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ABSTRACT
In this work, we present a method for the selection of a
subset of nodes in a wireless sensor network whose applica-
tion is to reconstruct the image of a (spatially) bandlimited
physical value (e.g., temperature). The selection method
creates a sampling pattern based on blue noise masking and
guarantees a near minimal number of activated sensors for a
given signal-to-noise ratio. The selection method is further
enhanced to guarantee that the sensor nodes with the least
residual energy are the primary candidates for deselection,
while enabling a tradeoff between sensor selection optimality
and balanced load distribution. Simulation results show the
effectiveness of these selection methods in improving signal-
to-noise ratio and reducing the necessary number of active
sensors compared with simpler selection approaches.

Categories and Subject Descriptors
C.2.1 [Computer-Communications Networks]:
Network Architecture and Design—wireless communication

General Terms
Algorithms, Management

Keywords
wireless sensor networks, blue noise, sensor management

1. INTRODUCTION
In this work, we consider applications for wireless sen-

sor networks where a spatially bandlimited physical phe-
nomenon (e.g., temperature, pressure) is to be sensed and
reconstructed at a central base station or local cluster head.
We assume that the sensors are deployed in a manner such
that their locations in the field are random (e.g., dropped
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from an airplane) and that they are deployed with a higher
density than what the application’s accuracy requirements
demand. There are several reasons why this may occur.
First, signal-to-noise ratio (SNR) requirements can only be
guaranteed within a reasonable likelihood if the average sen-
sor density is high enough. Also, sensor networks may be
purposely deployed with high density to achieve longer net-
work lifetime, if it assumed that sensor activity is rotated.
Finally, some applications may require resolution that is
adaptive over time, necessitating a dense initial deployment
of the sensors.

In any of these situations, it is sufficient to activate only
a subset of the sensors, as the activation of all sensors in
densely populated regions may provide minimal additional
accuracy. Furthermore, sensor nodes are characterized by
very low energy budgets, so the energy burden imposed
by activating certain sensors may be much more significant
than the improvement in cumulative sensor network data
that they provide. It is important to efficiently manage the
sensors so that network lifetimes of months or even years
are realizable. While power consumption in the network
is affected by many factors, in general, a reduction in the
number of active sensors reduces overall power consumption.
The sensor management problem addressed in this work is
essentially to determine which sensors to deactivate so that
the quality of data is sufficient enough to meet application
requirements while achieving the energy efficiency that is
critical in wireless sensor networks.

In this paper, we propose an algorithm for determining
which sensors within the more densely covered subregions
should be selected to acquire data from the environment
and which nodes should remain inactive in order to conserve
energy. The proposed method is especially suitable for ap-
plications where it is desirable to trade spatial resolution for
sensor network longevity. Our proposed algorithm chooses
sensor subsets such that the sensor positions can be mapped
into the blue noise binary patterns that are used in many
image processing applications [9]. The algorithm guaran-
tees that subsets are chosen such that each subset provides
a near optimal SNR for a given initial sensor distribution
and a desired number of active sensors. We also enhance
the algorithm so that the sensor nodes with the least resid-
ual energy are the primary candidates for deselection and
present a way in which the algorithm can be distributed for
practical implementation. Finally, we propose a method in



which multiple subsets are chosen according to a blue noise
sampling method and the scheduling of these subsets is op-
timized through a linear program.

The rest of this paper is organized as follows. Section 2 ad-
dresses related work. Section 3 provides a brief background
on the concepts of blue noise and stochastic sampling. Sec-
tion 4 presents our proposed algorithms. Section 5 provides
simulation results along with analysis. Section 6 concludes
the paper and suggests future work in this area.

2. RELATED WORK
The problem of node selection in wireless sensor networks

has been explored to some extent and several protocols have
been proposed as solutions. Some algorithms essentially pro-
duce a randomly chosen sensor subset [6]. Other protocols
have been proposed to select subsets of sensors for use in
coverage-preserving applications such as distributed detec-
tion [3, 16, 18, 19, 20]. The patterns of the chosen sensors re-
sulting from these algorithms are much more evenly spread
out than random subset selection. However, most do not
consider load balancing in the selection of active sensors.

