operation
only and simulates each subsequent push or pop in
the postprocessor.

While the stack pointer and frame pointer are
special registers on some architectures, their opti-
mizations are general in nature. The optimizations
can be applied to any register that is both used for
addressing and whose value is altered by a consta.nt
that is determined at compile time.

3.4 Register and condition code uti-
lizat ion

One problem with inline tracing is that executing
the inserted trace code can perturb the processor
state. For example, trace code often requires the
use of registers, and tracing instructions can change
condition codes that had been set by instructions
in the original program. Therefore, the preproces-
sor must issue code to save processor sta.te that is
modified by tracing and required by a subsequent
(original) instruction.

In the simplest and worst case solution, each sa.ve
point within the modified program saves all reg-
isters and condition codes that it modifies. Af-
ter the trace data has been written to the tra.ce
buffer, those registers and condition codes are re-
stored. MPTRACE avoids much of this 0verhea.d by
recognizing which registers and condition codes are
live at save points and which are not. If a register is
dead, it can be used by the tracing code. Similarly,
if condition codes are not needed by the following
instructions, they will not be saved.

4 Buffer Management

The basic function of the MPTRACE runtime sys-
tem, which is linked with the modified application

40

program, is to provide empty buffers to the trace-
generating threads and to write filled buffers to sec-
ondary storage. Buffer management is a signifi-
cant problem on a high-speed multiprocessor; each
traced thread on our Sequent Symmetry generates
about 0.8 megabytes of data per second, while the
I/O subsystem has a capacity of about 2 megabytes
per second. When more than two threads are
traced, the I/O subsystem becomes a bottleneck.
Therefore, the two principal buffer management is-
sues are (1) what to do when all buffers become full,
and (2) how to reduce the rate at which this occurs.

4.1 Basic Strategy

The runtime system is started before the traced pro-
gram so that it can preallocate the trace buffers.
The buffers are placed in a shared pool, and the
traced program is started. As the program executes,
each thread pulls a buffer from the pool, fills it with
trace data, enqueues it to a filled buffer queue, and
repeats the process.

One or more writer threads (started by the run-
time system) remove buffers from the filled queue,
write them to disk, and return the buffers to the free
list. The writer threads execute on separate proces-
sors from the trace-generating threads, so that their
execution does not preempt tracing.

While the runtime system must have at least one
writer thread, more writers permit more concur-
rency. For example, one writer can be blocked on
I/O, while another is removing a buffer from the
queue. If there are several physical disks and chan-
nels, multiple writer threads can be used to over-
lap I/O operations. With our current configuration,
only two writers are required to saturate a disk. We
allocate two writers to each of two channels, and run
the I/O subsystem at its capacity.

Even with huge buffer allocations and multiple
writers, it is inevitable that for some programs the
tracing threads will eventually run out of buffers.
Our approach is to stop all tracing as soon as one
thread finds the buffer queue empty, even though
other threads may still have partially empty buffers.
We chose this approach, because it is consistent
with our primary goal of reducing the dilation as
seen by the tracing threads. Since all threads block
almost simultaneously, the additional wait does not
affect interthread timing, although it does increase
the overall execution time of the experiment.

Inter-thread synchronization is currently done us-
ing a global flag. When a generating thread fails to
find a free buffer, it sets the flag. Other generating
threads poll the flag and spin while it is set. When
all buffers are written out, the flag is cleared and

the generating threads continue processing. Clear-
ing the flag only after all buffers have been freed
maximizes the time until the system must block
again.

The polling code is inserted by the preprocessor
at the head of every superblock; therefore the gener-
ating threads block only on superblock boundaries.
On the average, each superblock contains either one
or two basic blocks, and each basic block is approx-
imately 4 instructions long. Thus, once the con-
dition is detected, all threads will halt on average
within 6 (original program) instructions. Polling at
superblock granularity increases the execution time
of a traced program by about 10 percent. A more
efficient alternative would be to check the flag only
at the end of each buffer. However, this option is
too coarse for our dilation requirements, particu-
larly for large buffer sizes.

