
E u c l i d e a n M i n i m u m S p a n n i n g Trees and
B i c h r o m a t i c Closes t Pairs*

Pankaj K. Agarwal t
Department of Computer Science, Duke University, Durham, NC 27706, USA

Herbert Edelsbrunner
Department of Computer Science, University of/llinois at Urbana.Champalgn, Urbana, Illinois 61801, USA

Otfried Schwarzkopf

Emo Welzl

Institut ffir Informatik, Fachbereich MathercaLtik, Frele Urdversit&t Berlin,
Arnlmallee 2-6, D-1000 Berlin.J3, West Germany

A b s t r a c t

We present an algorithm to compute a Euclidean min-
imum spanning tree of a given set S of n points in E a
in time O (~ (A r, ~r)log d N), where 7~(n, m) is ~he time
required to compute a bichromatic closest pair among n
red and rn blue points in E a. I f Ta(N, N) = 12(Nl+'),
for some fized ¢ > O, then the running time improves to
O(7~(N, N)). Furthermore, we describe a randomized
algorithm to compute a bichromatic closest pair in ez-
pected time O((nrn log n log rn) ' /3 + m log s n + n log s m)

in E 3, which yields an O(N4/31og 4/3 N) ezpected time
algorithm for computing a Euclidean minimum span-
ning tree of N points in E 3.

1 I n t r o d u c t i o n

Given a set S of N points in Euclidean d-dimensional
space E a, a Euclidean minimum spanning tree (EMST)

*The first, second, and fourth authors acknowledge support
from the Center for Discrete Mathematics and Theoretical Com-
puter Science (DIMACS), a National Science Foundation Sci-
ence and Technology Center under NSF grant STC 88-09648.
The second author's work was supported by the National Sci-
ence Foundation under grant CCiq.-8714565. The third author's
work was supported by the Deutsche Forschungsgemeinschaft un-
der grant Al 253/1-2, Schwerpunktprogramm "Datenstrukturen
und efl~ziente Algorithmen". The last two authors' work was also
partially supported by the ESPRIT]I Basic Research Actions
Program of the EC under contract no. 3075 (project ALCOM).

t current address: DIMACS Center, Hill Center - - Busch
Campus, P.O. Box 1179, Rutgers University, Piscataway, N3
08855-1179, USA.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee a n d / o r specific permission.

© 1990 A C M 0 - 8 9 7 9 1 - 3 6 2 - 0 / 9 0 / 0 0 0 6 / 0 2 0 3 $1.50

is a spanning tree of S whose edges have a minimum
total length among all spanning trees of S, where the
length of an edge is the Euclidean distance between
its vertices. For d = 2, an O (N l o g N) algorithm
for the computation of a EMST has been given by
Shamos and Hoey [SH]. For d > 3, Yao [Ya] obtained
o(N s) algorithms. In three dimensions, his algorithm
runs in time O((NlogN) l " s) , which can be reduced
to O((N log N) z'5) using results on the computation of
Voronoi diagrams, see Section 5.1. Algorithms for com-
puting approximate minimum spanning trees have been
developed by Clarkson [C1] and Vaidya [Va].

Our aim is to shed light on the relation between the
EMST problem and the computation of biehromatic
closest pairs (BCP). The latter problem can be formu-
lated as follows: Given a set of n red and rn blue points
in E d, find a red point p and a blue point q such that
the distance between p and q is minimum among all
red-blue pairs.

It is not difficult to verify that a EMST of the union of
the red and blue points contains at least one closest red-
blue pair. It is thus possible to solve the BCP problem
by computing a EMST. The first result of this paper
is to show that the converse is also true. We present
an algorithm that computes a EMST by solving several
BCP problems. If we can find a BCP for n red and m
blue points in E a in time Td(n, m), then we can compute
a EMST in lt~ d in time O(7~(N, N) log d g) . Moreover,
if T d (N , N) = fl(N z+') for some ~ > 0, the time to
compute a EMST is only O(Ta(N, N)) .

