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A b s t r a c t  

We present an algorithm to compute a Euclidean min- 
imum spanning tree of a given set S of n points in E a 
in time O ( ~ ( A  r, ~r)log d N), where 7~(n, m) is ~he time 
required to compute a bichromatic closest pair among n 
red and rn blue points in E a. I f  Ta(N, N)  = 12(Nl+'), 
for some fized ¢ > O, then the running time improves to 
O(7~( N, N)  ). Furthermore, we describe a randomized 
algorithm to compute a bichromatic closest pair in ez- 
pected time O((nrn log n log rn) ' /3 + m log s n + n log s m) 

in E 3, which yields an O(N4/31og 4/3 N)  ezpected time 
algorithm for computing a Euclidean minimum span- 
ning tree of N points in E 3. 

1 I n t r o d u c t i o n  

Given a set S of N points in Euclidean d-dimensional 
space E a, a Euclidean minimum spanning tree (EMST) 
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is a spanning tree of S whose edges have a minimum 
total length among all spanning trees of S, where the 
length of an edge is the Euclidean distance between 
its vertices. For d = 2, an O ( N l o g N )  algorithm 
for the computation of a EMST has been given by 
Shamos and Hoey [SH]. For d > 3, Yao [Ya] obtained 
o(N s) algorithms. In three dimensions, his algorithm 
runs in time O((NlogN) l " s ) ,  which can be reduced 
to O((N log N) z'5) using results on the computation of 
Voronoi diagrams, see Section 5.1. Algorithms for com- 
puting approximate minimum spanning trees have been 
developed by Clarkson [C1] and Vaidya [Va]. 

Our aim is to shed light on the relation between the 
EMST problem and the computation of biehromatic 
closest pairs (BCP). The latter problem can be formu- 
lated as follows: Given a set of n red and rn blue points 
in E d, find a red point p and a blue point q such that 
the distance between p and q is minimum among all 
red-blue pairs. 

It is not difficult to verify that a EMST of the union of 
the red and blue points contains at least one closest red- 
blue pair. It is thus possible to solve the BCP problem 
by computing a EMST. The first result of this paper 
is to show that the converse is also true. We present 
an algorithm that computes a EMST by solving several 
BCP problems. If we can find a BCP for n red and m 
blue points in E a in time Td(n, m), then we can compute 
a EMST in lt~ d in time O(7~(N, N) log  d g ) .  Moreover, 
if T d ( N , N )  = fl(N z+') for some ~ > 0, the time to 
compute a EMST is only O(Ta(N, N)) .  

Most current EMST algorithms start by computing 
a set of edges which can be shown to be a superset of 
the edge set of a EMST. In the two-dimensional case 
the set of edges of the Delaunay triangulation is a good 
choice for this superset. Unfortunately, already in three 
dimensions the edge set of the Delaunay triangulation 
can be the complete graph. Another possible choice for 
a suitable superset is due to Yao. He divides the set 
of all possible edges into a constant number of groups, 
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according to the slope of the edges, and selects a lin- 
ear number of edges from each group. Our algorithm is 
based on a similar idea. We classify all possible edges 
into O(N log a - i  N)  groups, each group forming a com- 
plete biparti te subgraph on two subsets, P and Q, of 
S. We are then able to show that  for each group only a 
closest pair between P and Q can form an edge of any 
EMST. 

We then turn our attention to the BCP problem. In 
three dimensions, we give a randomized algorithm that  
computes a bichromatic closest pair of n red and rn 
blue points in expected time O((nm log n log rn) 2/3 + 
mlog  a n + n log  2 m).  This implies an O(N 4/3 log 4/3 N)  
randomized expected time algorithm for the EMST 
problem in lE3. 

2 C o n v e n t i o n s  

We do not distinguish between points and vectors in lea; 
hence, we can add and subtract  points. The scalar prod- 
uct of = = ( z l , . . . ,  ma) and y = ( y l , . . . ,  ya) is mTy = 
E~=J. z,y,, the norm ofm is ]1=11 = q T = ,  and the angle 

tory  Further- between m and y is L(m, y) = cos -1 Ilmll.llYll" 
more, the angle L ( z y z )  defined by the three points m, 
y, and z is defined as L(myz) = £(z - y, m - y).  

