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ABSTRACT

The goal of a class of sensor networks is to monitor an un-
derlying physical reality at the highest possible fidelity. Sen-
sors acquire noisy measurements and have to communicate
them over a power- and possibly bandwidth-constrained in-
terference channel to a set of base stations. The goal of this
paper is to analyze, as a function of the number of sensors,
the trade-offs between the degrees of freedom of the under-
lying physical reality, the communication resources (power,
temporal and spatial bandwidth), and the resulting distor-
tion at which the physical reality can be estimated by the
base stations. The distortion can be expressed as the sum
of two fundamentally different terms. The first term reflects
the fact that the measurements are noisy. It depends on
the number of sensors and on their locations, but it cannot
be influenced by the communication resources. The second
contribution to the distortion can be controlled by the-com-
munication resources, and the key question becomes: What
resources are necessary to make it decay at least as fast as
the first distortion term, as a function of the number of sen-
sors? This question is answered threefold: First, a lower
bound to the power-bandwidth trade-off is derived, showing
that at least a constant to linearly increasing total power is
required for typical cases (as a function of M). But is this
also sufficient? In the second answer, communication strate-
gies are considered where each sensor applies the best possi-
ble distributed compression algorithm, followed by capacity-
achieving channel codes. For such a separation strategy, it is
shown for typical cases that the power must increase ezpo-
nentially as a function of the number of sensors, suggesting
that the lower bound derived in this paper is far too opti-
mistic. However, in the third answer, it is shown that this
is not the case: For some example scenarios, the power re-
quirements of the lower bound are indeed achievable, but
joint source-channel coding is required.
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Finally, the problem of sensor synchronization is consid-
ered, and it is shown that the scaling laws derived in this
paper continue to hold under a Rician fading model.

Categories and Subject Descriptors

H.1.1 [Systems and Information Theory]: Information
Theory; E.4 [Coding and Information Theory|: Data
compaction and compression,Error control codes

General Terms

Theory,Performance

Keywords

sensor networks, OPTA (optimum performance theoretically
attainable), joint source-channel coding, separation theorem

1. INTRODUCTION

The class of sensor networks of interest to this study could
be termed monitoring sensor networks: Their goal is to ob-
serve a physical system over time and space at the highest
possible fidelity. A simple example of such a sensor net-
work was analyzed in [9], and an extension thereof in [8].
The present paper generalizes this analysis to multiple data
sources and multiple base stations. The considered network
contains L (discrete-time) sources. The parameter L models
both the temporal and spatial bandwidth of the underlying
physical process. Much of the paper concerns the case where
the sources are distributed according to a (joint) Gaussian
law. Each of the M sensors observes a different combina-
tion of these L sources, subject to noise. The M sensors
communicate to N base stations. For simplicity, we assume
that communication between the base stations occurs over
separate channels and is noiseless. Hence, the data collec-
tion point has access to the received values of all N base
stations and must form an estimate of the underlying L
sources. Moreover, we allow K channel uses for each ob-
servation. Hence, K can be interpreted as the temporal
bandwidth of the communication channel, while (under ap-
propriate conditions) N models its spatial bandwidth. The
key goal of this paper is to characterize the relationship be-
tween the number of underlying source L, the end-to-end
distortion D, the total sensor power Pio:, and the tempo-
ral and spatial bandwidth of the communication channel, K
and N, respectively.
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Figure 1: The “monitoring” sensor network topol-
ogy considered in this paper: L sources are observed
in a noisy fashion by M sensors (the boxes labeled F;
through Fj;) that communicate to N base stations
over a power- and bandwidth-constrained interfer-
ence channel. The base stations need to estimate
the outputs of the underlying sources.

The remainder of the paper is organized as follows: In
Section 2, we define the sensor network topology and model
studied in this paper. In particular, in Subsection 2.1, we
specify a special case of the general topology, the Gaus-
sian sensor network. Sections 3, 4, 5, and 6 are devoted to
this special case. First, in Section 3, we establish a lower
bound to the distortion, revealing two fundamentally differ-
ent terms. The first term reflects the non-ideal observation
process, and the second the communication constraints. In
Section 4, we discuss in details what communications re-
sources have to be invested to make both distortion terms
decay at the same rate. Then, in Section 5, we discuss
schemes that achieve the optimum distortion scaling law for
particular power-bandwidth trade-offs. Up to this point, we
assume that the sensors operate with perfect synchroniza-
tion. In Section 6, we extend our results to the unsynchro-
nized case. For a model of unsynchronized sensors, we show
that the scaling laws obtained earlier continue to hold.

Finally, Section 7 shows how our results can be extended
beyond the case of Gaussian statistics, along the lines of
measure-matching [7].

