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A b s t r a c t  1 I n t r o d u c t i o n  a n d  s t a t e m e n t  o f  r e s u l t s  

We win consider an ar rangement  H of n hyper- 
planes in E d (where the dimension d is fixed). An 
e-cutting for H will be  a collection of (possibly un- 
bounded)  d-dimensional simplices with disjoint in- 
teriors, which cover all E d and such tha t  the in- 
terior of any simplex is intersected by at most  en 
hyperplanes of H.  We give a determinist ic algo- 
r i thm, finding a (1 / r ) -cu t t ing  with O(rd(logr) c) 
simplices in t ime O(n(log n)Ard-l(log r) B) ( A,B,C 
are constants dependent  on dimension). In  a simi- 
lar t ime bound  (with an addit ional  O(r°(1)) over- 
head) we can also find a (1 / r ) -ne t  for the range 
space ( X , H ( X ) ) ,  where X is a n-point set in E d 
and H ( X )  denotes the set of all subsets of  X which 
can be cut by a haffspace. This (1 / r ) -ne t  has size 
O( r  log r) ,  which matches the best known existence 
result; in fact, the me thod  gives a constructive ex- 
istence proof. In the plane, we can obtain a (1/ r ) -  
cutt ing of optimal  size O( r  2) in t ime O(nr) (which 
is optimal if we want to compute also the collection 
of lines intersecting each simplex of the cutting).  
This improves the result of Agarwal, and our algo- 
r i thm is conceptually simpler. 
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Algorithmic and proof  techniques based on ran- 
dom sampling gained a central position in com- 
puta t ional  geometry  during last few years. These 
techniques, pioneered by Clarkson (e.g.,[Cla]) and 
Haussler and Welzl [HW] yield near ly optimal ran- 
domized algorithms for an enormous range of geo- 
metr ic  problems. In a significant port ion of these 
results, the  following s ta tement  is used: 

Let H be a collection off n hyperplanes in E d, and 
let tt  be a random sample off r hypevplanes off H. 
When we triangulate the regions off the arrange- 
ment of R (yielding O(r  a) simplices), then with 
high probability each simplez in this triangulation 
is intersected only by O ( ( n / r ) log r) hyperplanes off 
H.  

This s ta tement  usually provides an efficient ge- 
ometric divide and  conquer strategy. For two- 
dimensional applications see e.g. [C&al], [E&al] 
and many  others. 

This motivates the  following definition: A cut- 
ling is a collection of (possibly unbounded  1) d- 
dimensional simpl/ces with disjoint interiors, which 
cover all E a. The size of a cut t ing will be the num- 
ber of its simplices ( the total  number  of faces of 
all dimensions is proport ional  to the size). An e- 
cutting for an a r rangement  H of n hyperplanes is a 
cut t ing such that  the interior of any its simplex is 
intersected by at most  en hyperplanes of H.  The 
number  e is called the cutting factor of an e-cutting 
(several previous papers use other  names for cut- 
ling, as e.g. partitioning [Aga] or simplicial packing 

tTo be rigorous, we should work in the projective space; 
having this on mind, we will ~eely use the Euclidean space 
with more intuitive notions. 
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[CF]). Note that  we did not require that a cutting 
were a slimpliciai complex (after including faces of 
all dimensions). 

Chazelle and Friedman [CF] proved that for ev- 
ery H there exists a (1/r)-cut t ing of asymptoti- 
cally opt;imal size, namely o(rd) .  They also gave 
a deterministic algorithm finding such a cutting, 
with time complexity o(nd(d+3)/2+lr). Their proof  
shows that  if we permit  randomization, we can find 
such a cutting in expected time O(nrd-1).  

For dimension 2, Matou~ek [Ma] indepen- 
dently gave an existence proof  for (1/r)-cut t ing 
of an a~,;ymptotically optimal size, and also an 
O(nr  2 log r) deterministic algorithm computing it. 
The time complexity has been improved by Agar- 
wal [Aga] to O(n~'lognlog°Jr) (w < 3.3 is a con- 
stant),  and the companion paper  [Agal] gives an 
extensiw~ survey of applications. 