For A , B  C_ lea define A+B = { = + y  [ m E A , y  E B}, 
and let m -4- B = {m} + B. The Euclidean distance 
between z and y is d(m,y) = [ [ y -  rail. For a fi- 
nite point set A, define d(m, A) = minyea  d(m, y), and 
for two finite point sets A and B, define d(A,B)  = 
minmEA d(=, B). For two points = and y we let my be 
the line segment connecting them; the length of my is 
d(=,u). 

A closest (A,B)-pair is a pair (= ,y )  with m e A, 
y E B and d ( = , y )  = d(A,B).  We define diam(A) = 
maxm,yEA d(=, ~;). 

3 G e o m e t r i c  r e s u l t s  

As mentioned above, we intend to classify the set of 
pairs of points in S into several groups. From each 
group we will select only one pair as a possible edge for 
a EMST. In this section, we define the groups and show 
the geometric result. 

First, we introduce some notation. Let d E IE a be a 
vector of unit  length, [[d[[ = 1, indicating a direction in 
d-dimensional space, and let a < 90 ° be an angle. We 
define the cone Cone(d,a) = {m E lEd [ Z(m, d) < a}.  

Let a0 be the largest angle so that  for any 0 < a < a0 
we have 

tan 2a  < cos 2a  

=.-~/~-1~/2 which is about  19.08°). In the (no (arcsin 

following we will assume that  a is fixed with 0 < a < 

a 0 .  

Let S be a finite set of points in led for which we want 
to compute a EMST. For two disjoint subsets P and Q 
of S we call (P, Q) a strongly separated pair if 

max{ diam( P), diam( Q) } < d( P, Q). 

Furthermore, we call (P, Q) a-separated if there exists 
a point z and a direction vector d such that  P C z + 
Cone(-d ,a)  and Q _c z + Cone(d,a). When d, the 
orientation of the cones, is important  we will call (P, Q) 
a-separated in direction d. 

The strongly separated pairs are our first means to 
reduce the number of candidate edges for a EMST. 

L e m m a  1 If  (P, Q), P, Q c_ S, is a strongly separated 
pair, then any EMST of S contains at most one edge 
between P and Q. 

P r o o f .  Indeed if lemma were not true, then there is 
exists a EMST in which we can find two edges {p, q} 
and {p', q'}, for p , p '  E P and q, q' E Q, between P and 
Q, such that  the points q, q' lie on the path  from p to 
p '  in the EMST, or vice versa. But, in that  case we can 
obtain a shorter spanning tree of S by adding the edge 
{p, p '}  and removing the edge {p, q}, a contradiction. 
Hence the lemma is true. []  

We obtain strongly separated pairs from a-separated 
pairs. Let (P, Q), P, Q c S, be a-separated in direction 
d. We call p E P eztremal if p +  Cone(d, ~ - a )  contains 
no element of P.  Analogously, we call q E Q eztremal 
if q + Cone(-d, ~ - a) contains no element of Q. We 
denote the subsets of extremal elements by P '  and Q'.  

L e m m a  2 Iet (P,Q), P,Q C S, be art a.separated 
pair, and let P', Q' be the subsets of eztremal elements. 
If  {p, q}, p E P, q E Q, is an edge o] some EMST orS, 
then p E P', q E Q' and {p, q} is a biehromatic closest 
pair. 

P "6t 
• . 

# 

Figure 1: Illustration of Lemma 2 

P r o o £  Here we use a result of Yao [Ya] who proves 
that  if {p, q} is an edge of a EMST of S and q E p + 
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Cone(d, fl), for fl < ~, then q is a nearest neighbor of 
p i n  the c o n e p + C o n e ( d , 1 3 ) .  Since a < ~, q is the 
nearest neighbor of p in Q. Thus it suffices to show 
that  q 6 Q'.  Indeed if q were not extremal, then there 
exists a point r E q + Cone(-d,  ~ - a). Consider the 
triangle Z~prq. We have £ (p rq )  = ~r - Z(r - p ,  q - r ) ,  
L(d ,  r - p )  _< c~ a n d  ~ (d ,  q - ~)  <_ } - a .  Since 

7r 

£(v -- p, q -- r)  < L ( d , r - p ) + L ( d , q - v )  < 7 '  

L(prq) > {. Hence, pq is the longest side o fprq  which 
implies d(p, q) > d(p, r) ,  a contradiction. 

We conclude that q must be extremal in Q. By sym- 
metry, we have p E P '  and p is the closest neighbor of 
q i n  P.  [ ]  

So we can content ourselves with the pair (pr, Qt), and 
fortunately we have the following result. 