Most current EMST algorithms start by computing
a set of edges which can be shown to be a superset of
the edge set of a EMST. In the two-dimensional case
the set of edges of the Delaunay triangulation is a good
choice for this superset. Unfortunately, already in three
dimensions the edge set of the Delaunay triangulation
can be the complete graph. Another possible choice for
a suitable superset is due to Yao. He divides the set
of all possible edges into a constant number of groups,

203

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98524.98567&domain=pdf&date_stamp=1990-05-01

according to the slope of the edges, and selects a lin-
ear number of edges from each group. Our algorithm is
based on a similar idea. We classify all possible edges
into O(N log a - i N) groups, each group forming a com-
plete biparti te subgraph on two subsets, P and Q, of
S. We are then able to show that for each group only a
closest pair between P and Q can form an edge of any
EMST.

We then turn our attention to the BCP problem. In
three dimensions, we give a randomized algorithm that
computes a bichromatic closest pair of n red and rn
blue points in expected time O((nm log n log rn) 2/3 +
mlog a n + n log 2 m). This implies an O(N 4/3 log 4/3 N)
randomized expected time algorithm for the EMST
problem in lE3.

2 C o n v e n t i o n s

We do not distinguish between points and vectors in lea;
hence, we can add and subtract points. The scalar prod-
uct of = = (z l , . . . , ma) and y = (y l , . . . , ya) is mTy =
E~=J. z,y,, the norm ofm is]1=11 = q T = , and the angle

tory Further- between m and y is L(m, y) = cos -1 Ilmll.llYll"
more, the angle L (z y z) defined by the three points m,
y, and z is defined as L(myz) = £(z - y, m - y).

For A , B C_ lea define A+B = { = + y [m E A , y E B},
and let m -4- B = {m} + B. The Euclidean distance
between z and y is d(m,y) = [[y - rail. For a fi-
nite point set A, define d(m, A) = minyea d(m, y), and
for two finite point sets A and B, define d(A,B) =
minmEA d(=, B). For two points = and y we let my be
the line segment connecting them; the length of my is
d(=,u).

A closest (A,B)-pair is a pair (= ,y) with m e A,
y E B and d (= , y) = d(A,B). We define diam(A) =
maxm,yEA d(=, ~;).

3 G e o m e t r i c r e s u l t s

As mentioned above, we intend to classify the set of
pairs of points in S into several groups. From each
group we will select only one pair as a possible edge for
a EMST. In this section, we define the groups and show
the geometric result.

First, we introduce some notation. Let d E IE a be a
vector of unit length, [[d[[= 1, indicating a direction in
d-dimensional space, and let a < 90 ° be an angle. We
define the cone Cone(d,a) = {m E lEd [Z(m, d) < a}.

Let a0 be the largest angle so that for any 0 < a < a0
we have

tan 2a < cos 2a

=.-~/~-1~/2 which is about 19.08°). In the (no (arcsin

following we will assume that a is fixed with 0 < a <

a 0 .

Let S be a finite set of points in led for which we want
to compute a EMST. For two disjoint subsets P and Q
of S we call (P, Q) a strongly separated pair if

max{ diam(P), diam(Q) } < d(P, Q).

Furthermore, we call (P, Q) a-separated if there exists
a point z and a direction vector d such that P C z +
Cone(-d ,a) and Q _c z + Cone(d,a). When d, the
orientation of the cones, is important we will call (P, Q)
a-separated in direction d.

The strongly separated pairs are our first means to
reduce the number of candidate edges for a EMST.

L e m m a 1 If (P, Q), P, Q c_ S, is a strongly separated
pair, then any EMST of S contains at most one edge
between P and Q.

P r o o f . Indeed if lemma were not true, then there is
exists a EMST in which we can find two edges {p, q}
and {p', q'}, for p , p ' E P and q, q' E Q, between P and
Q, such that the points q, q' lie on the path from p to
p ' in the EMST, or vice versa. But, in that case we can
obtain a shorter spanning tree of S by adding the edge
{p, p '} and removing the edge {p, q}, a contradiction.
Hence the lemma is true. []

We obtain strongly separated pairs from a-separated
pairs. Let (P, Q), P, Q c S, be a-separated in direction
d. We call p E P eztremal if p + Cone(d, ~ - a) contains
no element of P. Analogously, we call q E Q eztremal
if q + Cone(-d, ~ - a) contains no element of Q. We
denote the subsets of extremal elements by P ' and Q'.

L e m m a 2 Iet (P,Q), P,Q C S, be art a.separated
pair, and let P', Q' be the subsets of eztremal elements.
If {p, q}, p E P, q E Q, is an edge o] some EMST orS,
then p E P', q E Q' and {p, q} is a biehromatic closest
pair.