The time bound O(nr  d- l )  is optimal in a certain 
sense: inanely, if we want not only the cutting, but  
(as it is the case in many applications) we also want 
to know the collection of hyperplanes intersecting 
each simplex of the cutting, then already the out- 
put  size :may be of order f l(nrd-x).  However, there 
are appEcations where this additional in.formation 
is not required (as e.g. the construction of a span- 
ning tree with a low crossing number),  and then 
the above argument for optimality cannot be used. 

In thi:~ paper we prove the following result: 

T h e o r e m  1.1 Given a collection H of n hyper- 
planes in 
E d and a number r _< n, we can deterministically 
compute a (1/r)-cut t ing of  size O(rd(logr) c)  for 
H,  in time O(n( logn)ara - l ( logr )  B) (A ,B ,C  are 
constants depending on dimension). 

The proof  of this theorem extends the techniques 
of [Mal]: [Ma], and adds some new ingredients. For 
the sake of readability, we will not t ry to achieve 
the best values of A,B ,C .  

When the technique is applied in dimension 2 
together with some other results of [Ma] and a few 
other tricks, we obtain the following: 

Theore : rn  1.2 Given a collection H of n lines in 
the plane and a number r _< n, we can determin- 
istically compute a (1/r)-eutt ing of  size O(r 2) for 
H,  in t ime O(nr) .  

This is similar to the result of [Aga], but  the al- 
gorithm is conceptually simpler and more efficient. 

Now let us recall the notions of a range space 
and an e-net, introduced in [HW]. A range space 
is a pair (X, R),  where X is a set (the points), 
and R is a set of subsets of X (the ranges). A 
subset N C X is called an e-net for (X, R) (e is 
a nolmegative real number),  if N intersects every 
range r E R with Irl > elX ] (this definit ionmakes 
sense for a finite X only). 

Range spaces defined by halfspaces in Euclidean 
space have a special significance for computational 
geometry. If X is a subset of E d, we denote by 
H ( X )  ~he set of all subsets of X,  which can be ob- 
tained as the intersection of X with a halfspace. 
The range space ( X , H ( X ) )  will be denoted by 
H a l f s p ( X ) .  In these special range spaces, we have 
the following constructive analogue of the general 
existence result of Haussler and Welzl [HW]: 

T h e o r e m  1.3 Given a set X of n points in E d 
and a number r, we can deterrninistieally find a 
(1/r)-net  of size O ( r l o g r )  for the range space 
H a t / s p ( X ) ,  in time O(n(log n)ar  d-1 (log r) B + r  c )  
(A ,B ,C  are constants dependent on dimension). 

(The constants  A , B , C  in the above theorem are 
not necessarily the same as in Theorem 1.1, and a 
similar remark will apply for other constants occur- 
ing in this paper, since we do not want to introduce 
myriads of them.) 

Let us remark that our bound on the size of 
e-net for a general dimension d matches the best 
known upper bound (gained by probabilistic meth- 
ods). At the same time it is known that  this upper 
bound cannot be improved for general range spaces 
(see [PW]), but  for range spaces H a l f s p ( X )  this 
is an open problem. 

The above result may seem to apply to very spe- 
cial range spaces only, but  a simple transformation 
allows to extend it to all range spaces usually en- 
countered in computat ional  geometry (this obser- 
vation is due to Yao and Yao [YY]). Let us say that 
a range space (X, R) is representable in a range 
space (Y, S), if there exists an injective mapping 

: X ~ Y, such that  for every r E R, ~(r)  can 
be  expressed as s fq ~ ( X )  for some s E S. Now 
the observation says t h a t  any range space which 
is representable in a space of the form (m, d are 



constants) 

(E d, Ed; >_ 0}; 

p a d-variate polynomial of degree < m}) 

(which is true for "usual" geometric range spaces) 
is also representable in a range space of the form 
Halfsp(Ed'), where d' depends on d and m only. 
To see this, if suffices to assign to every possible 
monomial in x l , . . . , z d  of degree < m one coor- 
dinate in the space E d'. This shows that we can 
use Theorem 1.3 e.g. for range spaces defined by 
circles, spheres, shnpliees etc. 