L e m m a  3 I f  (P' ,Q')  be an a-separated pair of ez- 
tremal elements, then ( P', Q') is strongly separated. 

P r o o f .  Let z E [Eg be such that Q' c z + Cone(d, a). 
Let q , r  6 Q' and consider the triangle zqr.  Define 
¢ = L(qzr)  and ¢ = L(rqz) ,  w = Z(qrz)  and let a, 
b, and c be the lengths of zq, zr ,  and qm Next we 
derive bounds on the sine functions of the angles. It is 
easily seen that ¢ < 2a and ~ - 2a < ¢ ,w < ~ + 2a, 
and therefore sin ¢ < sin 2a, sin ¢ > cos 2a and sin w > 
cos 2a. 

. . . . . . . . . . . .  . ' .  . . . . . . . . . . . . .  . . . . . . .  : . a  

• 

Figure 2: Illustration of Lemma 3 

The equality 

a b e 

sin ¢o ' =  sin ¢ = Sine 

for the triangle zqr  implies 

b s ine  _ b sin ~-~- = b t a n 2 a  (1) 
c = sin~b < cos2a  

sin ¢ 1 1 
b = a .  < ~ < a ~ .  (2) 

stow asinw - cos2a 

Let qo 6 Q' be a nearest neighbor of z, that  i s ,  
d(z, qo) = d(z, Q'). By (2) for every q E Q', we have 

1 1 
d(z ,q)  < d(z, qO)cos2a = d(z,Q')  cos2a. (3) 

Now let q', q" be any pair of points in Q'. I t  follows 
from (1) and (3) that  

, tan 2or 
d(q',q") < d ( z ,q ' ) tan2a  _< d(z ,Q ) c o T s  < d(z,Q')  

as a < or0. By symmetry,  we have d(p' ,p") < 
d(z, P ' )  for any two points p ' , p "  6 P ' .  We thus have 
max { diam( P'), diam( Q') } < max{d(z,  P'), d( z, Q')}. 

Consider now p 6 P,  q E Q. The angle L(pzq) _> 
7r - 2a > ~r/2, so pq is the longest side of the triangle 
pzq.  This implies d(p, q) > max{ diam( P'), diarn( Q') }, 
which is equivalent to saying that  P and Q are strongly 
separated. []  

Now we can give our central result which reduces the 
EMST problem to the BCP problem. 

L e m m a  4 Let S be a set of points in lea and let 13 be 
a set of a-separated pairs, for some 0 < a < oto, with 
the property that for any pair of points p, q 6 S there 
exists a pair ( P,Q ) E 13 such that p E P and q E Q. 
I f  a set M C P x Q contains a closest (P, Q )-pair for 
every (P, Q) E B, then M contains a EMST of S. 

P r o o f .  Consider the set B' = { (P ' ,Q ' )  [ (P ,Q)  6 13 
and P ' ,  Q' are the sets of extremal elements in P and 
Q}. Let E be the set of edges E = {{p ' ,q '}  [ p '  6 
P', q' 6 Q', (P', Q') 6 13'}. By Lemma 2, E contains 
every EMST of S. Since .P', Q' are strongly separated 
(cf. Lemma 3), there is at most one edge between P '  and 
Q'  in any EMST of S, namely the one connecting the 
closest pair of points (cf. Lemma 1 and 2). Furthermore, 
using the same argument as in Lemma 2, one can show 
that  a closest pair of (P, Q) is also a closest pair of 
(P ' ,  Q'). Hence, M contains a EMST of S. []  

4 A n  a l g o r i t h m  to  r e d u c e  E M S T  t o  
B C P  

We now describe an algorithm that  solves the EMST 
problem in d dimensions by solving several instances of 
the BCP problem, assuming we are given an algorithm 
for the BCP problem. Let this algorithm take Ta(n, rn) 
time for a set of n red and m blue points. As usual we 
let S be a set of N points and we wish to compute a 
EMST of S. 

We borrow some notation from Yao [Ya]. Let B = 
{ b l , . . . ,  ba} be a basis of IE a. The convez cone of B is 
Cony(B) = {~,=1 Aibl [ Ai > 0 Vi}. We call Cony(B) 
narrow if there exists a vector d 6 [E a, Ildll = 1, such 
that  Cony(B) C Cone(d,a) with a < o~o. Let ~ be a 
finite family of bases of IE d. We call .T" a frame of led 
if U , ~ ( C ° n v ( B )  U -Cony(B))  = led. h frame ~ is 
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called narrow if every B E .T is narrow. By Lemma 4.2 
of Yao [Ya], for every dimension d one can construct a 
narrow frame in a finite number of steps. 