2. THE SENSOR NETWORK MODEL

The sensor network model studied in this paper is shown
in Figure 1. There is a physical phenomenon, characterized
by L variables, representing the degrees of freedom of the
system, or, equivalently, its current state. We model each
degree of freedom as a random process in discrete time.!
Generally, the degrees of freedom cannot directly be ob-
served. Rather, in typical scenarios, each sensor measures
a (different) noisy version of a combination of all of these
variables. We model this observation process in a probabilis-
tic fashion as a conditional distribution of the observations
given the state. As expressed by the dotted lines in Fig-

!The discrete-time model is justified by arguing that the
state of the system does not change very rapidly. This
may be a serious restriction for certain scenarios. The
continuous-time extension is currently under investigation.
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ure 1, the sensors may have the possibility to collaborate to
some (generally limited) extent, and there may be feedback
from the base stations to each of the sensors. Based on the
respective sensor readings, the inter-sensor communication,
and the feedback signals, each sensor has to produce an out-
put to be transmitted over the communication link (e.g., a
wireless link). This link is again modeled by a conditional
distribution. The output of the link is observed by a central
data collection unit, whose goal is to get to know, not the
raw sensor readings, but the values of the underlying degrees
of freedom (or state) of the physical system.

More precisely, and to fix notations, the physical phe-
nomenon is characterized by the sequence of random vectors

{Slil}iez {(S1[a), Safi], -, Sl iz, (1)

To simplify the notation in the rest of the paper, we denote
sequences as

i def 17
4 (SIY_,.

(2)

‘We use the upper case S to denote the random variable,
and the lower case s to denote its realization. The distribu-
tion of S is denoted by Ps(s). To simplify notation, we will
also use the shorthand P(s) when the subscript is just the
capitalized version of the argument in the parentheses. The
random vector S[i] is not directly observed by the sensors.
Rather, sensor m observes a sequence Ui, = {Unl[i]}_,
which depends on the physical phenomenon according to
a conditional probability distribution, which we denote by

P(um|s1,--- (3)

Moreover, sensor m may receive information from other sen-
sors as well as from the destination, as illustrated by the
dotted lines in Figure 1. For notational purposes, let us
summarize this information by V;},. Based on this as well
as the sensor readings UZ,, sensor m transmits a signal of
length jK (since K channel uses are available for each source
sample), given by

,8L)-

(4)

on the multi-access channel. The transmitted signals satisfy
a power, or more generally, a cost constraint of the form

X3 = P (UR,VA),

()

This is a generalization of the sum power constraint for all
the sensors together. In some variations of our problem,
it is also interesting to consider a family of simultaneous
constraints, with cost functions p™ (.), p@(-),... and max-

E p(X{K,XgK,...,X,{j‘)] < T,

imum expected costs Fgl),ng), ..., respectively. This is a
generalization of the individual power constraints for each
Sensor.

The final destination uses the output of the multi-access
channel to construct estimates

87 =(87,55,...,5%). (6)

The task is to make the estimate S™ as close to S” as
possible, in the sense of an appropriately chosen distortion
measure d(s",3"). For a fixed code, composed of the en-
coders F1, Fy, ..., Fa at the sensors and the decoder G, the
achieved distortion A is computed as follows:

E [d (Sj,éf)] :



Figure 2: The considered Gaussian sensor network:
A and B are appropriate matrices.

The relevant figure of merit is therefore the trade-off be-
tween the costT'; of the transmission (Equation (5)), and the
achieved distortion level A; (Equation (7)). The problem
studied in this paper is that of finding the optimal trade-offs
(T';,A;) in the limit as j — oo, i.e., the optimum trade-offs
irrespective of coding delay and complexity. We denote the
respective limits by I' and A, respectively.

2.1 Gaussian Sensor Networks

Of particular interest to the arguments of this paper is a
special case of the sensor network of Figure 1, namely when
all involved statistics are Gaussian. The resulting scenario
is illustrated in Figure 2. In particular, there are L physical
sources (the spatial or temporal bandwidth of the source),
M sensors, and N receivers (base stations). The receivers
are assumed to be ideally linked to each other: in the con-
sidered network model, the data collection point has access
to the exact received value at each of the N base stations.

Source Bandwidth L and Observation Process
The source is characterized by L independent and identi-
cally distributed (iid)? circularly complex Gaussian random
variables with mean zero and variance o%. The observation
process is modeled as

Unli]

(8)

Winli] + > amaSilil,

=1

for m =1,2,..., M, where W, [7] is iid circularly complex
Gaussian with mean zero and variance o3,.% The coefficients
@m, model how strongly source S; influences the measure-
ment made by sensor m. We collect the coefficients @, into
the matrix A € CM*L defined as

a1,1 a1,2 ai,L
az,1 2.2 a2,L

A = az,1 az,2 as,L (9)
apM,1 -aM,2 aM,L

2 Assuming iid sources is without loss of generality since the
matrix A in Eqn. (9) below can be chosen arbitrarily.
3Note that the assumption that for any m 1,2,..., M,
the measurement noise Wy, [i] has the same variance o3y is
without loss of generality since the coefficients am, can be
chosen arbitrarily.
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The matrix A has min{M, L} singular values. Our interest
is in the case where L < M, and we denote the L singular
values as

Q1,02 ..., QL. (10)

In this paper, we consider the case where the matrix A has
full rank. Hence, L models the product of the spatial and
temporal bandwidth of the underlying source.