The above results allow to remove randomiza- 
tion from many algorithms without a significant 
loss of efficiency; nice examples of such algorithms 
are e.g. in [CF], [CEG], [HW]. 

In section 2 we give some definitions and auxil- 
iary results. Section 3 describes some operations 
computing new cuttings from old ones, the most 
important  one being an algorithm allowing to de- 
crease the size of a too large cutting, paying some 
price in its cutting factor. In this section we also 
deduce Theorem 1.3 from Theorem 1.1. Section 4 
then uses the primitives from the previous section 
in a recursive fashion, and builds the algorithm of 
Theorem 1.1 (first an algorithm efficient for small 
values of  r only, then the algorithm for a general 
case). In section 5 we sketch the proof  of Theorem 
1.2. 

2 P r e l i m i n a r i e s  o n  a r r a n g e m e n t s  a n d  
c u t t i n g s  

We will consider an arrangement H of n hyper- 
planes in E d. We will assume that  the hyperplanes 
are in a general position where convenient. For ter- 
minology about  arrangements as well as about  the 
general position assumption see [Ede]. 

By a distance of two points in an arrangement we 
mean the number of hyperplanes separating these 
points (this is a pseudometrics). 

The arrangement (as a cell complex)• can be 
triangulated in various ways; we will use the so- 
called canonical triangulation (see e.g. [Clal] or 
[CF] for definition; roughly speaking, each face is 
triangulated from its vertex with the smallest ~el- 
coordinate). This triangulation determines a sim- 
plicial complex with O(n d) shnplices; these are the 

only properties we will use. Given the hyperplanes, 
bo th  the arrangement and the triangulation can be 
constructed in time O(n d) [EOS]. 

Let Seg(H) denote the range space (H ,S) ,  
where S is the set of all subsets of H ,  which are de- 
fined as those hyperplanes of H intersecting some 
segment. A weak z-net for Seg(H) is a set R of 
hyperplanes (not necessarily belonging to H) ,  such 
that  any segment intersecting more than en hyper- 
planes of H also intersects a hyperplane of R. The 
following is a well-known observation and we omit 
the proof  here: 

L e m m a  2.1 Let R be a weak (1/r)-net for 
Seg(H). Then any triangulation of the arrange- 
ment of R is a (d/r)-cutting for H. [] 

We will call any cutting arising as a canonical 
triangulation of some arrangement a standard cut- 
ting. For some purposes, the manipulations with 
standard cuttings will be  slightly more efficient 
than for general ones. 

For the manipulations with a cutting E, we will 
need some information about  the position of  the 
hyperplanes of H relative to the vertices of the 
cutting. However, the size of E will often be much 
smaller than n, and we would like to have a de- 
scription whose size depends on the size of '~ only. 

We call two hyperplanes equivalent with respect 
to a point set P ,  if they separate the points of P in 
the same manner. A description of H relative to 
a cutting ~, will be  the collection of all nonempty 
equivalence classes of  the hyperplanes of H with 
respect to the set of vertices of ~,  each class rep- 
resented by one its member and by the number of 
members. 

If  E has k vertices, then there are no more than 
k d equivalence classes there. 

A specific application for which a description of 
H relative to ~ can be used is an approximate dis- 
tance calculation: given two points z,y, we can de- 
termine their distance with error no greater than 
2n/r in time depending only polynomially on k 
(the size of E) and independent on n (we deter- 
mine the simpllces s, resp. s' into which z, resp. 
y belong to, and we sum up the sizes of all equiv- 
alence classes of hyperplanes separating s and s'). 
Of course, we can do this distance measurement 
with various degree of sophistication and also we 
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actmdly need much less information than the de- 
scription of H relative to E, but  for our purposes 
the important  thing is solely the polynomial de- 
pendence on k. 

L e m m a  2.2 Given a collection H of n hyper- 
plan~s and a standard (1/r)-cutting E for H of size 
k, we can compute the description of H relative to 
E in time O(nk/r)  (for a general cutting of size k, 
the description is easily computed in O(nk) time). 

P r o o f i  The equivalence class of a hyperplane 
is uniquely determined by the set of edges of FE it 
intersects, so it suffices to determine this set for 
every hyperplane of H .  