An alternative approach to achieving energy efficiency in
overpopulated sensor networks is to scale back the amount
of traffic generated in areas of high sensor density. In [5],
the authors propose an approach where sensors can adjust
their resolution according to the density in their neighbor-
hood. The resolution of the individual sensors is chosen so
that the accuracy of the reconstructed image of the phe-
nomenon is approximately equal throughout the monitored
region. Other distributed compression solutions include [1]
and [13]. These approaches still require all sensors to remain
on, which we assume to be costly despite the reduction of
traffic generated and transmitted.

3. BLUE NOISE MODEL / STOCHASTIC
SAMPLING BACKGROUND

A blue noise pattern is a statistical model for describing
stochastic patterns with very little frequency content below
a blue noise principal frequency fBN [17]. A binary blue
noise mask/pattern sBN (x) −→ SBN (f) is a special case
of a blue noise pattern that consists of similarly sized im-
pulses distributed in a homogeneous manner and maintains
a stochastic nature (i.e., uniform distribution of the impulses
is prohibited). By distributing impulses in such a way, the
resulting spectral content of the pattern is composed almost
entirely of high frequency content. A binary blue noise pat-
tern may be described by the following equations.

sBN (x) =
X
xi

δ(x− xi) (1)

Z fBN

0+
SBN (f)df ¿

Z ∞

fBN

SBN (f)df (2)

Several algorithms have been proposed to generate binary
blue noise patterns [7, 8, 9, 10, 11]. The method that is of
interest to us is that which was proposed in [9] and improved
in [11]. In their work, the authors propose a dart throwing
method, mimicking a stochastic Poisson disc method. In
this method, randomly chosen new points (impulses) are
added to the point set if and only if no other points are
located within a specified radius centered at the location of

the new points. A low pass spatial filter is then used to
determine which points contribute the most low frequency
content (the points with the highest value of the filtered
sampling pattern). These points are subject to relocation
within the regions with the least low frequency content. Our
proposed sensor selection method uses a modification of this
algorithm to create a binary blue noise pattern.

While the optimal sampling pattern for a bandlimited sig-
nal consists of samples at regular intervals (i.e., a grid pat-
tern for images), other sampling patterns can be used with
little performance dropoff. As long as the maximum spac-
ing between sensors is small enough to meet the Nyquist
sampling rate criteria, several algorithms can be used to
perform ideal reconstruction, converging to a reconstructed
signal with no error from the original [2, 14, 15]. In fact,
when employing a sampling pattern based on a binary blue
noise mask, a source signal can be reconstructed nearly as
optimally as from a grid pattern. In other words, the num-
ber of sampling points necessary to perfectly reconstruct
a bandlimited signal is only slightly higher when sampling
with a blue noise noise pattern than when performing regu-
lar sampling at the Nyquist rate.

The maximum sample spacing imposed by the Nyquist
constraint can be met using fewer sampling points when
employing blue noise sampling rather than random (white
noise) sampling. Even if the local sampling rate falls below
the Nyquist rate in some subregions, a blue noise sampling
pattern will achieve higher accuracy than a white noise sam-
pling pattern with the same number of sampling points. To
understand why this is the case, observe the stochastic sam-
pling processes shown in Figure 1. The bandlimited signal in
Figure 1(a) is sampled by the blue noise sampling pattern in
Figure 1(b) as well as by the white noise sampling pattern in
Figure 1(c). The spectrum of the blue noise sampled signal,
shown in Figure 1(d) shows that there is very little alias-
ing into the signal band. This is due to the high frequency
nature of the sampling pattern. However, the signal is cor-
rupted much more by the white noise sampling, as shown in
Figure 1(e), and it is apparent that more information about
the original signal is lost. In reality, the reconstruction al-
gorithms presented in [2, 14, 15] are nonlinear and not as
simple as the application of a low pass filter. These algo-
rithms can tolerate some noise leakage into the signal band,
but clearly it is desirable to reduce the signal band noise as
much as possible.