We compute such a narrow frame ~" and successively 
consider the bases B E -~. For each B E F ,  we com- 
pute a set BB of a-separated pairs using an algorithm 
inspired by the range tree structure for d-dimensional 
point sets (see e.g. [PS]). 

Let B = {bx , . . . , ba}  be the basis for which we 
compute a-separated pairs, and let (xz . . . . .  zd) be the 
coordinates of a point = in this basis, that  is, m = 
xxbl + . . .  + zdbd. We assume that  B is such that  no 
two points of S share a coordinate. The algorithm that  
computes the a-separated pairs is recursive, and each 
recursive call either reduces the number of points con- 
sidered or the dimensionality of the problem. The a -  
separated pairs are output  when the dimensionality k 
is 0. The input parameters  of the algorithm are k, the 
dimensionality, P,  a set of red points, and Q, a set of 
blue points in E a. Initially, k = d and P = Q = S. 

1 If k = 0 then output  (P, Q) as an a-separated pair. 

2 Otherwise (if k >_ 1) execute the following steps. 

2.1 Compute xk, the median of the kth coordinate 
of points in P U Q. 

2.2 Set Pt = {p E P [ pk _< xk}, P. = {p  E 
P [Pk > z~}, Ql = {q E Q [ qk ~ xk}, and 
Q~ = {q E Q lqk > xk}. 

2.3 If P l ¢  0 and Qr ¢ 0 then recurse with pa- 
rameters k -- 1, Pl, and Qr. 

2.4 If  Pl ¢ 0 and Ql ¢ 0 then recurse with h, Pt, 
and Ql. 

2.5 IfP~ ¢ 0 and Q~ ¢ 0 then recurse with k, P~, 
and Q~. 

Since B is narrow, every pair (P, Q) returned by the 
algorithm is a-separated.  We need to show that  if q E 
p 4- Cony(B) then the algorithm outputs a pair (P, Q) 
with p E P and q E Q. Assume inductively that  this is 
true for dimension d -  1. To prove it for dimension d 
note that  q E p 4- Cony(B) is equivalent to Pi < qi for 
I < i < d. In particular, it implies pa < qd. Thus, there 
will be a call of the algorithm so that  k --- d, p E Pl, 
and q E Qr. Step 2 calls the algorithm for k = d -  1, 
P = Pc, and Q = Q~, and by inductive assumption this 
call produces the desired a-separated pair. Let Bu be 
the set of a-separated pairs produced by the algorithm. 
From what we just said it follows that  B = U~E.r B~ 
fulfills the requirements of Lemma 4. 

It  therefore suffices to compute for every pair (P, Q) E 
B a closest (P, Q)-pair to obtain a suitable set M.  We 
claim that  the size of M is ~ ( N l o g  d-~ N) and verify 

this by counting the number of a-separated pairs gen- 
erated by the algorithm when it is called for k = d, 
P = Q = S, and basis B. Let this number be 
tk(lPI + IQ[); so we are interested in td(2N). Clearly, 
to(n + m) = 1. For higher indices k we have 

t (n + m) < + t -l(n + m) 

which solves to t (n + m) = O((n + m)log -l(n + m)). 
It  follows that  ta(2N) = O ( N l o g  d - i N )  as claimed. 
From M we can compute a EMST of S in time 
O(h  r log d-x N).  

It  remains to analyze the computation of closest 
pa~rs. In order to get closest pairs as output we just 
replace step 1 with 

1' If  k = 0 then find a closest (P, Q)-pair {p, q} and 
output  it. 

R.ecall that  Td(n, m) is an upper bound on the time it 
takes to compute {p,q} if n = [P[ and m = [Q]. Let 
T~ (n + m) be the running time of the above algorithm 
for dimensionality k, and for sets P of size n and Q 
of size m in [Ed. We have T~°(n + m) = Td(n, m), and 
assuming m) = + m) we have 

for k > 1. Without further assumptions we get 
Tdd(2N) = O(Td(N, N)  log a N).  However, if Td(n, m) = 
f~((n 4- m)l+c),  for some fixed E > 0, then TJ(2N)  = 
O(Td(N, N)).  We summarize the results of this section. 