Spatial Bandwidth N of the Communication Channel

The communication channel is the standard additive white
Gaussian multiple access channel, modeled as

M
Y'n. = Zn + Z bn,mX'm7 (11)
m=1

where Z, is iid circularly complex Gaussian with mean zero
and variance 0%. We collect the coefficients b, into the

matrix B € CV*M defined as

bii b2 bigs b1
bo1 b2z b2gs ba,m

B = (12)
by bn2 bng3 by, M

The matrix B has min{N, M} singular values that we denote
by (1, B2, .... Our interest is in the case where N < M, and
in this paper, we consider the case where the matrix B has
full rank. Hence, N models the spatial bandwidth of the
communication channel.

Temporal Bandwidth K of the Communication Channel

The channel can be used K times for each source sample.
This is equivalent to multiplying the bandwidth of the chan-
nel by a factor of K, and hence permits to study the tem-
poral bandwidth of the channel.

Power on the Communication Channel

The power of sensor m is determined by

A EAGE

Pum lim 13)
j—oo

The power on the communication channel is constrained as
follows:

Ptot
K 3

(14)

M
> Pm <
m=1

i.e., Piot denotes the total power available per source output
(81,82, ...,85L).

Target Distortion

The goal of the sensor network is to minimize the mean-
squared error,

i E “Sl[i] - Sz[i]'z] . (15)

i

1 & 1
Pmoryimj

2.2 Simplifying Assumption
For the remainder of this paper, we assume that the spread

of the singular values of the matrices A and B is small. The
key reason for this is to keep the notation simple: If the



singular values have a large spread, our solutions must be
modified to include an argument sometimes referred to as
“inverse water-filling” (see e.g. [4, p.349]). The full solution
will be presented in [10].

2.3 Scaling Law Notation

In this paper, we establish scaling laws, denoted by the
symbol ~, which here is taken to mean “asymptotic equiv-
alence.” More precisely, we write scaling laws as

fiM) ~ foa(M), (16)
which simply means that
Jim  fi(M)/ f2(M) =, (17)

for some constant ¢ > 0. The special case when ¢ = 1 will
be called a strong scaling law, since it correctly reports both
the scaling behavior and the important constants, and will
be denoted as

~

H(M) fa(M).

3. LOWER BOUND TO THE OPTIMAL
DISTORTION SCALING LAWS

3.1 Lower Bound

In this section, we derive a lower bound to the distortion
that can be achieved in the Gaussian sensor network defined
in Subsection 2.1. Our lower bound is based on the idealiza-
tion that the sensors can collaborate perfectly. While this
performance should not be expected to be achievable in gen-
eral, we show in the remainder of the paper that its scaling
behavior is indeed achievable for a relevant class of sensor
networks.

(18)

THEOREM 1. The distortion that can be achieved in the
Gaussian sensor network defined in Subsection 2.1 (subject
to the simplifying assumption of Subsection 2.2) cannot be
smaller than

Dlower(M Ptth K N)

- Lzal

ofoiy
2% + 0,

1
tot N
K+ KIjVaZ A n=1 ﬁ"%

=+

(19)

where 0% is the variance of the underlying sources, o3 is
the variance of the observation noises, 0% is the variance of
the noise in the multi-access channel, Pio: is the total sensor
transmit power for the K channel uses, N is the number of
destination terminals, and

_1
= A\N

Remark. This outer bound includes the case of arbitrary
collaboration between the sensors, and of arbitrary feedback
signals from the data collection point to the sensors.

An outline of the proof of this theorem is given in Ap-
pendix A.

3 (20)
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Discussion

Theorem 1 shows that the distortion is the sum of two char-
acteristic contributions. The first term reflects the non-ideal
observation process, and can be influenced by altering the
matrix A (e.g., by increasing the number of sensors M, or
by changing their locations), and by decreasing the variance
of the measurement noise. The second term is due to the
communication constraints, i.e., the total sensor power, and
the spatial and temporal bandwidth of the channel.

The key question then becomes the following: For ﬁxed
matrix (sequence) A} and observation noise variance ol
how much, in terms of communication resources, must be
invested to make that second term decay (at least) as fast
as the first term, as a function of the number of sensors M?
Theorem 1 gives a lower bound to this trade-off. This is
discussed in more detail below in Section 4.

3.2 Example: The Circulant Sensor Network

Consider L sources located uniformly spaced on the unit
circle. Suppose M sensors are uniformly spaced on a con-
centric circle of larger radius, and N receiver antennas are
spaced regularly on a concentric circle of even larger radius.
This geometry is illustrated in Figure 3. For the sake of this
discussion, we assume that both N and L divide M, and
that M is even.

