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Abstract 

While much current research concerns multipro- 
cessor design, few traces of parallel programs are 
available for analyzing the effect of design trade- 
offs. Existing trace collection methods have serious 
drawbacks: trap-driven methods often slow down 
program execution by more than 1000 times, sig- 
nificantly perturbing program behavior; microcode 
modification is faster, but the technique is neither 
general nor portable. 

This paper describes a new tool, called 
MPTRACE, for collecting traces of multithreaded 
parallel programs executing on shared-memory mul- 
tiprocessors. MPTRACE requires no hardware or mi- 
crocode modification; it collects complete program 
traces; it is portable; and it reduces execution-time 
dilation to less than a factor 3. MPTRACE is based 
on inline tracing, in which a program is automat- 
ically modified to produce trace information as it 
executes. We show how the use of compiler flow 
analysis techniques can reduce the amount of data 
collected and therefore the runtime dilation of the 
traced program. We also discuss problematic issues 
concerning buffering and writing of trace data on a 
multiprocessor. 
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1 Introduction 

Trace-driven simulation is one of the most widely 
used techniques for architectural evaluation; in par- 
ticular, it has been invaluable to analyses of cache 
memories [Smith 82, Hill 87, Przybylski et al. 88, 
Eggers & Katz 891. The data with which a cache 
simulation is driven consists of a trace of all instruc- 
tion and data references gathered from the execu- 
tion of one or more application programs. Typi- 
cally, this trace is gathered using an interpretive 
technique; a trap is taken preceding the execution 
of each instruction, the instruction is ana.lyzed by 
software loaded with the program, and trace infor- 
mation about the instruction is written to a buffer. 

While trap-oriented trace generation is sufficient 
for use in uniprocessors, its application for multi- 
processor tracing is somewhat questiona.ble. The 
problem is that traps and subsequent instruction 
analysis drastically slow the execution of a program, 
often by two or three orders of magnitude [Shustelr 
78, Wiecek 821. This dilation is not import,a.nt, in 
the uniprocessor case, because the trace content is 
independent of the dilation factor; in other words, 
data gathered by the trap analysis is identical to 
data that would be gathered in real-time by a hard- 
ware monitor. 

However, for multiprocessors, a drastic reduction 
in the execution speed of coopera.ting threa.ds nmy 
completely change the behavior of t,he program. 
This change occurs because the additional time per 
instruction used in trace generation overwhelms the 
normal timing differences between the execution of 
different instructions (e.g., that caused by ca.che hit,s 
versus misses). Consequently, ah instructions al>- 
pear to take the same amount of time. The original, 
global (cross-thread) order of instruction execution 
is perturbed, altering the order in which threads 
gain access to shared data and process messages t,o 
each other. 

A more efficient alternative to trap-oriented trace 
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generation is microcode modification on a micropro 
grammed computer. One such tool, called ATUM, 
has been used on both uniprocessors and multipro- 
cessors [Agarwal et al. 86, Sites & Agarwal 881. An 
advantage of microcode alteration is that all exe- 
cuting code, including the operating system, can be 
traced. An obvious disadvantage of this approach, 
however, is that many current RISC processors are 
not microprogrammed, and even on CISCs, access 
to microcode is typically restricted to the vendor. 
Even with the microcode approach, the dilation 
may be as high as 20, because a special microrou- 
tine is invoked on every reference [Agarwal et al. 
861. 

This paper describes a software tool, called 
MPTRACE, that provides another alternative for 
tracing the execution of multi-threaded applications 
on a shared-memory multiprocessor. Three goals 
of MPTRACE were (1) to produce a portable soft- 
ware trace tool for multiprocessors that requires no 
hardware monitoring or modification; (2) to reduce 
runtime dilation well below that of other software 
techniques, and even below that of the microcode 
schemes; and (3) to produce accurate traces. Accu- 
racy means both that the trace should be a com- 
plete list of addresses referenced by the program 
and that the address trace should be as close as 
possible to the trace that would be obta.ined with a 
nonintrusive tracing technique. MPTRACE is based 
on inline tracing, a software approach that entails 
no hardware modification. The technique automat- 
ically modifies the assembly language version of the 
compiled target application, inserting code to col- 
lect traces. Thus, at execution time, the program 
traces itself. 