P "6t
• .

Figure 1: Illustration of Lemma 2

P r o o £ Here we use a result of Yao [Ya] who proves
that if {p, q} is an edge of a EMST of S and q E p +

204

Cone(d, fl), for fl < ~, then q is a nearest neighbor of
p i n the c o n e p + C o n e (d , 1 3) . Since a < ~, q is the
nearest neighbor of p in Q. Thus it suffices to show
that q 6 Q'. Indeed if q were not extremal, then there
exists a point r E q + Cone(-d, ~ - a). Consider the
triangle Z~prq. We have £ (p rq) = ~r - Z(r - p , q - r) ,
L(d , r - p) _< c~ a n d ~ (d , q - ~) <_ } - a . Since

7r

£(v -- p, q -- r) < L (d , r - p) + L (d , q - v) < 7 '

L(prq) > {. Hence, pq is the longest side o fprq which
implies d(p, q) > d(p, r) , a contradiction.

We conclude that q must be extremal in Q. By sym-
metry, we have p E P ' and p is the closest neighbor of
q i n P. []

So we can content ourselves with the pair (pr, Qt), and
fortunately we have the following result.

L e m m a 3 I f (P' ,Q') be an a-separated pair of ez-
tremal elements, then (P', Q') is strongly separated.

P r o o f . Let z E [Eg be such that Q' c z + Cone(d, a).
Let q , r 6 Q' and consider the triangle zqr. Define
¢ = L(qzr) and ¢ = L(rqz) , w = Z(qrz) and let a,
b, and c be the lengths of zq, zr , and qm Next we
derive bounds on the sine functions of the angles. It is
easily seen that ¢ < 2a and ~ - 2a < ¢ ,w < ~ + 2a,
and therefore sin ¢ < sin 2a, sin ¢ > cos 2a and sin w >
cos 2a.

. ' : . a

•

Figure 2: Illustration of Lemma 3

The equality

a b e

sin ¢o ' = sin ¢ = Sine

for the triangle zqr implies

b s ine _ b sin ~-~- = b t a n 2 a (1)
c = sin~b < cos2a

sin ¢ 1 1
b = a . < ~ < a ~ . (2)

stow asinw - cos2a

Let qo 6 Q' be a nearest neighbor of z, that i s ,
d(z, qo) = d(z, Q'). By (2) for every q E Q', we have

1 1
d(z ,q) < d(z, qO)cos2a = d(z,Q') cos2a. (3)

Now let q', q" be any pair of points in Q'. I t follows
from (1) and (3) that

, tan 2or
d(q',q") < d (z ,q ') tan2a _< d(z ,Q) c o T s < d(z,Q')

as a < or0. By symmetry, we have d(p' ,p") <
d(z, P ') for any two points p ' , p " 6 P ' . We thus have
max { diam(P'), diam(Q') } < max{d(z, P'), d(z, Q')}.

Consider now p 6 P, q E Q. The angle L(pzq) _>
7r - 2a > ~r/2, so pq is the longest side of the triangle
pzq. This implies d(p, q) > max{ diam(P'), diarn(Q') },
which is equivalent to saying that P and Q are strongly
separated. []

Now we can give our central result which reduces the
EMST problem to the BCP problem.

L e m m a 4 Let S be a set of points in lea and let 13 be
a set of a-separated pairs, for some 0 < a < oto, with
the property that for any pair of points p, q 6 S there
exists a pair (P,Q) E 13 such that p E P and q E Q.
I f a set M C P x Q contains a closest (P, Q)-pair for
every (P, Q) E B, then M contains a EMST of S.

P r o o f . Consider the set B' = { (P ' ,Q ') [(P ,Q) 6 13
and P ' , Q' are the sets of extremal elements in P and
Q}. Let E be the set of edges E = {{p ' ,q '} [p ' 6
P', q' 6 Q', (P', Q') 6 13'}. By Lemma 2, E contains
every EMST of S. Since .P', Q' are strongly separated
(cf. Lemma 3), there is at most one edge between P ' and
Q' in any EMST of S, namely the one connecting the
closest pair of points (cf. Lemma 1 and 2). Furthermore,
using the same argument as in Lemma 2, one can show
that a closest pair of (P, Q) is also a closest pair of
(P ' , Q'). Hence, M contains a EMST of S. []

4 A n a l g o r i t h m to r e d u c e E M S T t o
B C P

We now describe an algorithm that solves the EMST
problem in d dimensions by solving several instances of
the BCP problem, assuming we are given an algorithm
for the BCP problem. Let this algorithm take Ta(n, rn)
time for a set of n red and m blue points. As usual we
let S be a set of N points and we wish to compute a
EMST of S.