Under this geometry, the observation coefficients have a
symmetry property. For the first source, S1, we can write
(for some function a(m))

am,1 a(m), form=1,2,..., M, (21)

and the function a(m) satisfies a(m) a(M — m + 2),

for m = 2,3,...,M/2. For the remaining sources S;,! =
2,3,..., L, the symmetry of the overall situation suggests
that

Am,i = a((m——(l—l)%) mod M> , (22)
for m = 1,2,..., M, where, for ease of notation, we define
a(0) = a(M). That is, the coefficients am, are the same

as the coefficients a1 up to a cyclic shift of (I — 1)M/L
positions. In that case, the matrix A A is circulant, and its
eigenvalues of are easily found to be

M/L

L Z ‘-7:{“}|(n 1)L+l )

af (23)

for | = 1,2,..., L, where the discrete Fourier transform is
defined in the unitary form as

M
F{a}|, LM Z a(m)e_j%(r—l)(m—l), (24)
m=1

forr=1,2,..., M.
To make matters more concrete, consider the case where

) . (25)

For this choice of a(m), and the case L =4 and M = 8 (as

min{m — 1,M —m + 1}
oM

a(m) = exp (—
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Figure 3: The circulant sensor network with L =
4 sources (the empty circles), M = 8 sensors (the
disks), and N = 2 receiving terminals (the squares).

in Figure 3), the matrix A is found to be

-2 _4 _2
1 e 8 e 8 ¢ B
1L _1 _3 _3
e 8p 8p e 8p e 8p
-2 _2 _.4
e 8 1 e 8 ¢ B
-3 -1 _1 _3
e 8p e 8p e 8p e 8
A = _a 2 _z (26)
e 8 e B 1 e B
-8 _3 _1 _1
e 8 e 8 e 8 e 8
_2 _.a -z
e 8 e 8 e 8 1
-1 -3 _3 _1
e 8 ¢ B e B g B

For this choice of the function a(m), the Fourier transform
is known explicitly. In particular, with the help of [3], we
find (for even values of M)

F{a}l,
(1 — e~ 2/MP)y(1 — =1/ 20) cog(m(r — 1))
VM (1 — 2e=1/(Mp) cos(2r(r — 1) /M) + e=2/(Mp))’
(27)
for r =1,2,..., M, and the (squares of the) singular values
are easily found by evaluating (23).

As illustrated in Figure 3, the geometry is similar on the
communications side. For the first destination terminal, Y1,
we can write (for some function b(m))

bi,m = b(m), form=1,2,..., M, (28)

and the function b(m) satisfies b(m) = b(M — m + 2), for
m = 2,3,...,M/2. For the remaining terminals Y,,n =
2,3,..., N, the symmetry of the overall situation suggests

b = b((m—(n—l)%) mod M), (29)

for m = 1,2,..., M, where, for ease of notation, we define
b(0) = b(M). That is, the coefficients bn,m are the same as
b1,m up to a cyclic shlft of (n—1)M/N posmons Then, the
matrix BB is circulant, and its eigenvalues 32 are

M/N

o= Ny | F (O -iman| (30)

To make matters more concrete, consider the case where

b(m) = exp(—min{m‘lég_m—*—l}), (31)

whose spectrum is given by (27) with p replaced by &.

Finite number of sources L and base stations N

Let us now investigate the scenario where L and N are kept
fixed while M becomes large. Approximating (27) by a Tay-
lor series, it is easy to show that for small r and large M,
F{a}|, increases like VM. In particular, since L is kept
constant, this is true for r = 1,2,..., L. Using this in (23),
we find that for each | = 1,2,..., L, the first term in the
sum on the right hand side of (23) increases linearly in M.
But since all the terms in the sum are non-negative, this
implies that the squares of the singular values o} increases
at least linearly in M, for [ =1,2,...,L.

Could the squares of the singular values o} increase faster
than linearly in M? It is easily seen that this is not possible.
In particular,

~1/p

M l1—e
Z |a(m)|2 = 2m —-1—- 6—1/P (32)

which increases linearly in M. By Parseval’s identity, this
must be the same as

ST Fa}, | (33)

implying via (23) that the sum of the squares of the singular
values o? cannot increase faster ‘than linearly in M, and
hence, none of the squares of the singular values can.

Combining this, we can express the squares of the singular
values as

of = Maéaj, (34)

for | =1,2,...,L, where & converges to a constant as M
becomes large. Using the same argument to analyze (30)
yields

Bi = MB:. (35)

Finally, applying the expressions found in (34) and (35) to
Theorem 1, we find a lower bound to the distortion scaling
law as

Dlower(Mv Ptota La K’ N)

KN/L
Cc1 1
= — +4c — ) 36
vt | e (39
where c1, ¢z, cs, and c4 are defined as
_ -l '
@ =1 Z < &% +opy /M 37)
C2 = (38)
cz = (39)
Cq4 = (40)

Note that strictly speaking, for small M, the values of ¢1, ¢z,
c3, and c4 are also functions of M. However, they rapidly
converge to a constant value as M increases.



Increasing number of sources L and base stations N

When L increases with M, the analysis of (27) becomes more
involved. Clearly, when L increases very slowly with M, the
analysis of the previous paragraph still applies. The case
where L increases significantly with M is currently under
investigation.

3.3 Extensions of the circulant network
example

The above example can be readily extended to a “multi-
circulant’ network where there are multiple circles of sensors
around the sources, both outside and inside of the source cir-
cle. Moreover, the circulant example can also be extended to
a Toeplitz sensor network, and essentially the same asymp-
totic analysis applies, along the lines of [11].