First suppose that  we already know one sim- 
plex iaxtersected by a hyperplane h. The remaining 
simp]Jces (and thus edges) can be  determined by 
"wallfing along" the hyperplane, which m o u n t s  
to a searching in a graph of bounded degree (since 
we a~sume that  EE is standard,  thus it determines 
a sirnplicial complex). The time needed for this 
is proportional to the number  of intersected edges. 
This is be the only point where we need the "stan- 
dardness" requirement, and obviously we might re- 
lax it in various ways. 

A J~tarting simplex intersected by a hyperplane 
can be determined as follows: choose a path of 
edges of E going from the wertex with minimum 
• 1 coordinate to the vertex with maximum zl co- 
ordinate. Then if a given hyperplane separates the 
end-vertices of this path,  some edge of intersection 
can be  determined by a binary search along the 
path,  otherwise the hyperplane must intersect one 
of a constant number of rays of the cutting ema- 
nating from the end-vertices of the path. 

Having the set of intersected edges for every hy- 
perplane (as a list of integers not exceeding k), it 
suffices to determine the classes of equal lists. To 
this end, we may sort each list (in linear time) and 
then sort the lists lexicographically, which can also 
be done in time proportional to the total  size of the 
lists [AHU]. Since EE is a (1/r)-cutt ing,  the total  
number of edge/hyperplane incidences is O(nk/r).  
[] 

3 O p e r a t i o n s  w i t h  c u t t i n g s  

3 .1  R e f i n i n g  a c u t t i n g  

This section contains a simple observation. Sup- 
pose that  we are given a (1/ r l ) -cut t ing E for H of 
size hi. Let H ,  be the collection of hyperplanes in- 
tersecting a simplex s of EE, and let ~ ,  be a (1/r2)- 
cutting for H ,  of size at most k2. Then we can 
obtain a (1/rlr2)-cutting of size O(klk2) for H 
as follows: for every s implex s of EE consider all 
nonempty cells of the form s N s', where s' is a 
simplex of  EEo (obviously there are at most klk2 
such cells). Each cell is defined as the intersection 
of two simplices, and thus it can be  triangulated 
using a constant number of simplices. Taking the 
simplices of such triangulations of all cells, we ob- 
tain the desired (1/r lr2)-cutt ing.  

3 .2  S i m p l i f y i n g  a c u t t i n g  

T h e o r e m  3.1 Let EE be a (1/r)-eutting of size k 
for H,  and suppose that we are able to determine 
the distance of any given two points with error at 
most 2n/r in time polynomial in k. Then the fol- 
lowing holds (K, K '  denote certain constants de- 
pendent on dimension): 

(i) One can find a weak ( g / r ) - n a  of size 
O(rlogk) for the range space Seg(H), in time 
polynomial in k (and independent of n). 

(i O I f  E is standard, then with additional 
O(nk/r) time one can find a (K/r)-net of size 
O(r log k) for the range space Seg(H). 

(iii) One can find a standard (K'/r)-cutting of 
size O((r log  k) d) for H,  in time polynomial in k. 

The most interesting part  for our application is 
(iii), which gives a means to simplify a cutting 
to almost optimal size (while the cutting factor is 
blown up by a constant factor K ' ) .  Let us note 
that  (iii) easily fonows from (i): We use (i) to get 
a weak (1/r)-net ,  we triangulate the arrangement 
of its hyperplanes and we get the desired standard 
cutting by Lemma 2.1. 

Any s-net in the range space Seg(H) obvi- 
ously determines an s-net in the range space 
Halfsp(D(H))  (where D(H) denotes the set of 
points dual to the set H of hyperplanes). Apply- 
ing Theorem 3.1(ii), we get that  Theorem 1.1 im- 
plies Theorem 1.3: First we find a (1/r)-cutt ing 



(by Theorem 1.1) of size k = O(rd(logr)C), and 
then we use Theorem 3.1(ii) to get a (K/r)-net. 

Let us begin the proof  of Theorem 3.1(i) and (ii). 
First we reformulate the problem as the search for 
a covering subsystem in a set system, or (perhaps 
more intuitively) a covering set of vertices in a bi- 
partite graph. 