The blue noise sampling described here is easily extended
to the two-dimensional scenario. Figure 2 illustrates a typi-
cal blue noise sampling pattern and a typical random (white
noise) sampling pattern. As the figure shows, the sampling
points in the blue noise pattern are more evenly spread out
than those in the white noise pattern. For the same num-
ber of sampling points, a bandlimited image can be recon-
structed more accurately from the blue noise sampled signal
than from the randomly sampled signal.

4. BLUE NOISE SPATIAL SAMPLING IN
WIRELESS SENSOR NETWORKS

In this section, we propose a method to decide which
nodes in a wireless sensor network should be used to ac-
tively sense the environment and which should remain off in
order to conserve energy. We consider the situation where a
large number of sensor nodes are randomly deployed within
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Figure 1: Stochastic sampling process. The original signal in (a) is sampled with a blue noise sampling
pattern (b) and a white noise sampling pattern (c). The resulting sampled signals are shown in (d) and (e),
respectively.

(a) (b)

Figure 2: Blue noise (a) and white noise (b) sam-
pling patterns.

the region to be monitored such that in all subregions of the
area, it is likely that the density of the sensor nodes is more
than necessary to meet the SNR requirements of the ap-
plication. In such situations, accuracy of the reconstructed
phenomenon can be traded for energy efficiency. In other
words, a smaller subset of sensor nodes can be used to ob-
serve the area. Although there may not always be a direct
correlation between power consumption in the network and
the number of active sensors, reducing the number of active
sensors generally leads to better energy efficiency.

Since the objective of our application is to reconstruct a
spatially bandlimited signal (e.g., a temperature field), we
can consider the cumulative sensor data to be a stochasti-
cally sampled signal, sampled at the active sensor locations,
and apply stochastic sampling theory to our selection al-
gorithm. Specifically, since the random deployment of the
sensors limits us such that we must stochastically (rather

than regularly) sample the phenomenon, we would like to
sample with a blue noise pattern so that the accuracy of
the reconstructed signal is as high as possible for a given
number of sensors. Thus, the sensor selection algorithm was
designed using the intuition of the algorithm for creating
blue noise patterns presented in [11].

We assume a grid overlayed on the region where the sensor
network is deployed with resolution high enough that each
sensor’s location can be precisely mapped to the nearest grid
point and each point on the grid is associated with no more
than one sensor. If a grid point has a sensor mapped to it,
the grid point is assigned a value of 1; otherwise, it is as-
signed a value of 0. The resulting binary pattern sinitial[i, j]
should have white noise spectral characteristics because of
our assumption about the random deployment of sensors.

In our proposed method, a low pass filter relaxation al-
gorithm is iteratively applied to the current sampling pat-
tern/point set scurrent[i, j], which is initially set to the ini-
tial sensor pattern sinitial[i, j]. The characteristics of the low
pass spatial filter hBN [i, j], which is a symmetric filter based
on a one-dimensional impulse response hBN (d), should de-
pend on the characteristics of the phenomenon that is being
observed. More specifically, the coefficients of the low pass
filter are determined such that the frequency content of the
observed variable falls within the filter’s pass band. Mean-
while, the selection of the order of the filter is essentially a
tradeoff between the desired performance of the algorithm
and computational cost. The algorithm filters the sampling
pattern to create f [i, j], such that f = scurrent ∗hBN . Next,
the algorithm finds the maximum value of f [i, j] at the grid
points where any currently active sensors reside, deactivates
the corresponding sensor, and updates scurrent by zeroing



the grid point that the sensor is mapped to. Essentially, this
results in the removal of a sensor that contributes significant
low spatial frequency content. These steps are carried out
iteratively until the maximum filter output drops below a
predetermined threshold or the number of remaining active
sensor nodes drops below a certain value. The resulting sam-
pling pattern sBN [i, j] is shown to have blue noise spectral
characteristics [4].