The tracing code is highly portable; the machine- 
dependent portions of the system are limited to 25 
percent of the code, over two thirds of which is a de- 
scription of the instruction set. (While the current 
implementation of MPTRACE executes on the Se- 
quent Symmetry [Lovett & Thakkar 881, which uses 
Intel 80386 processors, RISC machines will have 
much smaller descriptions, and therefore propor- 
tionately less machine-dependent code.) If the OS 
scheduler allows migration, then it must be modi- 
fied so that when a process (thread) is rescheduled, 
the scheduler will drop a timestamp and processor 
number into the trace buffer. Such a change is typ- 
ically only a few machine instructions. Execution 
dila.tion for trace generation with MPTRACE, ex- 
cluding trace storage, is only 2 to 3 times normal 
execution time. 

MPTRACE’S low dilation is achieved through 
three means. First, as previously stated, inline trac- 
ing eliminates the costly breakpoint and instruc- 

tion decoding used by trap-based trace generators. 
Second, MPTRACE uses compiler flow analysis tech- 
niques to reduce the number of program points tha.t 
need to be instrumented and the amount of da.ta 
that is collected. Third, MPTRACE incorporates 
a trace postprocessor that reconstructs a full trace 
from the original source and the dynamic trace in- 
formation. 

The basic approach, inline tracing, has been used 
in other tracing and performance tools. Our tech- 
nique differs from these systems in both the applica- 
tion targeted and the amount of dilation achieved. 
Pixie [MIPS 861 is a profiling tool developed to an- 
alyze basic block usage and execution time on the 
MIPS R2000. TRAPEDS [Stunkelk Fuchs 891 is a 
facility for performing trace-driven simula.tions on 

non-shared memory multicomputers (e.g., the Intel 
Hypercube). It modifies an assembly program, but 
inserts both tracing instructions and calls to a run- 
time simulator; the simulator processes and then 
disposes of the trace data. Dilation for TRAPEDS 
is 10 to 30 depending on the number of processors; 
the time does not include instruction simulation but 
does include a null procedure call where the sim- 
ulation would occur. A similar system, based on 
link-time code modification, has been constructed 
for uniprocessor tracing and analysis on the TI- 
TAN [Borg et al. 891. Its dilation, again exclud- 
ing simulation, ranges from 8 to 12 times normal 
program execution. Finally, a similar technique 
has been used to implement a software instruction 
counter for debugging [Mellor-Crummey & LeBlanc 
891. 

The objective of this paper is both to describe 
MPTRACE and to evaluate the techniques it uses to 
reduce dilation. The rest of the paper is orga.nized 
as follows. The next section presents an overview of 
MPTRACE, describing its operation and its process- 
ing phases. Section 3 describes the optimizat,ions 
that are made to reduce tracing overhead. Section 
4 discusses the buffering of trace data for I/O. Sec- 
tion 5 evaluates the performance of MPTRACE and 
shows the effect of several optimizations. Section G 
summarizes our results and discusses future clirec- 
tions. An example of MPTRAcE-modified code is 
shown in Appendix A. 

2 Overview of MPTRACE 

MPTRACE consists of three phases: 

l The preprocessor reads the assembly version 
of a source program and produces a modified 
source to be executed. The modifica.tions in- 
clude the insertion of tracing code a.nd the cre- 
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ation of a data structure for identifying types 
of memory references. The latter is referred to 
as the roadmap. 

l The modified program is then linked with 
MPTRACE run-time routines and is executed. 
The execution produces an encoded trace file 
that includes only that information that cannot 
be reconstructed at post-generation time, such 
as data references or control transfers based on 
runtime data. 

l The postprocessor examines the encoded trace 
file, along with the roadmap provided by the 
preprocessor, to produce the final trace data. 

We provide an overview of these three phases be- 
low. 

2.1 Preprocessing 

The principal objective of the preprocessing anal- 
ysis is to minimize both the amount of trace code 
inserted and the amount of data produced by the 
modified program at run time. Both are needed to 
ensure a low dilation factor. Because of the detail 
involved in its source program analysis, the prepro- 
cessor is the most complex part of MPTRACE. Pre- 
processing a file is relatively quick. Compiling a C 
program and preprocessing the resulting assembly 
take about the same time. 

The preprocessor has four main tasks. First, it 
saves the addresses of data and instructions in the 
unmodified source program. Although the source 
will be expanded by the addition of tracing instruc- 
tions, addresses in the final trace file should reflect 
those in the original code. 

Second, the preprocessor analyzes basic blocks to 
determine which instruction addresses and registers 
must be saved and then inserts tracing code to store 
them. (The locations of the inserted code in the 
original program are known as save points.) It at- 
tempts to minimize save point overhead by consol- 
idating the inserted tracing instructions. For ex- 
ample, code for saving multiple registers appears 
contiguously, before any of the registers are used, 
rather than just prior to each separate use. All op- 
timizations are described in section 3. 