The following lemma is a trivial generalization of 
Lemma 5.2(i) of [Ma] and we omit the easy proof: 

L e m m a  3.2 Let ~ be a (1/r)-cutting for .H and 
let R be a set of hyperplanes such that every pair 
of simpliees s, s w E ~ separated by more than cn/r 
hyperplanes of H is also separated by a hyperplane 
of R. Then R is a weak ((c+ 2)/r)-net for Seg(.H). 
[] 

For a collection H of hyperplanes and a cutting 
~, we define a biparti te graph G as follows: One set 
of vertices of G will be  H (the set of hyperplanes), 
and the other one will be  the set P of all pairs of 
simplices s,s ~ of the cutting E, such that s and s ~ 
are separated by  at least n/r  hyperplanes of H .  A 
vertex h E H is joined to a pair (s , s  t) E P iff h 
separates s from s t. Now we want to cover all ver- 
tices of P by (the neighborhood of) a small subset 
of vertices of H.  We use the greedy algorithm of 
Lov~sz, in a similar spirit as it is used in [CF]: 

We put  H1 = H ,  P1 = P-  In i-th step, we select 
a vertex hi E Hi,  which has the maximum number 
of neighbors in Pi, and we set Hi+z = Hi\{hl},  
Pi+l = Pi\Nbh(hl), where Nbh(h) denotes the set 
of all neighbors of h in G. We continue in this 
manner until Pi+l becomes empty. 

We recall the argument bounding the size of a so- 
lution gained by the greedy algorithm ([CF]): We 
know that every vertex of P has degree greater 
than n/r, thus the total  number of edges joining Pi 
to Hi is at least nlPil/r , and since I.H~[ -~ n, there 
exists a vertex v E Hi  with at least [Pil/r neigh- 
bors in Pi. We get that  ]Pi+ll < ]PiI.(1 - l /r ) ,  
hence the number of steps of the greedy algorithm 
we have to execute is O(rlog]P]) = O(r logk) .  

Since by the assumption of Theorem 3.1 we can 
only measure distances with error 2n/r, we can- 
not exactly tell which pairs of simplices should be- 
long to P .  However, if we take e.g. all pairs for 
which the approximate measurement gave distance 
> (bn/r), then on one hand they are really sep- 
arated by > n/r  hyperplanes (thus the argttment 

bounding the solution size works), and on the other 
hand any pair separated by > (7n/r) hyperplanes 
has been taken into account, so any covering set of 
vertices in our biparti te graph is surely a (9/r)-net.  

We have almost achieved our goal (finding a 
small (K/r)-net for Seg(.H)), but  the running time 
still depends of n. First we note that  it suffices to 
work with the description of H relative to ~ which 
by Lemma 2.2 can be obtained in time O(nk/r), 
and the complexity of the greedy algorithm then 
only depends polynomially on k, thus Theorem 
3.1(ii) is proved. 

To achieve running time independent of n (which 
will be crucial for our application), we cannot af- 
ford to consider every hyperplane in .H separately. 
What  we can do, however, is to compute a set H t 
containing one hyperplane of every possible equiv- 
alence class with respect to the vertices of the cut- 
ting ~. Using duality, this amounts to the con- 
struction of an arrangement of k hyperplanes (dual 
to the vertices) and choosing a point in some of its 
cells (corresponding to the separation of appropri- 
ate sets of vertices), which can be done in time 
polynomial in k. 

Now we run the greedy algorithm on the bipar- 
tite graph G t, where .H is replaced by H t. Since 
for every h E .H there exists a h t E H t with the 
same set of neighbors in P ,  the greedy algorithm 
in i-th step always selects a vertex of H~ of degree 
at least [Pi[/r and so in this case O( r logk )  steps 

s mce (however, we obtain a weak (K/r)-net  
only). This proves Theorem 3.1(i). [] 

Let us close this section by a remark on the exis- 
tence of e-nets. In the discussion of the algorithm 
finding e-nets for range spaces Seg(H), we will 
once make use of the general existence result for 
e-nets, namely in Section 3.3. However, Theorem 
3.1 can be easily used to deduce the existence of 
(1/r)-nets  of size O(r log r) in range spaces Seg(n)  
and thus also in other "geometric" range spaces 
(but ~e will not do this here), so our presentation 
might be quite self-contained in this. 