4.2 Data Compression and Reduc-
tion

Since the I/O system is a substantial bottleneck,
we have investigated ways to decrease the rate a.t
which data is written. There are two principal a.l-
ternatives for reducing the data rate. The first is
to decrease the amount of trace data produced. As
previously discussed, we limit the trace size by gen-
erating only those addresses that cannot be deter-
mined statically or through previously-saved va.lues
in the trace.

The second method is to apply a compression al-
gorithm to the trace buffers before they are written
to disk. If this process consumed no CPU time (i.e.,
if the compression were free), then an z-fold com-
pression of the data would have the same effect a.s an
z-fold increase in the I/O bandwidth or the amount
of buffer space. Unfortunately, compression is not
free; typically it involves additional copying, and
consumes CPU, memory, and bus cycles. While this
overhead can be overcome somewhat by using more
processors, our experiments with the Unix compress
utility lead us to believe that the CPU cost for algo-
rithms providing adequate compression is an order
of magnitude too high to significantly reduce bulTer
overflow.

4.3 Shared-Memory Multiprocessor
Buffering Issues

The target application of MPTRACE was paraL
lel programs, particularly those using light,weiglit,
threads. In such systems, buffering problems can
be caused by the migration of threads between pro-
cessors. The principal issue is determining how t.o

41

Program Description Processors Language Instructions
Name (Static)

Pverify logic verification 12 C 7395
Topopt topological optimization 9 C 5916

Psim butterfly simulator 12 PCP 7114
Psplice circuit simulator 12 C 62838

Table 1: Programs used in MPTRACE evaluation

assign buffers. For example, buffers could be main-
tained on a per-processor basis. For cache simu-
lations, this is a reasonable choice, since we gener-
ally wish to examine the reference strea,m generated
by each processor. However this organization fails
when threads are allowed to migrate. The problem
originates because each executing thread will, dur-
ing a save point, hold the address of its buffer in
a general-purpose register. If the thread migrates
in the middle of a save point, it could write trace
data into the wrong buffer, possibly corrupting an-
other thread’s data. Synchronizing access to the
buffer pointer before each save point would greatly
increase the cost of tracing. Furthermore, if threads
can switch buffers at any time, decoding the trace
buffers at postprocessing time becomes more diffi-
cult.

To eliminate this problem we have chosen to man-
age buffers on a per-thread basis. However, we still
need to know when threads migrate in order to re-
construct the per-processor reference stream. The
solution requires some modification to the thread
scheduler. When a migrated thread is scheduled for
execution, the thread scheduler deposits a special
token in the buffer along with the processor num-
ber, indicating that the thread has moved to a new
processor. In this way a per-processor instruction
stream can be pieced together, if desired. Many
lightweight thread systems have user-level schedul-
ing of threads (e.g.,[Bershad et al. 88]), which sim-
plifies this modification.

This scheduler modification has not yet been im-
plemented. For the parallel programs measured in
the following section, buffers were allocated on a per
thread basis; however threads in these applications
do not migrate.

5 Performance of MPTRACE

This section presents measurements of the static
code expansion and dynamic execution dilation
caused by MPTRACE modifications of four parallel
CAD applications. Code expansion indicates the

growth in code size as measured by the number of
additional instructions. Dynamic execution dilation
indicates the change in execution speed when the
modified program executes. In the dyna.mic mea-
surements presented, writing of the trace buffers
to disk was disabled. As previously discussed, a.11
threads are stopped when buffers are full; our ob-
jective here is to measure the dilation only while the
threads are executing. We purposely separate mea.-
surements of tracing from those including storage
of trace buffers: the former reflects the ca.pability
of our techniques; the latter reflects the capacity of
the underlying hardware configuration.

The four traced programs, which are listed in Ta-
ble 1, were originally written for the Sequent Ba.l-
ante. Topopt [Devadas & Newton 871 does topo-
logical compaction of MOS circuits, using dynamic
windowing and partitioning techniques; Topopt’s
algorithm is based on simulated annealing. Psplice
is a circuit simulator combining the original direct
method solution with waveform relaxation. Ver-
ify [Ma et al. 871 is a combinational logic veri-
fication program, that compares two different cir-
cuit implementations to determine whether they
are functionally (Boolean) equivalent. The final
program, Psim, simulates switch nodes for a non-
shared bus interconnect. All programs were com-
piled, modified by MPTRACE, assembled by the In-
tel 80386 assemblers, and traced on a 20-processor
Sequent Symmetry. These measurements only a.c-
count for code in the application programs, and
not in the standard Unix libraries, which were not
traced. (MPTRACE can instrument libraries; how-
ever in these runs the libraries were left untraced
for our convenience.) Of the four programs, only
Psplice makes significant use of the libraries.