Third, the preprocessor generates information in 
the roadmap that will be used by the postprocessor 
to reconstruct the full trace from the generated, en- 
coded trace. The roadmap contains the directions 
for generating memory references as they would 
have occurred during execution of the unmodified 
program. It aids the postprocessor in examining the 
encoded trace to follow control flow, det,ermine how 

data is referenced, and compute its address. For 
example, given a particular instruction address, the 
roadmap specifies any static addresses referenced by 
that instruction, and defines the calculations needed 
to compute dynamic addresses, i.e., those based on 
run-time register values. The roadmap also pro- 
vides size and access type information for data ref- 
erences. 

Fourth, the preprocessor inserts code for mana.g- 
ing buffers of trace output. 

2.2 Trace Generation 

The preprocessor-modified program is assembled 
and linked with run-time routines that handle trace 
output, and is then executed. The run-time rou- 
tines preallocate a pool of shared buffers before call- 
ing the application’s main program. When started, 
each executing thread of the pa.rallel application 
program dequeues a buffer from the pool, fills the 
buffer with trace data, and places the full buffer 
on a queue to be written to disk. Separate writer 
threads empty the buffers and return them to the 
free pool for reuse. (The preprocessor inserts in- 
structions in the program to check for buffer over- 
flow, to dequeue empty buffers when needed, and 
to enqueue full buffers.) 

2.3 Postprocessing 

The postprocessor reconstructs a.ll memory refer- 
ences generated by the original program. It steps 
through the roadmap code, interpreting directions 
for one instruction at a time, and retrieving val- 
ues from the encoded trace file. The postproces- 
sor adjusts all of the addresses placed in the final 
trace to remove the bias caused by inserting the 
tracing code. Postprocessing is the slowest of the 
three phases, generating about 3,000 addresses per 
second. 

3 Optimizations for trace re- 
duct ion 

As previously stated, the primary objective of 
MPTRACE was to reduce the time and spa.ce require- 
ments of the run-time tracing code. In this section 
we describe the analysis performed by our current 
implementation. In section 5 we discuss the space 
a.nd t,ime impa.& of some of these optimiza.tions. 
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3.1 Basic and superblock analysis 

Fundamental to reducing the amount of inserted 
trace code and saved trace data is the size of the 
program segment that the preprocessor analyzes at 
once. Since many of the particular optimizations 
described below can be performed only once per 
unit of analysis, it is important to choose as large 
a unit as possible. Our minimal unit of analysis 
is the basic block, a sequence of instructions with 
one entry point and one exit point. MPTRACE also 
attempts to identify sequences of contiguous basic 
blocks, which we call superblocks. A superblock has 
a single entry point but multiple exit points. 

During trace generation MPTRACE saves only the 
first address in a superblock. All other instruction 
addresses can be inferred from information provided 
by the roadmap during postprocessing. Once inside 
a superblock, it is not necessary to mark the en- 
trance into an internal basic block. Instead, after a 
branch instruction the postprocessor compares the 
branch target address to the next data element in 
the trace file. That element is either the target ad- 
dress, in which case the branch succeeded, or trace 
information from the next internal block, indicating 
that the branch failed. 

The preprocessor also inserts code that checks for 
trace buffer overflow only once per superblock. The 
check takes into account the maximum size of all 
data that must be saved in the superblock. 

3.2 Minimizing save points and save 
point code 

Each save point has a prologue whose execution in- 
curs overhead, e.g., for trace buffer pointer manipu- 
lation and the saving of processor state (described in 
section 3.4). This overhead can be minimized by re- 
ducing the number of save points, which MPTRACE 
does in several ways. First, all registers whose value 
remains unchanged are saved only once, rather than 
each time they are used. Second, multiple registers 
are saved at a single save point; the save point oc- 
curs before any of them are used. Finally, trace 
buffer overflow checks are folded into the first save 
point in a superblock, rather than appearing sepa- 
rately. 

3.3 Minimizing saved operands 

Because of basic and superblock optimizations, 
most of the trace data saved during program exe- 
cution is for the computation of operand references. 
An important optimization is to remove tracing of 
operand references whose addresses can be deter- 

mined at preprocessing time. For example, the lo- 
cations of all global variables are fixed at compile 
time; therefore references to them can simply be in- 
serted in the final trace by the postprocessor from 
information provided by the roadmap. 