4. THE NECESSARY POWER AND
BANDWIDTH

The key insight of Section 3 is that there is a term in
the distortion expression that does not depend on the com-
munication capabilities, namely, the first summand in (19).
This term is solely due to the fact that the underlying phys-
ical reality cannot be observed perfectly, but rather is al-
ways subject to measurement noise. As the number of sen-
sors M increases, the observation process is characterized
by a matrix sequence A, and the behavior of the ob-
servation noise term is governed by the speed at which the
slowest-growing singular value of the matrix sequence A%)
increases. For example, for the considered circulant sensor
network, the behavior is like 1/M.

What resources are necessary in order to achieve this op-
timum distortion scaling law? In other words, how much
power and bandwidth must be invested such that the sec-
ond summand in (19) decays at the same rate as the first?
This question can be answered based on Theorem 1. We
summarize this insight in the following corollary:

COROLLARY 2. Suppose that the slowest-growing of the
singular values cu, l = 1,2,...,L, of the observation matriz
sequence AGY) grows like M’ /2 Then, the optimal distor-
tion scaling law is 1/M?®, and the power, Piot, and the band-
width, K and N, required to sustain this distortion scaling
law must satisfy

KN/L
1 1

~ M
pwt+ Kr;:jazi A H11’:1=1 B2

(41)

Ezample (Circulant sensor network, cont’d). For the cir-
culant sensor network analyzed in Section 3.2, we find the
necessary total power to sustain the optimal distortion scal-
ing law of 1/M must scale at least as follows:

Pt ~ KNMF®EN™L, C(42)

A key conclusion from this formula is that in order to prevent
the power from increasing exponentially with the number of
sensors, the total channel bandwidth KN must be at least
equal to the number of underlying sources L.

5. CODING SCHEMES

Sections 3 and 4 were concerned with lower bounds only,
but leave open whether the corresponding performance is
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actually achievable. In this section, we show how to achieve
this lower bound, at least in some cases. More precisely,
we discuss schemes that achieve optimal power-bandwidth-
distortion tradeoffs. The analysis in this section is still re-
stricted to the Gaussian sensor networks as defined in Sec-
tion 2.1.

First, in Subsection 5.1, we analyze the performance of
a scheme that separates source from channel coding. In
particular, we present a lower bound on the distortion for
any coding strategy under which the sensors each want to
communicate a message (a bit stream) to the destination
with vanishingly small error probability. The corresponding
scaling behavior is exponentially worse than the fundamen-
tal lower bound of Theorem 1, raising the question whether
that lower bound is too optimistic.

In Subsection 5.2, we show that this is not the case: we
present a class of networks for which the scaling behavior
as predicted by Theorem 1 can indeed be achieved. In fact,
in previous work [9], we established the achievability of the
lower bound of Theorem 1 for the simple case of a single
source and destination (i.e., L = K = N = 1). This was es-
tablished by a simple coding scheme where the sensors only
scale their sensor readings, and exploit the channel structure
to do the rest. In [8], we showed how these arguments can
be extended to the case of multiple sources, but only one
base station (i.e., L =K > 1, but N =1).

The present paper addresses the case where L = N > 1,
but K = 1. Using this result in combination with the result
of [8], we outline how to address the more general case where

5.1 Separate Source and Channel Coding

It is well known that separate source and channel coding
does not lead to optimal performance in general networks.
In extension of this, it has been shown in [9, 8] that it is not
only suboptimal, it may even lead to an entirely different
scaling behavior. The present paper extends this analysis to
the more complex network topologies considered here. To
analyze the optimum performance for a scheme that sepa-
rates source from channel coding, one must evaluate the op-
timum rate-distortion performance for the source network
side, and combine it with the capacity of the channel net-
work. This is illustrated in Figure 4. The key characteristic
of such a strategy is that each sensor attempts to convey
a message (a bit sequence) across the communication chan-
nel in such a way that the base station can decode it with
vanishing error probability. Unfortunately, only very few re-
sults are known for the general rate-distortion behavior of
source networks and the capacity-cost behavior of channel
networks. Therefore, we instead give a lower bound to the
corresponding distortion that can be achieved with a scheme
that separates source from channel coding, combining the
rate-distortion results of [2, 12, 15] for the so-called CEO
problem with the capacity of the Gaussian multiple-input
multiple-output channel with inputs Xi,..., X» and out-
puts Y1,...Y,, see [14]. To compare the resulting expression
to the lower bound established in Theorem 1, consider the
scenario of the circulant example presented in Section 3.2.

Ezample (Circulant sensor network, cont’d). For the cir-
culant sensor network analyzed in Section 3.2, and suppose
for simplicity that the columns of the matrix A are orthonor-
mal with respect to each other, and that the rows of the
matrix B are also orthonormal with respect to each other.



Figure 4: Schematic rendering of separate source
and channel coding for the single-source Gaussian
sensor network. The bit sequence that sensor m
needs to communicate to the base stations is de-
noted by T,.. F;, and Fj, denote source and channel
encoding at sensor m, respectively, and G’ and G’
denote channel and source decoding at the base sta-
tions, respectively.

Then, the desired lower bound can be expressed as
D(M7Pt0t)L7K)N)
ol
Mo? + o3,
ot 1
0% +o%, /M KNa} M P,
s+ow/ 1+ 5555 og, (1+m‘;"§)
In order to compare this to the lower bound established in
Theorem 1, consider for example the total power Pi:. In
order to obtain an overall scaling behavior of 1/M, the lower
bound requires at least the total power given in Equation

(42). However, according to (43), a separation-based strat-
egy requires a total power of at least

M
F tot

~ e,

+ (43)

(44)

that is, the total power must grow ezponentially as more and
more sensors are added to the network.