T h e o r e m  5 Let Td(n, m) be the time required to com- 
pute a bichromatie closest pair for n red and m blue 
points in E ~. I f ~ ( n , m )  = f~(n + m )  then a Eu- 
clidean minimum spanning tree of N points in E a can be 
computed in time O(Td(N, N)  log a N).  I f  furthermore 
Td(n, m) = n ( ( n + m ) t + ' ) ,  for c > O, then O(Td(N, N))  
time su~ces to compute a Euclidean minimum spanning 
tree. 

5 Computing bichromatic closest pair 

In this section we present a fast randomized algorithm 
for the three-dimensional BCP problem: Given a set P 
of n red points in E 3 and another set Q of m blue points 
in [E 3, determine a pair of points p E P and q E Q such 
that  d(p, q) = d(P, Q ) .  

This problem can be obviously solved in time O(mn) 
by trying all red-blue pairs of points. The goal of 
this section is to develop a significantly faster algo- 
rithm. The main result is a randomized algorithm 
whose expected running time is O((nrn log n log m)'Z/3 + 
rn log 2 n + n log 2 m). 
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5.1 B C P  fo r  u n b a l a n c e d  p o i n t  se t s  

We start  by considering the case when the number of red 
points is much smaller than the number of blue points. 
Our algorithm uses ideas from [Se, CS, ESh]. We in- 
crementally construct a triangulation of the Voronoi 
diagram of the red points. More specifically, we 
use what we call the bottom-vertez-triangulation (by- 
triangulation) of the Voronoi diagram defined as fol- 
lows. For every bounded face of the Voronoi diagram 
choose the (lexicographically) smallest vertex v and 
form triangles with v and every edge of the face that 
is not incident to v; we do not triangulate unbounded 
faces and cells. In the same manner, choose the (lexi- 
cographically) smallest vertex v for every bounded cell 
and form a tetrahedron with v and every triangle on 
the cell's faces (which are now triangulated, since they 
are all bounded). 

Let Vor(S) denote the Voronoi diagram of S and let 
by- Vor(S) be its by-triangulation. The by-triangulation 
has the nice property that  it is unique and it is com- 
pletely determined locally. In fact, four vertices of a 
bounded Voronoi cell of Vor(S) form a tetrahedron A of 
by- Vor(S) if and only if A is a tetrahedron of by- Vor(T), 
where T C S is the set of at most 10 points defining the 
four vertices of A. (We arrive at 10 points because four 
points in S define a vertex of the Voronoi diagram, but 
six of the 16 points are duplicates.) 

To make the above remark more formal we introduce 
a few definitions. For a finite point set S C IE 3 let Ts 
be the set of tetrahedra A in by- Vor(T), for all T C ,5' 
with IT I LS 10. Because we assume that  S is in gen- 
eral position, the subset T defining a tetrahedron A is 
unique and denoted by Ta.  For A E Ts, let P a  be the 
point in Ta that  generates the Voronoi cell containing 
A, and let 

reg(A) = {= E E 3 13y E A, d(z , y )  < d(y, pa)  }. 

We have the following result which we state witlmut 
proof. 

L e m m a  6 A tetrahedron A E by-Vor(S) if and only if 
A E Ts and tog(A) n S = 0. 

Before we proceed to the algorithm we need to discuss 
the unbounded cells of Vor(S), as they pose a slight 
problem when it comes to triangulating Vor(S). We 
decided not to triangulate an unbounded cell because 
its bot tom vertex may not be defined. To cope with the 
thus arising difficulties, we introduce a set U of four 
points forming a sufficiently large tetrahedron, where 
sufficiently large means that  

(i) the convex hull of P U Q u U is the tetrahedron U, 
and 

(it) for any two points z, y E P U Q we have d(z,  y) < 
d(=, tr). 

Property (i) ensures that for any P '  C P,  the only un- 
bounded cells of Vor(P'U U) are those generated by 
the four points in U. On the other hand Property (it) 
implies that  if • E P '  and y E P U Q then y lies in 
a bounded cell of Vor(P' U U). This will be conve- 
nient later when we perform point location queries in 
Vo~( P' U U ). 

We now have the tools ready to give the algorithm 
that proves the following result. 

L e m m a  77 The BCP problem for a sex P of n red and a 
sef'Q of m blue points in E 3 can be solved in randomized 
ezpected time ¢)(n 2 + rnlog:' n). 