Many dynamically computed operand addresses 
can also be optimized. For example, on some ma- 
chines, local variables are referenced as an offset to a 
fixed register (the frame pointer). Because this reg- 
ister does not change within a procedure, it needs 
to be saved only at procedure entry and exit. 

Similarly, push and pop instructions adjust the 
stack by a known amount, typically indicated by the 
instruction opcode. Often these operations occur 
in series, particularly at procedure calls. Rather 
than saving the stack pointer before each sepa.rate 
operation, MPTRACE saves it for the first operation 
only and simulates each subsequent push or pop in 
the postprocessor. 

While the stack pointer and frame pointer are 
special registers on some architectures, their opti- 
mizations are general in nature. The optimizations 
can be applied to any register that is both used for 
addressing and whose value is altered by a consta.nt 
that is determined at compile time. 

3.4 Register and condition code uti- 
lizat ion 

One problem with inline tracing is that executing 
the inserted trace code can perturb the processor 
state. For example, trace code often requires the 
use of registers, and tracing instructions can change 
condition codes that had been set by instructions 
in the original program. Therefore, the preproces- 
sor must issue code to save processor sta.te that is 
modified by tracing and required by a subsequent 
(original) instruction. 

In the simplest and worst case solution, each sa.ve 
point within the modified program saves all reg- 
isters and condition codes that it modifies. Af- 
ter the trace data has been written to the tra.ce 
buffer, those registers and condition codes are re- 
stored. MPTRACE avoids much of this 0verhea.d by 
recognizing which registers and condition codes are 
live at save points and which are not. If a register is 
dead, it can be used by the tracing code. Similarly, 
if condition codes are not needed by the following 
instructions, they will not be saved. 

4 Buffer Management 

The basic function of the MPTRACE runtime sys- 
tem, which is linked with the modified application 
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program, is to provide empty buffers to the trace- 
generating threads and to write filled buffers to sec- 
ondary storage. Buffer management is a signifi- 
cant problem on a high-speed multiprocessor; each 
traced thread on our Sequent Symmetry generates 
about 0.8 megabytes of data per second, while the 
I/O subsystem has a capacity of about 2 megabytes 
per second. When more than two threads are 
traced, the I/O subsystem becomes a bottleneck. 
Therefore, the two principal buffer management is- 
sues are (1) what to do when all buffers become full, 
and (2) how to reduce the rate at which this occurs. 

4.1 Basic Strategy 

The runtime system is started before the traced pro- 
gram so that it can preallocate the trace buffers. 
The buffers are placed in a shared pool, and the 
traced program is started. As the program executes, 
each thread pulls a buffer from the pool, fills it with 
trace data, enqueues it to a filled buffer queue, and 
repeats the process. 

One or more writer threads (started by the run- 
time system) remove buffers from the filled queue, 
write them to disk, and return the buffers to the free 
list. The writer threads execute on separate proces- 
sors from the trace-generating threads, so that their 
execution does not preempt tracing. 

While the runtime system must have at least one 
writer thread, more writers permit more concur- 
rency. For example, one writer can be blocked on 
I/O, while another is removing a buffer from the 
queue. If there are several physical disks and chan- 
nels, multiple writer threads can be used to over- 
lap I/O operations. With our current configuration, 
only two writers are required to saturate a disk. We 
allocate two writers to each of two channels, and run 
the I/O subsystem at its capacity. 

Even with huge buffer allocations and multiple 
writers, it is inevitable that for some programs the 
tracing threads will eventually run out of buffers. 
Our approach is to stop all tracing as soon as one 
thread finds the buffer queue empty, even though 
other threads may still have partially empty buffers. 
We chose this approach, because it is consistent 
with our primary goal of reducing the dilation as 
seen by the tracing threads. Since all threads block 
almost simultaneously, the additional wait does not 
affect interthread timing, although it does increase 
the overall execution time of the experiment. 

Inter-thread synchronization is currently done us- 
ing a global flag. When a generating thread fails to 
find a free buffer, it sets the flag. Other generating 
threads poll the flag and spin while it is set. When 
all buffers are written out, the flag is cleared and 

the generating threads continue processing. Clear- 
ing the flag only after all buffers have been freed 
maximizes the time until the system must block 
again. 

The polling code is inserted by the preprocessor 
at the head of every superblock; therefore the gener- 
ating threads block only on superblock boundaries. 
On the average, each superblock contains either one 
or two basic blocks, and each basic block is approx- 
imately 4 instructions long. Thus, once the con- 
dition is detected, all threads will halt on average 
within 6 (original program) instructions. Polling at 
superblock granularity increases the execution time 
of a traced program by about 10 percent. A more 
efficient alternative would be to check the flag only 
at the end of each buffer. However, this option is 
too coarse for our dilation requirements, particu- 
larly for large buffer sizes. 