5.2 Joint Source and Channel Coding

In this section, joint source and channel coding strategies
are analyzed. The goal is to reduce the exponential gap
between the performance established in (43), and the lower
bound of (36).* In this subsection, we show that for certain
cases of interest, our lower bound is indeed achievable.

Single base station

The first special case we consider is the scenario when N =
1. Hence, in order for source and channel bandwidth to
be equal, L = K. To keep notation simple, the following
theorem determines an achievable distortion for the special
case b, = 1, for m = 1,2,..., M. It is straightforward to
extend the result to the case of general é, at the expense
of extra notation.

4The circulant example clearly illustrated this gap, simply
by comparing the required powers, Equations (42) and (Eq-
sep-P).
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THEOREM 3. For the Gaussian sensor network defined in
Section 2.1 with L = K and N = 1, and with b, = 1, for
m=1,2,...,M, the following distortion can be achieved:

D1(M, Piot(M))

_ 1 ool 1 i QFup oy
L& ool +ofy  Puot(M) = (a? + 03, /0%)°
(45)
where a1, 0z, ...,ar denote the singular values of A, 0% is

the variance of the underlying sources, o2y is the variance of
the observation noises, 0% is the variance of the noise in the
multi-access channel, Piot is the total sensor transmit power
for the K channel uses, and up;) denotes the [-th largest of

L
the sensed powers wm = Y 1o, |Gm,1|°0% + oy

To establish this theorem, it suffices to consider a scheme
that dedicates one of the L channel uses for each of the L
sources. In the dedicated channel use [, the sensors apply
the filtering coefficients appropriate to estimate the source
S; from the observations Uy, Us, ..., Un. Clearly, Equation
(45) describes the same distortion scaling law as Theorem 1
whenever the singular values of the matrix sequence AMD
increase at the same rate as the singular values of the matrix
sequence B as was the case for example in the circulant
scenario of Section 3.2.

Multiple Base Stations

When there are many (N > 1) base stations, a more efficient
strategy can be implemented: each channel use enables to
estimate up to N sources, based on the N received values
at the base stations. Such a strategy works whenever the
matrices A and B are appropriately matched.

To keep matters simple, suppose that L = N > 1 and
K =1, and that the matrix A is fixed, rather than randomly
chosen. Then, a strong notion of “matched” matrices A and
B can be defined as follows:

DEFINITION 1. Denote the singular value decomposition
of the matriz A € CM*L by A = U,D,VE, and of the
matric B € CV*M™ by B = UyDyVi!. The matrices A and
B are called matched if L = N and there exists a diagonal
matriz Ap € CM*M such that

VHARU,

Qdiag(v1, 72, -, L)Q%.  (46)

for some permutation matriz Q.

It is appropriate to point out that while this matching
requirement enables simple proofs, it is not a necessary con-
dition to achieve the scaling law predicted by Theorem 1.

Ezamples. The following are examples of matched matri-
ces according to Definition 1.

1. When A -and B are simply vectors (L = N = 1) with
enough non-zero entries, they are matched. This is a special
case of the analysis of Subsection 5.2.

2. Circulant case: When both A¥ A and BB¥ are circulant
matrices, then A and B are matched with Ap = Ip.

For matched matrices A and B, it is easy to establish the
following achievable distortion:



THEOREM 4. If the matrices A and B are matched, then
the following distortion is achievable:

Dl(M,Ptot,L:N,K: 1)
1 L

- 13
=1

vLM
Ptot/UZ

|vi|20?ol + o,
1 L

lyil*aios
Bi(ImlPaics + ofy)?’

(47)

where v = L+ (|}ApA|jFaS
the Frobenius norm.

+ |]AF||FU‘2,V) and ||-||F denotes

Remark. If the matrices A and B are almost matched, i.e.,
there exists a Ar such that (46) is close to diagonal, the
achieved performance is close to (47), but the precise for-
mula involves the eigenvectors of the matrices A and B, and
is therefore considerably less compact.

Comparing this to Theorem 1, we find a scaling law when-
ever the |y;|? remain strictly larger than zero. This can be
phrased as follows:

THEOREM 5. Suppose that the following conditions are
satisfied:
1. the matrices AM) and B™) are matched for every M,
2. the corresponding values of ||, | = 1,2,...,L, are
strictly larger than zem,
3. the expression 57 (|[ArA|30% + || Ar||F0o%) is bounded,
4. the slowest-growmg of the singular values al(M)
at least like VM, and
5. B8 = Bafa(M), forn =1,2,.. .,
mum distortion scaling law is given by

D(M, Ptot,LzN K=1)
1
zZ

To illustrate this theorem, consider again the following
example:
Ezample (Circulant sensor network, cont’d). For the cir-
culant sensor network analyzed in Section 3.2, for the case
where L = N and K = 1, the conditions of Theorem 5 are
satisfied, and we find that the optimum distortion scaling
law is

increases

N. Then, the opti-

L
Prot f3 (M)’

USUW
-I—UW

(48)

_ _ a , ¢ Loy
D(M,Pot,L=N,K =1) ]\/[—I—C4 VP (49)
where c1,c2, and ¢4 are defined in (37)-(40). Hence, the

necessary and sufficient total power to sustain the optimal
distortion scaling law of 1/M scales as

Pt ~ L, (50)

i.e., the total power scales linearly in the number of under-
lying sources. This is the minimum power, as a comparison
with (42) reveals (recall that L = N).