3.3 M e r g i n g  c u t t i n g s  

Theorem 3.3 Let H i , . . .  ,.Hm be disjoint collec- 
tion~ of hyperplanes and let ~i be a (1/r)-cutting 
of size at most k for Hi. We can compute a 
standard (K/r)-cutting ~, (K a certain constant 



dependent on dimension) of size O((r  log r) d) for 
H = H1 U . . .  U Hm, in time O(nk + m°O)k°(1)), 
when: n = IHI. 

Proo f :  We consider the cell complex arising 
by superimposing all the cuttings F~i,...,E,~ (the 
regio:as are the maximal subsets of E d intersected 
by no facet of simplices of the El's), and we tri- 
anguS[ate the full-dlmensional regions of this com- 
plex. This cutting 19 has a polynomial number (in 
k and rn) of simplices and it is easy to see that  it 
is a (1/r)-cut t ing for H. Now it remains to apply 
the simplification algorithm from Theorem 3.1 in 
a suitable way to achieve the desired smaller size. 

As for the distance measurement with respect to 
H,  required by Theorem 3.1, it suffices to compute 
the desci"iption of each Hi relative to F~i (which 
takes t ime at most O(IHi]k ) for each i, thus O(nk) 
in total). Then  the distance of two points in H 
is computed as the sum of the distances of these 
points in every Hi, and the total  error is at most 
2n/r. 

TILe first application of the simplification algo- 
r i thm gives a cutt ing of size O((r  log(mlk))d), which 
is five if mk is polynomial in r. If  it is not the 
case, we may  use a trick appearing in [CF]: we 
repeat the simplification step once more, obtain- 
ing size O( ( r ( logr  + loglog(rnk)))d), etc. If we do 
not obtain a cutting of the appropriate size after 
a few more repetitions of the simplification step, 
it means that  the quantity mk is enormous com- 
pared to r (more than doubly exponential), and 
also compared to the size of the bipartite graph we 
have obtained by the reductions in Theorem 3.1. 
Their instead of applying the greedy algorithm, we 
can simply find the optimal solution for the cov- 
ering problem in this bipartite graph by an (expo- 
nentially long) exhaustive search. The theory of 
e-nets guarantees that  a solution of the right size 
( O ( r l o g r )  for the covering set) exists (see [Ma], 
Sect. 5 for details on this). 

Tim whole procedure takes time O(nk) (pre- 
processing for distance measurements) plus a time 
polynomial in rnk as claimed, and since we use a 
const;ant number of simplification steps only, the 
cutting factor increases by a constant. [] 

4 T h e  a l g o r i t h m  

4.1  R e c u r s i o n  in  n 

In this section we give our first algorithm finding 
a (1/r)-cutting. 

L e m m a  4.1 There ezists a deterministic algo- 
rithm .finding a (standard) (1/,.)-euUing of size 
o((r log r) d) for  /in time O(n(log n)Ar D) (where 
A,D are constants dependent on dimension). 

P r o o f i  We use the following recursive algo- 
ri thm, whose parameters are H (a collection of n 
hyperplanes) and a number r < n: 

Algorithm CUT1 

1. (Base case) I f  n d _< nr D (thus r >_ n( d-1)/v, so 
in particular logn = O(logr)) ,  we compute a 
(1/n)-cutt ing directly by triangulating the ar- 
rangement of H and then we apply the simpli- 
fication step from Theorem 3.1(iii) to achieve 
the appropriate size of the cutting. This step 
has complexity O(r°(1)). If  the above condi- 
tion does not hold, we continue by the next 
step. 

2. We choose a number m (which will be specified 
later) and divide the hyperplanes of H into 
m groups H1, . . . ,  Hm of approximately equal 
sizes. For every Hi we compute a (1/Kr)-  
cutting ~i by a recursive application of algo- 
r i thm Ctrrl (K  is the constant from Theorem 
3.3). 