4.2 Data Compression and Reduc- 
tion 

Since the I/O system is a substantial bottleneck, 
we have investigated ways to decrease the rate a.t 
which data is written. There are two principal a.l- 
ternatives for reducing the data rate. The first is 
to decrease the amount of trace data produced. As 
previously discussed, we limit the trace size by gen- 
erating only those addresses that cannot be deter- 
mined statically or through previously-saved va.lues 
in the trace. 

The second method is to apply a compression al- 
gorithm to the trace buffers before they are written 
to disk. If this process consumed no CPU time (i.e., 
if the compression were free), then an z-fold com- 
pression of the data would have the same effect a.s an 
z-fold increase in the I/O bandwidth or the amount 
of buffer space. Unfortunately, compression is not 
free; typically it involves additional copying, and 
consumes CPU, memory, and bus cycles. While this 
overhead can be overcome somewhat by using more 
processors, our experiments with the Unix compress 
utility lead us to believe that the CPU cost for algo- 
rithms providing adequate compression is an order 
of magnitude too high to significantly reduce bulTer 
overflow. 

4.3 Shared-Memory Multiprocessor 
Buffering Issues 

The target application of MPTRACE was paraL 
lel programs, particularly those using light,weiglit, 
threads. In such systems, buffering problems can 
be caused by the migration of threads between pro- 
cessors. The principal issue is determining how t.o 
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Program Description Processors Language Instructions 
Name (Static) 

Pverify logic verification 12 C 7395 
Topopt topological optimization 9 C 5916 

Psim butterfly simulator 12 PCP 7114 
Psplice circuit simulator 12 C 62838 

Table 1: Programs used in MPTRACE evaluation 

assign buffers. For example, buffers could be main- 
tained on a per-processor basis. For cache simu- 
lations, this is a reasonable choice, since we gener- 
ally wish to examine the reference strea,m generated 
by each processor. However this organization fails 
when threads are allowed to migrate. The problem 
originates because each executing thread will, dur- 
ing a save point, hold the address of its buffer in 
a general-purpose register. If the thread migrates 
in the middle of a save point, it could write trace 
data into the wrong buffer, possibly corrupting an- 
other thread’s data. Synchronizing access to the 
buffer pointer before each save point would greatly 
increase the cost of tracing. Furthermore, if threads 
can switch buffers at any time, decoding the trace 
buffers at postprocessing time becomes more diffi- 
cult. 

To eliminate this problem we have chosen to man- 
age buffers on a per-thread basis. However, we still 
need to know when threads migrate in order to re- 
construct the per-processor reference stream. The 
solution requires some modification to the thread 
scheduler. When a migrated thread is scheduled for 
execution, the thread scheduler deposits a special 
token in the buffer along with the processor num- 
ber, indicating that the thread has moved to a new 
processor. In this way a per-processor instruction 
stream can be pieced together, if desired. Many 
lightweight thread systems have user-level schedul- 
ing of threads (e.g.,[Bershad et al. 88]), which sim- 
plifies this modification. 

This scheduler modification has not yet been im- 
plemented. For the parallel programs measured in 
the following section, buffers were allocated on a per 
thread basis; however threads in these applications 
do not migrate. 

5 Performance of MPTRACE 

This section presents measurements of the static 
code expansion and dynamic execution dilation 
caused by MPTRACE modifications of four parallel 
CAD applications. Code expansion indicates the 

growth in code size as measured by the number of 
additional instructions. Dynamic execution dilation 
indicates the change in execution speed when the 
modified program executes. In the dyna.mic mea- 
surements presented, writing of the trace buffers 
to disk was disabled. As previously discussed, a.11 
threads are stopped when buffers are full; our ob- 
jective here is to measure the dilation only while the 
threads are executing. We purposely separate mea.- 
surements of tracing from those including storage 
of trace buffers: the former reflects the ca.pability 
of our techniques; the latter reflects the capacity of 
the underlying hardware configuration. 