4.1 Incorporation of an Energy Cost
One of the most important design goals for wireless sen-

sor networks is energy efficiency, which must be met in order
to allow networks to operate unattended for extended peri-
ods of time. Deselecting nodes according to an algorithm
such as the one described in the previous section clearly
reduces overall power consumption in the network. In ad-
dition to this, it is also important to rotate activity among
nodes and to specifically avoid the use of nodes with little
remaining lifetime. Consider a network that chooses active
sensors based on a method similar to the one described in
this section, where chosen sensors operate until their energy
supply becomes completely depleted. Toward the end of
the network’s lifetime, the set of available sensors to choose
from will be more sparsely located and more sensors may
be needed to achieve the same SNR as in the early stages of
the network. In order to avoid this scenario, we would like
to extend the time before any of the sensors in the network
deplete their energy supply and die.

Here, we propose a modification to the blue noise sensor
selection algorithm in which we incorporate energy costs. In
this modified selection method, the low pass filter output is
combined with an energy cost so that

Cost(Si) = f [x(Si), y(Si)]
α × Costenergy(Si)

(1−α) (3)

where α (0 ≤ α ≤ 1) represents a tuning parameter that
allows the system designer to balance a tradeoff between
ideality of the sensor pattern and balanced load distribution
and Costenergy(Si) represents a monotonically decreasing
function of Si’s residual energy. In essence, we are comb-
ing a redundancy cost with an energy cost. A typical en-
ergy cost assignment might be as simple as the inverse of a
node’s residual energy. During each step, the sensor with the
highest overall cost is deselected. These steps are repeated
iteratively, as in the original algorithm, until the active sub-
set consists of the desired number of sensors or guarantees
a sufficient SNR. Following the selection algorithm, the se-
lected subset of nodes is used to monitor the environment
and send data to the base station for a round of arbitrary
length. Following the completion of a round, the selection
algorithm is repeated with updated energy information from
the sensors.

4.2 Distribution of the Algorithm
As wireless sensor networks are expected to grow to or-

ders of thousands of nodes, it is desirable to distribute orga-
nization algorithms. Advantages of distributed algorithms
include load distribution and fault tolerance, among others.
Conveniently, the nature of our proposed sensor selection
algorithm makes it easily distributable. The deactivation of
a sensor is affected only by sensors with distances of less
than N×Tr

2
from the sensor, where N represents the order

of the filter used to create the blue noise sampling pattern

and Tr represents the arbitrary resolution of the image grid
to which the sensors are mapped. In fact, there is not neces-
sarily any need for the concept of a discrete grid, as long as
each sensor Si is able to translate distance to its neighbors
Sn to the appropriate values of the filter’s impulse response
hBN (dist(Si, Sn)).

As long as sensors are synchronized and begin the sensor
selection algorithm simultaneously, they may set a backoff
timer according to

B(Si) = W −K × f(x(Si), y(Si)) (4)

f(x, y) = sinitial(x, y) ∗ hBN (x, y) (5)

where W represents the maximum backoff window value,
and K is chosen according to the expected node density
and the filter used to create the blue noise sampling pat-
tern. Using this approach, sensors whose locations corre-
spond to high values of f will have low backoff timers, as
they should have highest priority for deactivation. When
sensor Si’s timer expires, it broadcasts a beacon to its neigh-
bors, informing them of its intended deactivation. When the
neighboring nodes Sn receive this deactivation beacon from
Si, they adjust their calculated filter output by subtracting
hBN (dist(Sn, Si)) and increase their backoff time as

B(Si) = B(Si)
′ + K × hBN (dist(Sn, Si)) (6)

where B(Si)
′ represents the value of B(Si) immediately be-

fore the beacon is received. It is convenient that sensors can
only increase their backoff time as a result of receiving an-
other node’s beacon, meaning that the nodes must only syn-
chronize once during the algorithm. The algorithm should
terminate once the density of the nodes approaches a thresh-
old based on the desired SNR. In terms of the distributed
algorithm, this means that once a node resets its backoff
value past a certain threshold Bmax, it should withhold its
beacon, stop listening for beacons, and assume that it will
remain active for the next round. The energy cost mod-
ification could easily be incorporated into this distributed
version of the protocol by making minor changes to Equa-
tions 4, 5, and 6.