5.1 Effect of the optimizations

To allow the separate evaluation of individual op-
timizations, MPTRACE can selectively enable a.nd
disable some of them. Table 2 displays the re-
sult of disabling all switchable MPTRACE optimiza-

42

tions, thereby providing a “worst case” baseline for
our implementation. With optimizations disabled,
MPTRACE inserts an overflow check before each in-
struction, saves the address of each instruction, and
saves the values of all registers used in addressing.
(In fact, this is somewhat better than a worst case,
because the preprocessor still recognizes and does
not record references whose addresses are known at
preprocessing time.) As the table shows, with opti-
mizations removed, the instruction count grows by
a factor of 20, while execution time grows by a fac-
tor of 8. Execution time dilation is much smaller
than code size dilation, because many of the gen-
erated instructions are conditionally executed only
when buffer overflow occurs.

Table 3 shows the effect of several optimizations
on code growth. The three optimizations are added
one at a time, i.e., each optimization includes the
previous one. The first column of the table in-
dicates the number of instructions in the original
program. The next section, marked Basic Block,
shows the code expansion when basic block recog-
nition is enabled. In this case, the modified pro-
gram saves only the starting address of each ba
sic block, performs the buffer overflow check at the
head of the block, saves registers only once where
possible, and attempts to save as many registers
in a save point as possible. The middle table sec-
tion, marked Superblock, shows the effect of rec-
ognizing multiple basic blocks that can be grouped
together. Superblock recognition performs the ba-
sic block optimizations, but over a larger section
of code. Finally, the section marked Procedural
saves the frame pointer on procedure entry and exit,
rather than in each block in which it is used. In
fact, the code grows slightly here, because the frame
pointer is also saved at the head of each new buffer.
The extra code to save the frame pointer is gener-
ated once per superblock but is executed only when
a new buffer is required.

As we can see from the table, the effect of these
optimizations when compared to the worst case of
Table 2 is dramatic. Overall, code expansion is re-
duced by a factor of 3 to 5, depending on the opti-
mizations applied and the application program. In
general, programs with larger basic blocks and bet-
ter register usage will see a lower code expansion
from MPTRACE preprocessing.

Much of the code removed by the basic block op-
timizations is for buffer overflow checking and han-
dling; this code is now applied only once per block.
Because the overflow checks normally fail, the over-
flow handling code is executed infrequently. Table 4
reflects the expansion of code only along this “main-
line” of execution, with the infrequently executed

instructions removed. It provides a better indica-
tion of the typical code expansion that the program
will see, rather than the total expansion of code for
both the normal and exceptional ca.ses. The sa.v-
ings is greatest for the Procedural optimizations,
because the special code added for frame pointer
processing is executed only when acquiring or re-
leasing a buffer.

Tables 5 and 6 show the runtime dilation of the
programs for each of the three sets of optimizations.
In both cases, writing of buffers to disk was dis-
abled. The execution times reported are the mean
of ten executions of each of the programs. Table 5
shows the execution overhead of the traced pro-
grams without the overhead of trace buffer man-
agement. In this case, the buffer checking code was
modified so that buffer overflow checks would al-
ways fail; that is, the exceptional code to enqueue a
full buffer and dequeue a new empty buffer is never
executed. In effect, this is the dilation that would
occur with an infinite (or large enough) buffer. Ta-
ble 6 shows the tracing dilation when buffers are
managed at runtime, i.e., they are enqueued when
full, although disk writes are still disabled. This is
the tracing dilation that programs will more likely
see when running. In this case the programs used
4K-byte buffers. In both cases dilation ranged be-
tween 1.6 and 3, with those including buffer man-
agement 10 to 15 percent higher than for the infinite
buffer scenario.