The four traced programs, which are listed in Ta- 
ble 1, were originally written for the Sequent Ba.l- 
ante. Topopt [Devadas & Newton 871 does topo- 
logical compaction of MOS circuits, using dynamic 
windowing and partitioning techniques; Topopt’s 
algorithm is based on simulated annealing. Psplice 
is a circuit simulator combining the original direct 
method solution with waveform relaxation. Ver- 
ify [Ma et al. 871 is a combinational logic veri- 
fication program, that compares two different cir- 
cuit implementations to determine whether they 
are functionally (Boolean) equivalent. The final 
program, Psim, simulates switch nodes for a non- 
shared bus interconnect. All programs were com- 
piled, modified by MPTRACE, assembled by the In- 
tel 80386 assemblers, and traced on a 20-processor 
Sequent Symmetry. These measurements only a.c- 
count for code in the application programs, and 
not in the standard Unix libraries, which were not 
traced. (MPTRACE can instrument libraries; how- 
ever in these runs the libraries were left untraced 
for our convenience.) Of the four programs, only 
Psplice makes significant use of the libraries. 

5.1 Effect of the optimizations 

To allow the separate evaluation of individual op- 
timizations, MPTRACE can selectively enable a.nd 
disable some of them. Table 2 displays the re- 
sult of disabling all switchable MPTRACE optimiza- 
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tions, thereby providing a “worst case” baseline for 
our implementation. With optimizations disabled, 
MPTRACE inserts an overflow check before each in- 
struction, saves the address of each instruction, and 
saves the values of all registers used in addressing. 
(In fact, this is somewhat better than a worst case, 
because the preprocessor still recognizes and does 
not record references whose addresses are known at 
preprocessing time.) As the table shows, with opti- 
mizations removed, the instruction count grows by 
a factor of 20, while execution time grows by a fac- 
tor of 8. Execution time dilation is much smaller 
than code size dilation, because many of the gen- 
erated instructions are conditionally executed only 
when buffer overflow occurs. 

Table 3 shows the effect of several optimizations 
on code growth. The three optimizations are added 
one at a time, i.e., each optimization includes the 
previous one. The first column of the table in- 
dicates the number of instructions in the original 
program. The next section, marked Basic Block, 
shows the code expansion when basic block recog- 
nition is enabled. In this case, the modified pro- 
gram saves only the starting address of each ba 
sic block, performs the buffer overflow check at the 
head of the block, saves registers only once where 
possible, and attempts to save as many registers 
in a save point as possible. The middle table sec- 
tion, marked Superblock, shows the effect of rec- 
ognizing multiple basic blocks that can be grouped 
together. Superblock recognition performs the ba- 
sic block optimizations, but over a larger section 
of code. Finally, the section marked Procedural 
saves the frame pointer on procedure entry and exit, 
rather than in each block in which it is used. In 
fact, the code grows slightly here, because the frame 
pointer is also saved at the head of each new buffer. 
The extra code to save the frame pointer is gener- 
ated once per superblock but is executed only when 
a new buffer is required. 

As we can see from the table, the effect of these 
optimizations when compared to the worst case of 
Table 2 is dramatic. Overall, code expansion is re- 
duced by a factor of 3 to 5, depending on the opti- 
mizations applied and the application program. In 
general, programs with larger basic blocks and bet- 
ter register usage will see a lower code expansion 
from MPTRACE preprocessing. 

Much of the code removed by the basic block op- 
timizations is for buffer overflow checking and han- 
dling; this code is now applied only once per block. 
Because the overflow checks normally fail, the over- 
flow handling code is executed infrequently. Table 4 
reflects the expansion of code only along this “main- 
line” of execution, with the infrequently executed 

instructions removed. It provides a better indica- 
tion of the typical code expansion that the program 
will see, rather than the total expansion of code for 
both the normal and exceptional ca.ses. The sa.v- 
ings is greatest for the Procedural optimizations, 
because the special code added for frame pointer 
processing is executed only when acquiring or re- 
leasing a buffer. 

Tables 5 and 6 show the runtime dilation of the 
programs for each of the three sets of optimizations. 
In both cases, writing of buffers to disk was dis- 
abled. The execution times reported are the mean 
of ten executions of each of the programs. Table 5 
shows the execution overhead of the traced pro- 
grams without the overhead of trace buffer man- 
agement. In this case, the buffer checking code was 
modified so that buffer overflow checks would al- 
ways fail; that is, the exceptional code to enqueue a 
full buffer and dequeue a new empty buffer is never 
executed. In effect, this is the dilation that would 
occur with an infinite (or large enough) buffer. Ta- 
ble 6 shows the tracing dilation when buffers are 
managed at runtime, i.e., they are enqueued when 
full, although disk writes are still disabled. This is 
the tracing dilation that programs will more likely 
see when running. In this case the programs used 
4K-byte buffers. In both cases dilation ranged be- 
tween 1.6 and 3, with those including buffer man- 
agement 10 to 15 percent higher than for the infinite 
buffer scenario. 