An illustration of how the algorithm works (using sensors
deployed in a single dimension for clarity) is shown in Figure
3. Figure 3(a) shows the initial values of f and the corre-
sponding timer values at each of the sensor nodes. Since
sensor S2 has the highest value of f , it is the first to send a
beacon. Consequently, the other nodes update their values
of f and their backoff timers, as shown in Figure 3(b). S2’s
beacon causes sensors S1 and S3 to set their timers beyond
Bmax, and the algorithm terminates at these nodes. At this
point, S5 has the highest value of f . After its backoff timer
expires, S5 sends a beacon and again, each of the other ac-
tive sensors updates f and their backoff timers accordingly,
as shown in Figure 3(c). At this time, all of the remaining
sensors have increased their backoff timers beyond Bmax and
remain active. It should be noted that as long as all sensors
are synchronized, the distributed version of the algorithm
should converge to the exact same solution as the central-
ized version.

The implementation of this distributed algorithm requires
very little computation in the sensor. For each neighbor, the
nodes must initially translate location to distance, requiring
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Figure 3: Distribution of the sensor selection algorithm. Figures (a)-(c) show the value of f and the current
backoff timer values for the sensors at three time instances.

a few operations. Following this, only a few lookups, addi-
tions, and possibly subtractions (following the reception of
a deactivation beacon) are necessary per neighbor. A full-
blown filtering operation is not necessary since most of the
image grid being filtered is zero-valued. For the version of
the algorithm that considers energy consumption, another
multiplication is necessary for each neighbor. The energy
overhead for implementing this algorithm is clearly dom-
inated by the transmission of the short beacon messages,
and since we can expect the number of each node’s neigh-
bors to be bounded to the order of tens, we do not expect the
overhead to be very significant. Furthermore, the processing
capabilities required by the algorithm are very reasonable.

4.3 Lifetime Optimization
Here, we propose another energy efficient sensor selection

approach. In this approach, active sensor subsets are cre-
ated in a similar manner as in the original blue noise sensor
selection algorithm. However, rather than deterministically
deselecting nodes at locations with the highest filter out-
put, nodes are deselected with a weighted probability pro-
portional to this value. Having introduced this factor of
randomness, many active subsets, each providing the de-
sired blue noise sampling characteristics, can be found. It
is possible to schedule the use of each of these subsets so
that the total lifetime of the monitoring application is max-
imized [12]. This optimization can be performed through
a simple linear programming approach, which accounts for
initial energy at individual sensors. Unfortunately, such an
optimized schedule is not as robust or as easily distributed
as the previously described distributed algorithm. For ex-
ample, if a sensor failure occurs, the use of all sensor subsets
of which it was a member may no longer provide the SNR
requirements and should no longer be used. At this point,
the optimal schedule would need to be recalculated and all

previous sensor activity might be considered misguided in
hindsight. Similar consequences might stem from the use of
mobile sensors. Also, such an optimal schedule would not be
able to take advantage of additional sensor deployment. In
light of these observations, this method should only be used
in static topology networks where one sensor has the com-
putational power necessary to solve large linear programs.

5. SIMULATIONS
We simulated a network of sensors randomly deployed

within a 128m×128m region, of which a given number were
activated to monitor a bandlimited phenomenon whose aver-
age signal power was normalized to unity. We compared our
proposed blue noise sensor selection approach with the ran-
dom selection of sensors (essentially, a white noise sampling
approach) and a grid-based approach. In the grid-based ap-
proach, a hexagonal grid was overlaid onto the region where
the sensors were deployed and the closest sensor to each grid
point was selected for activation. Following the selection of
nodes, the original data image (e.g., temperature field) was
reconstructed from the sensor samples using the Voronoi re-
construction algorithm [2] and the mean square error was
calculated.