P r o o f .  As in [CS], we construct bv-Vor(P) by incre- 
mentally adding one point after the other in some ran- 
dom order P z , . . . , P , .  However, we maintain not only 
the Voronoi diagram, but also its by-triangulation dur- 
ing the process. We start  with by-Vor(UU {Pt)).  When 
a new point Pi is added to bv-Vor(U U {Pz, . . . .  P i -z ) ) ,  
we first find, in O(i) time, the nearest neighbor of Pi 
in P l , . . . ,  Pi-1 by exhaustive search; Pi is contained in 
the Voronoi cell of this nearest point. By spending an- 
other O(i) time we can find the tetrahedron A in this 
cell that  contains Pi. The total time for this step over 
all points is thus E i ~ t  O(i) = O(n2). 

We then compute the set D of all tetrahedra that have 
to be deleted when we add Pi. Recall that a tetrahedron 
A has to be deleted from bv-Vor(UU{p,  . . . . .  Pi- t ) )  
if and only if Pi E red(A), that is, A intersects the 
half-space formed by the bisecting plane of Pi and Pa ,  
and containing the point Pi. Notice that it suffices to 
check the four vertices of A. Clearly, 9 is exactly the 
set of tetrahedra intersecting the Voronoi cell of Pl in 
bv.Vor(U U {Pt , . . .  ,Pi}). Hence, D is connected in the 
sense that  for any two tetrahedra At and A2 in 79 there 
is a sequence of tetrahedra in :D starting with At  and 
ending with A2 so that  any two adjacent tetrahedra 
share a face. It  follows that :D can be found using 
a graph search algorithm (such as depth first search) 
starting at the tetrahedron that contains Pi; this takes 
time O(IDI). 

We insert the Voronoi cell of Pi, triangulate it and 
complete the triangulations of all adjacent cells. All 
this can be accomplished in time O(1791) because a 
Voronoi cell gets a new bot tom vertex only if all 
tetrahedra sharing the old bot tom vertex are in 79. 
Clearly, the total number of tetrahedra deleted in 
the course of the algorithm is not larger than the 
total number of tetrahedra created. Using Seidel's 
backwards-analysis [Se2], we find that  the average num- 
ber of tetrahedra created when inserting Pi is O(i). 
To see this consider a tetrahedron A that  exists in 
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bv. Vor(U U { P l , ' " , P i } )  and notice that  it ceases to 
exist in bv-Vor(UU {Px, . . . ,Pi -1})  if and only if the 
removed point Pi is one of the IT~I points defining A. 
The probabili ty that  this happens is at most ~ .  Since 
there are ¢3(i') tetrahedra in by- Vor (U U {Pl , . . . ,  Pi }), 
the expected number of tetrahedra ceasing to exist is 
o ( i ) .  

We can thus bound the expected total  number of 
tetrahedra created, and thus the expected running time 
of the algorithm, by O(n2). 

The set of tetrahedra created during the algorithm 
is used to create a point location structure as follows. 
For each A, we store the point Pi that  causes the dele- 
tion of A. In addition, for every Voronoi cell changed 
by Pi we store a two-dimensional point location struc- 
ture [EGS, ST] so that  if a point lies in a newly created 
tetrahedron we can find it in t ime O(logn).  These ad- 
ditional structures can be computed within the above 
time bounds. 

Now we locate every point q E Q in bv-Vor(U U P). 
We thus find for every blue point q E Q a nearest red 
point. This suffices to solve the BCP problem. 

The point location is done by following the pointers 
established before, start ing at the Voronoi cell of Px 
in bv-Vor(U U {Pl)) ,  which happens to be a tetrahe- 
dron. For every A with q E A we look up the point 
Pi causing the deletion of A and determine whether or 
not q falls into the cell of Pi- In either case, we find 
the appropriate new tetrahedron A'  in time O(logn)  
using the established point location structures. It re- 
mains to bound the expected number of tetrahedra 
visited during the search. Again, we use backwards- 
analysis. The probabil i ty that  the tetrahedron A E 
by-Vor(U U { P l , ' ' ' ,  Pi}) containing q ceases to exist in 
bv. Vor(UU { P l , . . - , P i - I } )  is O(,1-.) by the argument 
above. This implies that  the expected length of the 
search chain is O ( ~ i ~  x ~-) = O(logn).  We thus ob- 
tain a search time of O(log 2 n) per point in Q, which 
completes the proof of the lemma. [ ]  

R e m a r k :  Actually the above BCP problem can be 
solved deterministically in t ime O(n2+ m log 2 n), using 
the convex hull algorithm of Seidel [Se] and the spar 
tim point location algorithm of Prepara ta  and Tamas- 
sis [PT]. 