Note that the programs run faster than the static 
dilation (code expansion) would indicate. There 
are several possible explanations. First, conditional 
branches that are added by preprocessing are sel- 
dom taken. Second, the tracing code uses a sub- 
set of instructions that have short execution times. 
Third, adding trace code increases the average ba- 
sic block size. These factors may improve pipeline 
and. cache performance. 

5.2 Buffered I/O Performance 

We have established that the tracing dilation of pro- 
grams modified by MPTRACE is approximat,ely 2 t,o 
3, excluding trace storage. Furthermore, blocking 
the generating threads does not significantly a.ffect. 
dilation, because all threads stop within 5 or 6 in- 
structions. However, when writing is enabled, the 
wall-clock time of a traced program averages about 
10 times the execution time of the original, untra.ced 
program -or 4 times worse than the traced program 
without I/O. 

There are at least three sources of the slowdown. 
First is the cost of copying data from user-spa.ce 
trace buffers to system I/O buffers before writing. 
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Instruction Count Execution Time 
Program Original Modified Expansion Original Modified Dilation 

Pverify 7395 148328 20.1 13.6 119.1 8.8 
Topopt 5916 118446 20.0 5.8 47.1 8.1 
Psim 7636 152689 20.0 5.6 32.3 5.8 
Psplice 62883 1265247 20.1 6.4 35.1 5.5 

Table 2: “Worst case” performance (optimizations disabled) 

Basic Block Super Block Procedural 
Program Instr Instr. Expansion Instr. Expansion Instr. Expansion 

Pverify 7395 43631 5.9 38656 5.2 42281 5.7 
Topopt 5916 37241 6.3 32359 5.5 34785 5.9 
Psim 7636 42699 5.6 35327 4.6 39142 5.1 
Psplice 62883 309723 4.9 273280 4.4 289330 4.6 

Table 3: Evaluating optimizations: code expansion 

Basic Block Super Block Procedural 
Program Instr. Instr. Expansion Instr. Expansion Instr. Expansion 

Pverify 7395 33461 4.5 30274 4.1 29708 4.0 
Topopt 5916 28247 4.8 25147 4.3 23967 4.1 
Psim 7636 28866 3.8 26969 3.5 26605 3.5 
Psplice 62883 245415 3.9 222454 3.5 213091 3.4 

Table 4: Evaluating optimizations: “mainline” codew expansion 

Basic Block Super Block Procedural 
Program Seconds Seconds Dilation Seconds Dilation Seconds Dilation 

Pverify 13.6 34.3 2.5 32.2 2.4 31.4 2.3 
Topopt 5.8 14.8 2.6 13.3 2.3 12.3 2.2 
Psim 5.6 10.0 1.8 9.8 1.8 9.4 1.7 
Psplice 6.4 11.2 1.8 10.7 1.7 10.5 1.6 

Table 5: Execution dilation: no buffer management, no disk 

Basic Block Super Block Procedural 
Program Seconds Seconds Dilation Seconds Dilation Seconds Dilation 

Pverify 13.6 38.8 2.9 35.8 2.6 35.0 2.6 
Topopt 5.8 15.9 2.7 15.0 2.6 13.9 2.4 
Psim 5.6 11.7 2.1 11.1 2.0 10.9 1.9 
Psplice 6.4 12.3 1.9 11.9 1.9 11.9 1.9 

Table 6: Execution dilation: with buffer management, no writing 
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Second is the overhead of disk management and vir- 
tual memory management by the operating system, 
particularly as buffer space gets large. Third is the 
cost of the actual disk accesses. All of these can 
be reduced, but not eliminated, through additional 
hardware (memory or I/O) or more intelligent man- 
agement by the application or operating system. 

One optimization is to increase the size or num- 
ber of trace buffers. We experimented with buffer 
allocation, varying buffer size from 256 to 64K bytes 
and numbers of buffers from 25 to 400. Our results 
indicate several trends: 

l For small buffers (e.g., 256 bytes), buffer man- 
agement overhead is high, because the cost of 
the system calls and run-time processing to 
manage the buffers dominates the time to fill 
them. 

l For larger buffers (e.g., over 1K bytes), run 
time is dependent on the total buffer space allo- 
cation, but is independent of the actual number 
of buffers or their size. 

l As total buffer allocation increases, so does 
memory management overhead. An increasing 
number of Dynix minor faults (those that cause 
a hardware fault but can be handled with- 
out disk I/O) are incurred by both the tracing 
threads and the writers, causing an increase in 
their execution times. 