Discussion

This theorem shows that at least in some paradigmatic cases,
the performance lower bound derived in Sections 3 and 4 can
be achieved. However, to achieve this performance, joint
source-channel codes are required. A modular, separate de-
sign of the compression and communication stages leads to
substantial sub-optimality.
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Moreover, since the lower bound of Sections 3 and 4 in-
cludes both feedback and arbitrary collaboration between
the sensors, the above theorem also shows that for those
cases, neither feedback nor collaboration has a scaling-law
relevant role: The optimum power-distortion scaling law can
already be achieved by a simple joint source-channel coding
scheme.

5.3 Extensions

Matchable observation and channel matrices. When
L > N, the matrices A and B are not matched according
to Definition 1. But suppose that the channel can be used
K = L/N times, and hence, source and channel bandwidth
are again equal. Then, the resulting situation may still be
favorably matched. The special case N = 1 was analyzed
in [8], and a more general case can be addressed by combin-
ing the arguments outlined in Sections 5.2 and 5.2.

When L = N, but the matrices A and B are not matched,
it becomes interesting for the sensors to collaborate: that
way, they can implement more general overall transforms.
This leads to a study of matrices for which there exists a
coding scheme that matches them favorably.

Feedback. Another way to incorporate unmatched matri-
ces is through the use of feedback. Such coding strategies
are considered in [6].

6. SYNCHRONIZATION

The lower bounds derived in Sections 3 and 4 apply whether
or not perfect synchronization is available to the sensors.
However, the “uncoded forwarding” coding scheme presented
in [9, 8] (and extended to more general cases in Section 5
above) seems to require perfect synchronization and there-
fore appears to be impractical. In this section, we study the
case when the channel is subject to fading effects. More pre-
cisely, each sensor’s transmitted signal is multiplied by an in-
dependent complex random variable by, form =1,2,..., M,
iid over time. The precise value of this random variable is
unknown to the sensors, but their distribution is known.
This may model the situation where the sensors transmit
modulated signals, but the carriers are not in phase. It may
also model a pulsed (e.g., ultra wide-band) communication
system, where the pulses do not arrive exactly at the same
time, but are distributed over an interval. We show how our
scheme performs under such conditions. In particular, we
establish that the optimal scaling law is achieved as soon as
the distribution of b, has a non-zero mean for enough of
the sensors. In the pulsed example above, this means that
the distribution of arrival times over the given interval is
not uniform over the entire interval. Rather, the pulse of
sensor m is more likely to arrive, say, around the center of
the interval.

For the purpose of this exposition, and because it suffices
to illustrate the principles, we consider the case L = K =
N = 1. The destination receives

Y

M
Z4 ) bnXm,

m=1

(51)

where the coefficients b., are complex-valued and not known
to the sensors. This models the fact that the sensors are not
synchronized. Clearly, the properties of the coefficients b,
determine the scaling behavior of the network performance.
A lower bound can be obtained by assuming that the desti-



nation knows the coefficients b,,. Then, a slight extension of
the lower bound of Theorem 1 leads to the following lower
bound:

Dlower (Mv Ptot)

_ o§oly
ohy + 0% Ly lam|?
+ 1 o Z'r]\y{:l Iam|2 '
T4 B S Bllbnl?] ofy + 08 Sy lam?

(52)

We consider a specific distribution of the coefficients b, for
which this lower bound is achievable (in the scaling sense):
Suppose that b,, and b; are independent of each other (m #
7), and have non-zero mean. Then, the distortion achieved
by a simple forwarding scheme is found to be at most-

Dy (M, Pyot)
L Jam[2E [|bm[?]
|E [bm][®

o

p)
(Zris lamf?)” ==
0% d |@m |[*V ar(bm)

T ) A2 1R

M
lam[*(lam |05 + otv)

|E [bm]|?

0%

+Ptot (271\:;1 [amlz)2 m=1

(83)

Clearly, this distortion does not generally coincide with the
lower bound (52). However, in interesting cases, (52) and
(53) describe the same scaling behavior. One of these cases
is described by the following result:

THEOREM 6. Suppose that 0 < |am| < @maz, for m

1,2,..., M. If atleast a fraction eM of theb,,, m=1,2,..., M,

have |E[bm]| > d, and the total power Pio: is a non-decreasing
function of M, then the optimum distortion scaling law is

4, _ds
M MPy:’

~

D(M, P;ot) (54)

where di and d2 are constants.

An outline of the proof of this theorem is given in Ap-
pendix A.

Another distribution of the coefficients b,, for which a
simple strategy achieves scaling-law optimal performance is
when enough of the coefficients are sufficiently dependent.