The running time of the above algorithm can be im- 
proved by dividing P into ~ = [n/(v/~logn)] subsets 
P1, . . . ,Pt  of size at most Fn/t] each and then solv- 
ing the problem with the above method for every pair 
(Pi, Q). This results in an expected running time of 
O ( t .  (~)2 + t - m l o g  ~" n) = O (nv/-mlogn + mlog  2 n). 
We thus have the following result. 

C o r o l l a r y  8 The BCP problem for a set of n red and 
a seg ofrn blue points in E a can be solved in randomized 
ezpected time O ( n v r ~ l o g  n + rn log 2 n). 

5.2 B C P  for  b a l a n c e d  p o i n t  se t s  

When n and rn are of about the same size we use a 
technique similar to that  of [CEGSW], combined with 
ideas of [CS]. We take a random sample of the blue 
points and use it to decompose the problem into many 
small problems. The idea relies on the fact that the 
expected size of the subproblems will be unbalanced 
enough so that  we can use the algorithm of the previous 
s~t ion.  

The description of the algorithm follows. Let again P 
be a set of n red points and Q a set of rn blue points in 
tE 3. We assume that  n _< rn; otherwise, we swap colors. 

If n/log n _< x/~,  a bichromatic closest pair can be 
computed, in time O(n2+ mlog 2 n) = O(mlog  2 n), us- 
ing the algorithm described in the proof of Lemma 7. 

Otherwise, i.e. ~ > v/Tn, take a random sample R 
of r blue points (r will be specified below). We com- 
pute, in time 0(r22), the Voronoi diagram of R and its 
by-triangulation T = bv-Vor(U U R), where U satis- 
fies the conditions (i) and (ii) specified above. T is a 
cell complex of O( r  2) tetrahedra. For every A E T, 
we determine a set Pa  of red points and a set Qa  of 
blue points defined as follows. Pa  = P Q A, that is, 
P a  is the set of all red points p E P contained in A, 
and Q,~ = Q fq reg(A), that is, a blue point q E Q is 
in Q a  if and only if there exists a point y E A with 
d(y, q) < d(y, qLx). 

It is easy to compute Pa  for all A E 7" in time 
O(n log 2 r) by performing a point location for every red 
point. If  n a  is the number of points in P~,  we have 

Now observe that  the set of tetrahedra A with Qa  
containing a fixed blue point q is exactly the set of all 
tetrahedra that  would be deleted if q were inserted into 
by- Vor(U tO R). As in the last section, we can therefore 
use a point location query and a graph search to iden- 
tify all A E 2" with q E Q,x. The total running time 
for this procedure is 0 ( ~ ¢  T rn,a), where rntx is the 
cardinality of Qa .  

Finally, we use the algorithm of Corollary 8 to find 
the closest (Pa,  Qa)-pai r  for every tetrahedron A. We 
output the pair with the shortest distance as a closest 
(P, Q)-pair. 

w e  set  r = w e  can prove I f  
/ i 

the following result, 

T h e o r e m  9 The algorithm above computes a bichro- 
rustic closest pair off a set of n red and a see off m blue 
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points in E a in randomized expected time 

~'~(., m) = O ( ( n m l o g n m ;  -/~ + mlog" n + nlog ~ , ~ ) .  

P r o o f .  The correctness of the algorithm is based on 
the observation that q is in Qa  if {p,q} is a closest 
(P, Q)-pair and A is the tetrahedron containing p. 

The running time of the algorithm is O(mlog2 n) if 
ii  log. <- v/~" Otherwise, the running time is 

O (  C ( n a v f ~ ' l o g n a  + rna logna) + r2 + nlog'~r), 

\ a c t  

which is bounded by 

acT acT 

We show below that  the expected value of ~ T  na  
is O(nV/~) and the expected value of ETma is 
O(mr). For the given choice for r, the expected running 
time is thus 

O(n2/am 2/3 log 4/3 n + mlog  ~ n). 

Without the assumption n _< m we obtain the symmet- 
ric bound on the running time given in the theorem. 