In our first simulations, there were 250 sensors deployed to
sense a signal that was bandlimited to 1

20
m−1. We measured

the mean square error of the reconstructed signal using each
approach as we increased the number of sensors activated.
Figure 4 shows that, as expected, for all methods the mean
square error decreases as the number of activated sensors in-
creases. However, the blue noise sampling method performs
slightly better than the grid-based sampling approach and
much better than the random (white noise) sampling ap-
proach. At first, it might seem surprising that the grid-
based approach does not perform the best. However, this
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Figure 4: Mean square error of reconstructed sig-
nal using the blue noise, grid-based, and random
selection methods for a phenomenon bandlimited to
1
20

m−1.

method is only expected to perform very well when the num-
ber of selected active sensors is much less than the number
of deployed sensors. Otherwise, the sampling pattern cre-
ated from the grid-based method may not resemble a grid at
all, due to the random initial placement of the sensors. The
blue noise selection algorithm also holds the advantages of
being able to easily distribute the algorithm.

In Figure 4, the error goes to zero at approximately 150
sensors using the blue noise and grid-based approaches and
approximately 200 sensors using the random sampling ap-
proach, meaning that at these points, the Nyquist sampling
rate criteria is being met in all subregions. Even when the
sensor deployment is not sufficient to meet this criteria, a
subsampling approach can be beneficial if the deselected sen-
sors are chosen correctly. In Figure 5, we plot the results
from a scenario similar to the one above, but with a phe-
nomenon that is bandlimited to 1

15
m−1. In this case, even

when all 250 sensors are activated, the mean square error
of the reconstructed signal does not go to zero. However,
with an intelligent selection scheme such as the blue noise
selection algorithm, a limited number of sensors may be de-
activated without much further loss in signal quality. Figure
5 shows that with the blue noise selection algorithm, the de-
selection of 20 sensors has almost no effect on signal quality,
and even the deselection of 40 sensors does not greatly affect
signal quality.

Next, we ran some simple simulations to show the benefit
of including an energy cost. In these simulations, 400 nodes
were deployed, of which 150 were selected for activation.
We used the inverse of a node’s residual energy as its energy
cost, so that

Cost(Si) = f(x(Si), y(Si))
α × (

1

E(Si)
)(1−α) (7)

where E(Si) represents the residual energy of sensor Si,
which was initially distributed uniformly between 2 J and
10 J in these simulations. We varied α to observe the trade-
off between ideality of the sampling pattern and appropriate
distribution of the energy load. For a large value of α, the
algorithm is essentially unchanged from the original version,
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Figure 6: Selection optimality versus load balanc-
ing tradeoff imposed by the assignment of an energy
cost.

while a small value of α means that good load distribution
has become the more critical goal. This tradeoff is illus-
trated in Figure 6. For large values of α, a very low mean
square error is achieved, but many nodes with little resid-
ual energy are selected. The average residual energy of the
selected nodes is the mean of the energy distribution — 6
J. As we decrease the value of α, the average residual en-
ergy of the selected nodes increases, as desired, while there
is initially a very small rise in mean square error. As the
value of α decreases further, it can be seen that mean square
error begins to increase more rapidly. A typical application
may want to operate somewhere near the knee of the curve,
simultaneously attaining the goals of accuracy of the recon-
structed data image and good load balancing.

Finally, we ran simulations to observe the lifetime achiev-
able through the optimization of the sensor schedule, as de-
scribed in Section 4.3. We compared the optimal schedule’s
lifetime with that of a blind selection method, in which we
select the sensor subset based on the unaltered blue noise se-
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lection algorithm, and iteratively reselect the subset once a
sensor in the subset dies. In these simulations, we deployed
100 sensors in a 128m× 128m field and chose active subsets
of 50 nodes to observe a phenomenon that was bandlimited
to 1

35
m−1. For the optimized schedule, we chose 100 sensor

subsets of 50 nodes each according to the blue noise sam-
pling pattern algorithm (with the necessary modifications
to add a factor of randomness to the selection algorithm).
Nodes were each given a lifetime of 1 (units are arbitrary).