Note that the programs run faster than the static
dilation (code expansion) would indicate. There
are several possible explanations. First, conditional
branches that are added by preprocessing are sel-
dom taken. Second, the tracing code uses a sub-
set of instructions that have short execution times.
Third, adding trace code increases the average ba-
sic block size. These factors may improve pipeline
and. cache performance.

5.2 Buffered I/O Performance

We have established that the tracing dilation of pro-
grams modified by MPTRACE is approximat,ely 2 t,o
3, excluding trace storage. Furthermore, blocking
the generating threads does not significantly a.ffect.
dilation, because all threads stop within 5 or 6 in-
structions. However, when writing is enabled, the
wall-clock time of a traced program averages about
10 times the execution time of the original, untra.ced
program -or 4 times worse than the traced program
without I/O.

There are at least three sources of the slowdown.
First is the cost of copying data from user-spa.ce
trace buffers to system I/O buffers before writing.

43

Instruction Count Execution Time
Program Original Modified Expansion Original Modified Dilation

Pverify 7395 148328 20.1 13.6 119.1 8.8
Topopt 5916 118446 20.0 5.8 47.1 8.1
Psim 7636 152689 20.0 5.6 32.3 5.8
Psplice 62883 1265247 20.1 6.4 35.1 5.5

Table 2: “Worst case” performance (optimizations disabled)

Basic Block Super Block Procedural
Program Instr Instr. Expansion Instr. Expansion Instr. Expansion

Pverify 7395 43631 5.9 38656 5.2 42281 5.7
Topopt 5916 37241 6.3 32359 5.5 34785 5.9
Psim 7636 42699 5.6 35327 4.6 39142 5.1
Psplice 62883 309723 4.9 273280 4.4 289330 4.6

Table 3: Evaluating optimizations: code expansion

Basic Block Super Block Procedural
Program Instr. Instr. Expansion Instr. Expansion Instr. Expansion

Pverify 7395 33461 4.5 30274 4.1 29708 4.0
Topopt 5916 28247 4.8 25147 4.3 23967 4.1
Psim 7636 28866 3.8 26969 3.5 26605 3.5
Psplice 62883 245415 3.9 222454 3.5 213091 3.4

Table 4: Evaluating optimizations: “mainline” codew expansion

Basic Block Super Block Procedural
Program Seconds Seconds Dilation Seconds Dilation Seconds Dilation

Pverify 13.6 34.3 2.5 32.2 2.4 31.4 2.3
Topopt 5.8 14.8 2.6 13.3 2.3 12.3 2.2
Psim 5.6 10.0 1.8 9.8 1.8 9.4 1.7
Psplice 6.4 11.2 1.8 10.7 1.7 10.5 1.6

Table 5: Execution dilation: no buffer management, no disk

Basic Block Super Block Procedural
Program Seconds Seconds Dilation Seconds Dilation Seconds Dilation

Pverify 13.6 38.8 2.9 35.8 2.6 35.0 2.6
Topopt 5.8 15.9 2.7 15.0 2.6 13.9 2.4
Psim 5.6 11.7 2.1 11.1 2.0 10.9 1.9
Psplice 6.4 12.3 1.9 11.9 1.9 11.9 1.9

Table 6: Execution dilation: with buffer management, no writing

44

Second is the overhead of disk management and vir-
tual memory management by the operating system,
particularly as buffer space gets large. Third is the
cost of the actual disk accesses. All of these can
be reduced, but not eliminated, through additional
hardware (memory or I/O) or more intelligent man-
agement by the application or operating system.

One optimization is to increase the size or num-
ber of trace buffers. We experimented with buffer
allocation, varying buffer size from 256 to 64K bytes
and numbers of buffers from 25 to 400. Our results
indicate several trends:

l For small buffers (e.g., 256 bytes), buffer man-
agement overhead is high, because the cost of
the system calls and run-time processing to
manage the buffers dominates the time to fill
them.

l For larger buffers (e.g., over 1K bytes), run
time is dependent on the total buffer space allo-
cation, but is independent of the actual number
of buffers or their size.

l As total buffer allocation increases, so does
memory management overhead. An increasing
number of Dynix minor faults (those that cause
a hardware fault but can be handled with-
out disk I/O) are incurred by both the tracing
threads and the writers, causing an increase in
their execution times.