It is interesting to compare the time bound of the three- 
dimensional BCP algorithm with the currently best up- 
per bound on the number of bichromatic minimum dis- 
tance pairs which is O(n2/Sm 2/a + n + m) [ESh]. To 
complete the proof of the theorem we still need to es- 
tablish the claimed expectations. Following [CEGSW] 
and [CS] we start  with an elementary lemma. 

L e m m a  10 At most 10 tetrahedra ~ in TcruR contain 
some fixed point p ~ P and have Ireg( ~ ) n R I = 1. 

P r o o f .  For every set R r C R there is a unique tetrahe- 
dron AR' E T~ruR, w i t h p  E A/t, and reg(&R,)N.R' = @. 
Now consider a tetrahedron A E TvuR that contains p 
and [reg(~)A R[ = 1. Let q = reg(A)(1 R. Clearly, 

= &a\{q}. The result follows since A~\{q} = &n 
if q ~ Tan (that is, q is not one of the points defining 
&R), and since ITan } < 10. [ ]  

With this result we can now go ahead and prove the 
claimed expectations. 

L e m m a  II If  R C O is chosen at random, we have 

t~T 

= O(mr) 
teT" 

and 

P r o o f .  Consider the first equation. We observe that 
fa 

the sum is the same as ~ j = t  v ~ ' ,  where qi is the car- 
dinality of Qa  for the tetrahedron A containing the 
point Pi E P. Since the expectation is additive, and 

since by 3ensen's inequality E[v/~] _< v / ~ ,  we can 
concentrate on showing that E[qi] = (7-)" 

Let p E P be fixed and let q = IQaol for the tetra- 
hedron A0 E by- Vor(U 1.3 R) with p E Ao. We want to 
show E[q] = O ( ~ ) .  Define T~ = {& E 7"s I P e &}, let 
IA[ = Jreg(A) M QI, and let P r a  denote the probability 
that A = A0 under the assumption that p E A. With 
these definitions, E[q] = ~aeTr~uQ__ IAl" P ra .  

By  Lemma 6, we can bound P r a  as follows. Clearly, 
A = A0 for A E Td.uc t if and only if A E T~.uR and 
reg(A) N R = 0. Now recall that there is a unique set 
Ta C UUQ with ITal < 10 such that A E TuuR if and 
only if Ta C_ U U R (this is true because of our general 
position assumption). 

To put & in T~uR, we must choose these ]Ta[ points. 
To satisfy the second condition, the remaining r - ITAI 
points must be chosen from Q \ (reg(&)tAT, x). We thus 
have 

. = / (=) . 
Since 

\ ~-ITal-1  J '  

we have 

E[q] 

Observe that the summand, 
. -  I T a l  

is the probability that  A is a tetrahedron in Tt~uR with 
[reg(A) tq RI = 1. The sum is therefore the expected 
number of such tetrahedra. By the last lemma, this 
expectation is at most 10. 

Now consider the second equation. We use a similar 
argument as above, substituting the set T for T'. We 
thus obtain 

m 

real = o(-7) 
\ r-IT I-  } 

Here, the sum on the right side is tile expected number 
of tetrahedra A with [reg(&) N R[ = 1. Theorem 3.2 of 
[CS] can be used to show that this expectation is O(r2). 
[] 

Putting Theorem 5 and 9 together, we obtain 
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T h e o r e m  12 A Euclidean minimum spanning ~ree of 
a set of h r points in E 3 can be computed in ezpected 
time O( N 4/3 log ~/3 N) by a randomized algorithm. 

6 C o n c l u s i o n  

We have shown a close relationship between the Eu- 
clidean minimum spanning tree problem and the biehro- 
matic closest pair problem in [Ea. As a result we get 
an improved algorithm for the three-dimensional EMST 
problem. 

It should be noted that the techniques developed in 
this paper permit the computation of minimum span- 
ning trees for metrics with polyhedral unit ball, such as 
the LI- and the Loo-metric. The idea is to construct a 
sufficiently narrow frame as a refinement of the frame 
induced by the edges of the unit ball. The distances in 
every cone of this frame are then determined by only 
one dimension. We can thus apply range trees and Yao's 
result to compute a EMST in time O(N log a N). This 
is better than the algorithms of [GBT] for the Lx-metric 
and dimension greater than 5, while for the Loo-metric 
and for the Ll-metric with d _< 5 their algorithms are 
better by one or two log-factors. 

We have no reason to believe that our algorithm is 
optimal, so it remains an open question whether the 
running time can be further improved. Also, it would be 
interesting if we could determinize our algorithm with- 
out increasing the running time. 
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