3. We use the algorithm of Theorem 3.3 to com- 
pute a (1/r)-cut t ing for H,  merging the cut- 

w-qg tings ~ ". 

If  we denote by Tl(n, r) the worst-case complex- 
ity of algorithm Ctrrl applied for n hyperplanes and 
a parameter  r,  we get the recurrence 

Tl(n ,r)  = O(r  °(1)) for r > n v/(d-1), 

Tl(n,r) < O(nr °' + mc2r °') + m.T (n/m, gr) 

(K,c:,c2,e3 constants). Choosing m = n 1/~2, it is 
not difficult to verify that  this recurrence is satis- 
fied by a furtction Tl(n, r) of order O(n(log n)Ar D) 
for suitable constants A,D (we may take D = 
max(cl ,e3) and any A with (1 - 1/c2) A > KD). 
[] 



4 . 2  R e c u r s i o n  i n  r 

In this section we will improve the complexity of 
the algorithm from the previous section, namely 
its dependence on r. The tool for this will be the 
refinement of a cutting, introduced in Section 3.1. 
The starting observation is that  if r is bounded by 
a constant, then algorithm CUT1 is already good 
enough. We will arrange the recursion in such a 
way that  cirr i  will always work in this favorable 
situation. 

First let us assume that  r is not too big; pre- 
cisely that  r < n '~, where a is a suitable positive 
constant. Then we use the following algorithm, 
whose input are H and r and whose output  is a 
standard (1/r)-cut t ing of  size at most g ( r  log r) d 
for H ( K  a certain constant). 

Algorithm CUT2 

. If r < r0 (where r0 is a suitable constant), 
we use algorithm CUT1 directly; the time com- 
plexity of this step is O(n(1ogn)a), which is 
what we need. If r > r0, we continue by the 
next step. 

. 

. 

We choose parameters rl  = r]2 and r~ = 2K',  
where K ~ is the constant emerging in the 
"simplification step" (Theorem 3.1(iii)), thus 
rlr2 = K%. We use algorithm clrr2 recur- 
sively to compute a (1/r~)-cutting E1 of size 
kl < K ( r l  log el) d = O((r  log r) d) for H .  

For every simplex s of EEl we compute 
the collection H, of hyperplanes intersect- 

ing its interior (in total time O(nkz/rl) = 
O(nrd-l(logr)d)).  

not increase in the recursion. This step re- 
quires time O(nrd-1(logr)d+ rO(1)), and the 
second addend can be neglected compared to 
th~ first one (this is where our assumption that 

r was not too big comes into play). 

Let us denote the worst-case running time of al- 

gorithm ctrr2 by T2(n,r). We get the following 
recurrence relations: 

T2(n,r)  = O(n( logn)  A) for r < to, 

T2(n,r)  < O(nlogAnrd- l logdr )+T2(n , r /2 ) .  

The solution is 
Y2(n, r) ~ O(n(log n)Ard-l(log r)d). 

Now it remains to remove the restriction r < n a, 
introduced in the above algorithm. Let us consider 
a general value of r, and choose a value ~, which is 
a permissible value o f t  for algorithm ctrr2 (i.e. ~ < 
n a) and such that r = F p for a suitable constant p. 
We proceed in p steps: 

In the first step, we compute a (1/~)-cutting for 
H by algorithm ctrr2. 

In the i-th step, we already have a 1/F/-1)- 

cutting for H. For every simplex s of this cut- 
ting, we compute the collection of hyperplanes in- 
tersectig the interior of s, we us e algorithm CUT2 
to compute a (1/~)-cutting for this set of hyper- 
planes, and we use these cuttings as in section 3.1 
to yielfl a (1 /~) -cu t t ing  for H .  

An easy calculation shows that in this way we 
get a (1/r)-cut t ing of size O(rd(log r) pd) for H ,  and 
also that the running time of this algorithm does 
not exceed O(n(log n)Ard-l(log r)Pd); we omit the 
details. This proves Theorem 1.1. [] 

. 

. 

. 