In our experiments, the wall-clock time for a traced
program was consistently 10 times the execution
time of the original program, generally independent
of the buffer size or number of buffers, as stated
above. However, for buffers as small as 256 bytes in
size, or for total buffer allocation over 3 megabytes,
the wall-clock time grew to nearly 15 times original
program time.

6 Conclusion

We believe that the results shown in Sec-
tion 5 demonstrate that the optimizations used by
MPTRACE are useful in reducing dilation. The re-
sults also demonstrate the potential of inline trac-
ing for trace generation on shared-memory mul-
tiprocessors. The execution-time dilations, which
are only two to three times the execution time of
the original program, are three orders of magnitude
faster than trap-driven techniques, nearly one order
of magnitude faster than microcode tracing, and 3
to 10 times faster than other in-line tracing facili-
ties. Even including disk I/O, our system is com-
parable to or better than other schemes that only

trace. Furthermore, MPTRACE produces a contin-
uous trace by stopping all threads when buffers are
full.

There are several reasons why MPTRACE is able
to achieve its performance. First and foremost is
the preprocessing of the assembly program to re-
duce both the amount of data that must be sa.ved
and the number of save points that must be in-
serted. Third, tracing utilized a subset of instruc-
tions that had shorter execution times than those
used in the applications on average. This factor also
contributes to the discrepancy between code expan-
sion and runtime dilation.

We plan to take trace work in two different direc-
tions. First, we will produce multiprocessor tra.ces
for programs with fine-grained parallelism and fine-
grained scheduling. Second, the effect of dilation on
accuracy is still an open issue. We would like to test,
whether dilation affects tracing results. MPTRACE
can introduce various amounts of dilation in a con-
trolled fashion. We will thus be able to tra.ce in-
dividual programs with various dilations but under
otherwise identical circumstances.

7 Acknowledgements

We would like to thank Robert Henry for help-
ing us to better understand code generation t,ech-
niques. Jean-Loup Baer provided much useful feed-
back both during the project and on the paper.
Tom Anderson and Brian Bershad helped with de-
tails of the Sequent and Presto.

45

References

[Agarwal et al. 861 A. Agarwal, R. L. Sites, and
M. Horowitz. ATUM: A new technique
for capturing address traces using mi-
crocode. In Proceedings of the 19th In-
ternational Symposium on Computer Ar-
chitecture, pages 119-127, June 1986.

[Bershad et al. 881 B. N. Bershad, E. D. Lazowska,
and H. M. Levy. PRESTO: A sys-
tem for object-oriented parallel program-
ming. Software - Practice and Experi-
ence, 18(8), August 1988.

[Borg et al. 891 A. Borg, R. Kessler, G. Lazana,
and D. W. Wall. Long address traces
from RISC machines: Generation and
analysis. Technical Report 89/14,
Digtal Equipment Corporation Western
Research Laboratory, Palo Alto, CA,
September 1989.

[Devadas & Newton 871 S. Devadas and A. New-
ton. Topological optimization of multi-
ple level array logic. IEEE Transactions
on Computer-Aided Design, November
1987.

[Eggers & Katz 891 S. J. Eggers and R. H. Katz.
The effect of sharing on the cache and
bus performa.nce of parallel programs.
In Proceedings of the 3rd International
Conference on Architectural Support for
Progmmming Languages and Operating
Systems, April 1989.

[Hill 871 M. D. Hill. Aspects of Cache Mem-
ory and Instruction Buffer Performance.
PhD dissertation, University of Califor-
nia, Berkeley, November 1987.

[Lovett & Thakkar 881 R. Lovett and S. Thakkar.
The Symmetry multiprocessory system.
In Proceedings of the 1988 International
Conference on Parallel Processing, pages
303-310, August 1988.

[Ma et al. 871 H.-K. T. Ma, S. Devadas, R. Wei,
and A. Sangiovanni-Vincentelli. Logic
verification algorithms and their paral-
lel implementation. In Proceedings of
the 24th Design Automation Conference,
pages 283-290, November 1987.