In our experiments, the wall-clock time for a traced 
program was consistently 10 times the execution 
time of the original program, generally independent 
of the buffer size or number of buffers, as stated 
above. However, for buffers as small as 256 bytes in 
size, or for total buffer allocation over 3 megabytes, 
the wall-clock time grew to nearly 15 times original 
program time. 

6 Conclusion 

We believe that the results shown in Sec- 
tion 5 demonstrate that the optimizations used by 
MPTRACE are useful in reducing dilation. The re- 
sults also demonstrate the potential of inline trac- 
ing for trace generation on shared-memory mul- 
tiprocessors. The execution-time dilations, which 
are only two to three times the execution time of 
the original program, are three orders of magnitude 
faster than trap-driven techniques, nearly one order 
of magnitude faster than microcode tracing, and 3 
to 10 times faster than other in-line tracing facili- 
ties. Even including disk I/O, our system is com- 
parable to or better than other schemes that only 

trace. Furthermore, MPTRACE produces a contin- 
uous trace by stopping all threads when buffers are 
full. 

There are several reasons why MPTRACE is able 
to achieve its performance. First and foremost is 
the preprocessing of the assembly program to re- 
duce both the amount of data that must be sa.ved 
and the number of save points that must be in- 
serted. Third, tracing utilized a subset of instruc- 
tions that had shorter execution times than those 
used in the applications on average. This factor also 
contributes to the discrepancy between code expan- 
sion and runtime dilation. 

We plan to take trace work in two different direc- 
tions. First, we will produce multiprocessor tra.ces 
for programs with fine-grained parallelism and fine- 
grained scheduling. Second, the effect of dilation on 
accuracy is still an open issue. We would like to test, 
whether dilation affects tracing results. MPTRACE 
can introduce various amounts of dilation in a con- 
trolled fashion. We will thus be able to tra.ce in- 
dividual programs with various dilations but under 
otherwise identical circumstances. 
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Appendix A: Example of MPTRAcE-modified code 

LO: 
cmpl 12(%ebp),%eax 
movl %eax, (%ecx,%eax,4) 
movl %eax, -b(,%eax,4) 

33 L5 
Ll: 

An assembly fragment to trace. 

LO: 
cmpl 12(%ebp),%eax # %ebp is a well-known register 

# . . thus need not be saved 
# Added trace code 

pushfl # Flags need to be saved 
push1 %ebx # . . and need a register 

.LOSPN: cmpl $l,-BUF-writers-behind 

je .LOSPN # Check for writers behind 
movl -BUF-ppbd+B,%ebx # Check for buffer overflow 
sub1 -BUF-ppbd+B,%ebx # See if there is space for ALL 
cmpl $12,%ebx # saves in the superblock. 
jle .LOJW # Jump to special code if overflow. 

.LORET: movl -BUF_ppbd+4,%ebx 
movl $OxlOfc,(%ebx) # Save addr of first instruction. 
movl %eax, 4(%ebx) # And registers used in 
movl %ecx,8(%ebx> # . . forming addresses. 
add1 $12,,BUF_ppbd+4 # Adjust buffer pointer. 

POP1 %ebx # Restore saved registers 

POPfl # . . and condition codes. 
t End of added code 

Ll: 

movl %eax,(%ecx,%eax,4) 
movl %eax ,-b(,%eax,4) 

ji3 L5 

An example of the least optimized save point. 
Buffer overflow code (at .LOJMP)is not shown. 

LO: 
## iref OxlOfc 
cmpl 12(%ebp),%eax 
#It drrefl 12(%ebp) 
## iref OxlOff 
## savei OxlOfc 
## saver %eax 
## saver %ecx 
movl %eax, (%ecx,%eax,4) 
#It durefl (%ecx,%ea.x,4) 
## iref Ox1102 
movl %eax,-b(,%eax,4) 
## dwrefl -b(,%eax,4) 
## iref Ox1109 

jg L5 
#It condflou L5 

Ll: 

# Instruction reference at OxlOfc 

# Read longaord at lP(%ebp) 
t Instruction reference at OxlOff 
# Save basic block in trace buffer 
# Save register %eax in buffer 
# Save register %ecx in buffer 

# Write longuord at (%ecx,%eax,4> 
# Instruction reference at 0x1102 

# Write longuord at -b(,%eax,4) 
# Instruction reference at Ox1109 

# Condition control flow to L5 

An example of the roadmap for the same basic block. 
Lines beginning with ‘W” are roadmapinstructions. 

47 