In Figure 7, we show the average mean square error of
the reconstructed signal as a function of time using the op-
timized sensor schedule and using the blind selection algo-
rithm, averaged over 20 trials. Since the order in which the
subsets are used in the optimized schedule is arbitrary, we
show the average and standard deviation of these subsets
instead of a time plot. The blind selection scheme initially
chooses a sensor subset that reconstructs the data image
with a low mean square error, as Figure 8(a) shows for a
single trial. However, once the energy of the nodes in the
first subset is used up (at time 1), there are only 50 sensors
remaining from which to choose the next set of 50. The
resulting sensor subset’s sampling pattern, shown in Figure
8(b), does not have the desired blue noise properties. This
is reflected in the high mean square error in the late stages
of network operation. On the other hand, the optimization
procedure uses many high quality sensor subsets, a sampling
of which is shown in Figure 9. The optimal scheduling of
these sets allows the network to perform well over a longer
period of time, for an average length of 1.43.

To observe the performance of the optimization program
when the energy among the deployed nodes is nonuniform,
we simulated a network in which the nodes’ initial energy
was randomly distributed so that sensor lifetime ranged from
3 to 10 time units, taking only integer values in order to sim-
plify the simulations. Again, we found 100 sensor subsets
from which we calculated the optimal schedule and com-
pared with the blind approach. The results are shown in
Figure 10. The optimized schedule allows the network to
operate with a low mean square error for an average time
length of 6.3, while the average mean square error of the

(a) (b)

Figure 8: Initial (a) and subsequent (b) sets chosen
through blind blue-noise sensor selection method.

Figure 9: Sampling of sensor subsets used in the
optimal sensor scheduling method.

blind approach reaches an unacceptable level by this time.
Of course, the amount by which lifetime can be extended
is affected by factors such as how many subsets we run the
optimization for as well as how much randomness we add to
the selection algorithm, which allows sensor pattern ideality
to be traded for sensor subset diversity.

6. CONCLUSIONS
We have presented an algorithm for the selection of active

sensors in a wireless sensor network whose application is to
reconstruct the data image of spatially bandlimited physical
phenomenon such as temperature. Through simulation re-
sults, we have shown that significant improvement in overall
accuracy of the reconstructed signal can be achieved by this
algorithm compared with other simple approaches. We have
also shown that by incorporating an energy cost into the al-
gorithm, one can trade accuracy of the reconstructed data
image for well balanced load distribution among the sensors
in the network. Finally, if multiple sensor subsets are chosen
through a more randomized version of the blue noise selec-
tion algorithm, the subsets can be scheduled in such a way
that the network can produce a higher quality signal over a
longer period of time compared with a simple approach of it-
eratively selecting a new sensor subset whenever a currently
active sensor dies.

In the future, we would like to develop the details and per-
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Figure 10: Mean square error of optimized sensor
schedule (mean and standard deviation) compared
with mean square error using the blind selection ap-
proach, for randomly distributed initial energy.

form simulations of the distributed version of this algorithm
using a round based approach and observe the achievable
lifetime of the network as well as the degradation of SNR
over time. Also, we have worked under the assumption that
all sensors send traffic directly to a base station or local clus-
ter head over a single hop. Thus, the energy cost assignment
is based solely on a sensor’s own residual energy since that
sensor is the only one affected by its activation. This is not
the case in multihop networks, and for such networks, it may
be more appropriate to incorporate a cumulative path cost.
We wish to explore this issue in the future as well.