[Mellor-Crummey & LeBlanc 891 J. M. Mellor-
Crummey and T. J. LeBlanc. A software
instruction counter. In Proceedings of the
3rd Conference on Architectural Support
for Programming Languages and Operat-
ing Systems, pages 78-86, April 1989.

[MIPS 861 MIPS. Languages and Programmer’s
Manual. MIPS Computer Systems, Inc.,
1986.

[Przybylski et al. 881 S. Przybylski, M. Horowitz,
and J. Hennessy. Performance tradeoffs
in cache design. In Proceedings of the
15th International Symposium on Com-
puter Architecture, pages 290-298, May
1988.

[Shustek 781 L. J. Shustek. Analysis and Per-
formance of Computer Instruction Sets.
PhD dissertation, Stanford University,
January 1978.

[Sites & Agarwal 881 R. L. Sites and A. Agar-
wal. Multiprocessor cache analysis using
ATUM. In Proceedings of the 15th Inter-
national Symposium on Computer Archi-
tecture, pages 186-195, May 1988.

[Smith 821 A. J. Smith. Cache memories.
ACM Computing Surveys, 14(3):473-
530, September 1982.

[Stunkel & Fuchs 891 C. B. Stunkel and W. I<.
Fuchs. TRAPEDS: Producing traces
for multicomputers via execution driven
simulation. In Proceedings of the In-
ternational Conference on Measurement
and Modeling of Computer Systems,
pages 70-78, May 1989.

[Wiecek 821 C. A. Wiecek. A case study of VAX-
11 instruction set usage for compiler ex-
ecution. In Proceedings, Sym.posium on
Architectural Support for Programming
Languages and 0peratin.g Systems, pages
177-184, March 1982.

46

Appendix A: Example of MPTRAcE-modified code

LO:
cmpl 12(%ebp),%eax
movl %eax, (%ecx,%eax,4)
movl %eax, -b(,%eax,4)

33 L5
Ll:

An assembly fragment to trace.

LO:
cmpl 12(%ebp),%eax # %ebp is a well-known register

. . thus need not be saved
Added trace code

pushfl # Flags need to be saved
push1 %ebx # . . and need a register

.LOSPN: cmpl $l,-BUF-writers-behind

je .LOSPN # Check for writers behind
movl -BUF-ppbd+B,%ebx # Check for buffer overflow
sub1 -BUF-ppbd+B,%ebx # See if there is space for ALL
cmpl $12,%ebx # saves in the superblock.
jle .LOJW # Jump to special code if overflow.

.LORET: movl -BUF_ppbd+4,%ebx
movl $OxlOfc,(%ebx) # Save addr of first instruction.
movl %eax, 4(%ebx) # And registers used in
movl %ecx,8(%ebx> # . . forming addresses.
add1 $12,,BUF_ppbd+4 # Adjust buffer pointer.

POP1 %ebx # Restore saved registers

POPfl # . . and condition codes.
t End of added code

Ll:

movl %eax,(%ecx,%eax,4)
movl %eax ,-b(,%eax,4)

ji3 L5

An example of the least optimized save point.
Buffer overflow code (at .LOJMP)is not shown.

LO:
iref OxlOfc
cmpl 12(%ebp),%eax
#It drrefl 12(%ebp)
iref OxlOff
savei OxlOfc
saver %eax
saver %ecx
movl %eax, (%ecx,%eax,4)
#It durefl (%ecx,%ea.x,4)
iref Ox1102
movl %eax,-b(,%eax,4)
dwrefl -b(,%eax,4)
iref Ox1109

jg L5
#It condflou L5

Ll:

Instruction reference at OxlOfc

Read longaord at lP(%ebp)
t Instruction reference at OxlOff
Save basic block in trace buffer
Save register %eax in buffer
Save register %ecx in buffer

Write longuord at (%ecx,%eax,4>
Instruction reference at 0x1102

Write longuord at -b(,%eax,4)
Instruction reference at Ox1109

Condition control flow to L5

An example of the roadmap for the same basic block.
Lines beginning with ‘W” are roadmapinstructions.

47