7. BEYOND GAUSSIAN STATISTICS

Sections 3-6 were concerned exclusively with the Gaus-
sian sensor networks defined in Section 2.1. Here, we briefly
outline extensions.

Non-Gaussian Sources

Reconsider the Gaussian sensor network of Section 2.1, but
suppose that the underlying sources have an arbitrary dis-
tribution. It is intuitive that under mild conditions on that
distribution, a lower bound of the type of Theorem 1 holds.
The respective conditions will be explored in [10].
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Sufficient Condition for Optimal Performance

For general sensor networks of the topology defined in Sec-
tion 2, the situation is more involved. A sufficient charac-
terization of optimal codes can be given along the lines of [7]
as follows.

THEOREM 7. In the sensor network problem defined in
Section 2, if the coding functions F1, Fy, ..., Fm, G are cho-
sen such that

p(z;l,xg, ceey :CM) = CID(pY]ml,mz,.A.,zM HPY) + po (55)
ES['u.l,uz,...,uM [d(S, 5)] = —C2 10g2 P(ul, U2, .+ vy UMI§) (56)
I(UhWUsz...Un; 8) = I(X1 X2 ... Xar;Y), (57)

then they perform optimally.

This will be discussed in more detail and from a scaling-
law perspective in [10].

8. CONCLUSIONS

This paper analyzes the power-bandwidth-distortion trade-
offs in a certain class of sensor networks where the sensors
observe noisy combinations of the underlying data, and a
central data collector would like to estimate the underlying
data at the highest possible fidelity. The first step of the
analysis consists in showing that the distortion generally is
the sum of two terms. The first term is due to the fact that
the sensor observations are noisy. It is only the second term
that one can control with the power and bandwidth of the
communication link. The second step of our analysis is then
to discuss the power-bandwidth pairs that are needed in or-
der to make the second term decrease at the same rate (as
a function of M) as the first. This provides general lower
bounds on the power-bandwidth-distortion tradeoffs. The
third part of the paper shows scenarios for which the lower
bounds are achievable, including a case where the sensors are
not synchronized. Extensions of this work include the sit-
uation where the underlying number of sources L increases
rapidly, more general models of unsynchronized sensors, the
analysis of the situation when the involved statistics are not
Gaussian, and strategies involving feedback and collabora-
tion between the sensors [6, 10].

APPENDIX
A. OUTLINE OF PROOFS

PrROOF (THEOREM 1). Our lower bound is the best achiev-
able performance for an idealized system where the sensors
can collaborate arbitrarily (and for free). This idealized sys-
tem is a point-to-point system. The optimum performance
for point-to-point systems can be found from Shannon’s sep-
aration theorem [13, Thm. 21]. For the case at hand, there
is a slight difference with respect to Shannon’s scenario in
that the source is not directly observed, but merely in a
noisy fashion. A modified version of the separation theo-
rem can be found in [1, p. 78] (see also [5, p. 136]). The
only modification is to replace the standard rate-distortion
function by the “remote” rate-distortion function. The min-
imum distortion Dn,i, that can be achieved by arbitrarily
collaborating sensors, for a given total power Pj.:, can be
characterized as

D min

Dremote(C(Ptot))y (58)



where Dremote(R) is the remote distortion-rate function,
given by

L
1 5
Dremote(R) = miny " B|Si — 8%, (59)

=1
where the minimization is over all distributions
p(81,...,8cluL, ..., um) (60)

that satisfy I(UaUz...Unm;8:82...8.) < R. Under the
assumption that the spread of the singular values oy of the
matrix A is small, this evaluates to

s L
1 ogaﬁy

Dremote (R) =

The capacity C(P;o¢) needed to complete the proof is simply
the capacity of the Gaussian vector channel characterized
by the matrix B. Assuming a small spread of the singular
values G, for n =1,2,..., N, the capacity of K uses of the
multiple-input multiple-output channel characterized by the
matrix B and by additive white Gaussian noises of variance
0% is given by

C(Pwt) = KNlog, (

where P;o: is the total power available for K channel uses.
Notice that this is true whether or not feedback is available
since the capacity of a memoryless channel is not increased
by feedback. Using this in (61) yields the claimed bound. [

PROOF (THEOREM 4). By assumption, since the matri-
ces A and B are matched, there exists a diagonal matrix
Ar that satisfies (46). Denote the diagonal entries of Ap
by Am = {Ar}mm. Let sensor m transmit X, = cAmUnn,
where ¢ must be chose to meet the power constraint. The
data collection point then simply uses the minimum mean-
squared error estimator of (51, Sz, ...,9L) based on the ob-
servations (Y1,Y2,...,Yn). By standard arguments, the re-
sulting mean-squared error is found to be

L
D=oc%(1- 12 Clul*el b (63)
L = Al (of + o3y [o2) + 0% /0% )

To determine ¢, we calculate the total power,

M
> EXn)
m=1

M
> EAmPE[UR
m=1
M

L
= Y Sl <UEV +y |am,l|2> .(64)
=1

I

m=1
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Hence, if ¢ is such that (64) is at most P, the power
constraint is satisfied. Introducing this in (63) and simple
elementary manipulation yields the claimed bound. [
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