7. REFERENCES
[1] J. Chou and D. Petrovic. A Distributed and Adaptive

Signal Processing Approach to Reducing Energy
Consumption in Sensor Networks. In Proceedings of
the Twenty Second International Annual Joint
Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2003.

[2] H. G. Feichtinger and K. H. Grochenig. Theory and
Practice of Irregular Sampling. In J. Benedetto and
M. Frazier, editors, Wavelets: Mathematics and
Applications, pages 305–363. CRC Press, 1994.

[3] H. Gupta, S. Das, and Q. Gu. Connected Sensor
Cover: Self-Organization of Sensor Networks for
Efficient Query Execution. In Proceedings of the
Fourth ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MobiHoc), 2003.

[4] S. Hiller, O. Deussen, and A. Keller. Tiled Blue Noise
Samples. In Proceedings of Vision, Modeling, and
Visualization, 2001.

[5] P. Ishwar, A. Kumar, and K. Ramchandran.
Distributed Sampling for Dense Sensor Networks: A
Bit-Conservation Principle. In Proceedings of the
Second International Workshop on Information
Processing in Sensor Networks (IPSN), 2003.

[6] R. Iyer and L. Kleinrock. QoS Control For Sensor
Networks. In Proceedings of the IEEE International
Conference on Communications, 2003.

[7] S. Lloyd. Least Square Quantization in PCM. IEEE
Transactions on Information Theory, 28(2):129–137,
March 1982.

[8] D. Mitchell. Spectrally Optimal Sampling for
Distribution Ray Tracing. In Proceedings of the 18th
Annual Conference on Computer Graphics and
Interactive Techniques, 1991.

[9] T. Mitsa and K. J. Parker. Digital Halftoning Using a
Blue-Noise Mask. In Proceedings of the International
Conference on Acoustics, Speech, and Signal
Processing, 1991.

[10] T. Mitsa and K. J. Parker. Digital Halftoning
Technique Using a Blue-Noise Mask. Journal of the
Optical Society of America A, 9(11):1920–1929,
November 1992.

[11] K. Parker, T. Mitsa, and R. Ulichney. A New
Algorithm for Manipulating the Power Spectrum of
Halftone Patterns. In Proceedings of SPSE’s 7th
International Congress on Non-Impact Printing, 1991.

[12] M. Perillo and W. Heinzelman. Simple Approaches for
Providing Application QoS Through Intelligent Sensor
Management. Elsevier Ad Hoc Networks Journal,
1(2-3):235–246, September 2003.

[13] S. S. Pradhan, J. Kusuma, and K. Ramachandran.
Distributed Compression in a Dense Microsensor
Network. IEEE Signal Processing Magazine,
19(2):51–60, March 2002.

[14] K. D. Sauer and J. P. Allebach. Iterative
Reconstruction of Bandlimited Images from
Nonuniformly Spaced Samples. IEEE Transactions on
Circuits and Systems, 34(12):1497–1506, December
1987.

[15] R. Stasinski and J. Konrad. Improved POCS-based
image reconstruction from irregularly-spaced samples.
In Proceedings of the XI European Signal Processing
Conference, 2002.

[16] D. Tian and N. Georganas. A Node Scheduling
Scheme for Energy Conservation in Large Wireless
Sensor Networks. Wireless Communications and
Mobile Computing Journal, 3(2):271–290, March 2003.

[17] R. A. Ulichney. Dithering with Blue Noise.
Proceedings of the IEEE, 76(1):56–79, January 1988.

[18] X. Wang, G. Xing, Y. Zhang, C. Lu, R. Pless, and
C. Gill. Integrated Coverage and Connectivity
Configuration in Wireless Sensor Networks. In
Proceedings of Sensys, 2003.

[19] T. Yan, T. He, and J. A. Stankovic. Differentiated
Surveillance for Sensor Networks. In Proceedings of
Sensys, 2003.

[20] F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang.
PEAS: A Robust Energy Conserving Protocol for
Long-lived Sensor Networks. In Proceedings of the
Twenty Third International Conference on Distributed
Computing Systems, 2003.