For every s, we use algorithm CUT1 to com- 
pute  a (1/rz)-cutt ing E, of size at most kz = 
O(1) for H, .  The total  time needed for this 
is at most kl.O((n/rl)(logn)ar2D), which is 
bounded by O(n(log n )a rd - l ( log  r)d). 

We use the method of section 3.1 to compute 
a (1 /K ' r ) -cu t t ing  of size O(klk2) for H .  

We use the algorithm of Theorem 3.1(iii) to 
simplify the cutting obtained in the previous 
step, yielding a (1/r)-cutt ing of size at most 
K ( r l o g r )  d. In our setting, the size has de- 
creased by a constant factor only, but  the pro- 
portionality constant is now absolute and does 

5 C u t t i n g  i n  t h e  p l a n e  

In this section we sketch the proof  of Theorem 
1.2. Our algorithm will be analogous to Algorithm 
ctrr2, but  may use a more efficient algorithm for 
cutting with a constant value of r (replacing the 
call to Algorithm CUT1), and a more efficient sim- 
plification procedure. These subroutines are de- 
scribed in the following two theorems: 

T h e o r e m  5.1 [Ma] Given a collection H of n 
lines, we can compute a (1/r)-cutting of size O(r 2) 
for H in time O(nr 2 log r).  [] 



L e m m a  5.2 Let E0 be a (1/r)-cutting of size k for 
a collection H o f n  lines in the plane. Then we can 
compute a (K/O-cutting Z of sire O(r /or H, in 
tim,: O(nk/r + (rk) o) (g ,c  co tanU). 

In our application, the value of k in this simpli- 
fication lemma will be of order O(r  2) (only with 
a larger constant than for the simplified cutting). 
Now if r is small enough (at most nl/3¢), the te rm 
O(n~/r) = O(nr) will dominate the time bound 
in Lemma 5.2, and we obtain the total  running 
time of the cutting algorithm of order O(nr)  by a 
straightforward analysis. For ]arger values of r,  we 
may use the same trick as we did with Algorithm 
CUT:! in the end of Section 4.2. 

Let us sketch the proof of Lemma 5.2 First we 
observe that  a general cutting in the plane can be 
in linear time converted into a cutting which is a 
triangulation, with size increased only by a con- 
stanL factor. Hence we may assllme that  go is a 
triangulation and so in particular we may compute 
a description of H relative to go in time O(nk/r) .  

T]ae basic strategy for the simplification is the 
following: (we assume that  the reader is familiar 
with [Aga] or [Ma] at this point): Using the original 
(1/r)-cut t ing g0, we compute a (n/r)-approYimate 
leveling for H (this procedure is described in [Aga], 
and it takes time O(nk/r)) .  In time O(k), we 
then compute a (3n/r)-approximate leveling with 
O(r : )  edges in total, as described in [Ma]. Now we 
want to use this leveling to obtain a new (K/r)-  
cutt!~g of complexity O (r  2). Applying the method 
of [Ma] straightforwardly, we could do it in t ime 
O(n,r log r).  The factor log r appears when we need 
to subdivide potentially "long" quadrilaterals into 
smaJler ones, which may require an approYimate 
sorting of intersections of lines with the sides of 
such quadrilaterals. 

In  order to do better ,  we use the original cutting 
g0 again. Namely, we first compute a description 
of .~r relative to g0 and also all intersections of 
the ~fimplified approximate leveling with all edges 
of ~,~. Now it is easy to see that  one suffices with 
these intersections as the subdividing points on the 
approximate levels, and using an approximate dis- 
tance measurement  in H,  the new cutting E can be 
computed from the simplified approximate leveling 
in time depending polynomially on r and k (and 
not on n). [] 

6 C o n c l u s i o n  

In this paper we gave deterministic algorithms 
finding nearly optimal cuttings and e-nets (of the 
best size guaranteed by known existence proofs) for 
"geometric" range spaces, all this in (theoretically) 
reasonable time. There is, of course, much room 
for improvement of the powers of logarithms in our 
boundi ,  which can be achieved e.g. by a more care- 
ful implementaion of the operations with cuttings. 
The most challenging problem in this area now is 
perhaps to compute cuttings of asymptotically op- 
timal size in reasonable time, maybe adapting the 
method of [CF]. 
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