We borrow some notation from Yao [Ya]. Let B =
{ b l , . . . , ba} be a basis of IE a. The convez cone of B is
Cony(B) = {~,=1 Aibl [Ai > 0 Vi}. We call Cony(B)
narrow if there exists a vector d 6 [E a, Ildll = 1, such
that Cony(B) C Cone(d,a) with a < o~o. Let ~ be a
finite family of bases of IE d. We call .T" a frame of led
if U , ~ (C ° n v (B) U -Cony(B)) = led. h frame ~ is

205

called narrow if every B E .T is narrow. By Lemma 4.2
of Yao [Ya], for every dimension d one can construct a
narrow frame in a finite number of steps.

We compute such a narrow frame ~" and successively
consider the bases B E -~. For each B E F , we com-
pute a set BB of a-separated pairs using an algorithm
inspired by the range tree structure for d-dimensional
point sets (see e.g. [PS]).

Let B = {bx , . . . , ba} be the basis for which we
compute a-separated pairs, and let (xz zd) be the
coordinates of a point = in this basis, that is, m =
xxbl + . . . + zdbd. We assume that B is such that no
two points of S share a coordinate. The algorithm that
computes the a-separated pairs is recursive, and each
recursive call either reduces the number of points con-
sidered or the dimensionality of the problem. The a -
separated pairs are output when the dimensionality k
is 0. The input parameters of the algorithm are k, the
dimensionality, P, a set of red points, and Q, a set of
blue points in E a. Initially, k = d and P = Q = S.

1 If k = 0 then output (P, Q) as an a-separated pair.

2 Otherwise (if k >_ 1) execute the following steps.

2.1 Compute xk, the median of the kth coordinate
of points in P U Q.

2.2 Set Pt = {p E P [pk _< xk}, P. = {p E
P [Pk > z~}, Ql = {q E Q [qk ~ xk}, and
Q~ = {q E Q lqk > xk}.

2.3 If P l ¢ 0 and Qr ¢ 0 then recurse with pa-
rameters k -- 1, Pl, and Qr.

2.4 If Pl ¢ 0 and Ql ¢ 0 then recurse with h, Pt,
and Ql.

2.5 IfP~ ¢ 0 and Q~ ¢ 0 then recurse with k, P~,
and Q~.

Since B is narrow, every pair (P, Q) returned by the
algorithm is a-separated. We need to show that if q E
p 4- Cony(B) then the algorithm outputs a pair (P, Q)
with p E P and q E Q. Assume inductively that this is
true for dimension d - 1. To prove it for dimension d
note that q E p 4- Cony(B) is equivalent to Pi < qi for
I < i < d. In particular, it implies pa < qd. Thus, there
will be a call of the algorithm so that k --- d, p E Pl,
and q E Qr. Step 2 calls the algorithm for k = d - 1,
P = Pc, and Q = Q~, and by inductive assumption this
call produces the desired a-separated pair. Let Bu be
the set of a-separated pairs produced by the algorithm.
From what we just said it follows that B = U~E.r B~
fulfills the requirements of Lemma 4.

It therefore suffices to compute for every pair (P, Q) E
B a closest (P, Q)-pair to obtain a suitable set M. We
claim that the size of M is ~ (N l o g d-~ N) and verify

this by counting the number of a-separated pairs gen-
erated by the algorithm when it is called for k = d,
P = Q = S, and basis B. Let this number be
tk(lPI + IQ[); so we are interested in td(2N). Clearly,
to(n + m) = 1. For higher indices k we have

t (n + m) < + t -l(n + m)

which solves to t (n + m) = O((n + m)log -l(n + m)).
It follows that ta(2N) = O (N l o g d - i N) as claimed.
From M we can compute a EMST of S in time
O(h r log d-x N).

It remains to analyze the computation of closest
pa~rs. In order to get closest pairs as output we just
replace step 1 with

1' If k = 0 then find a closest (P, Q)-pair {p, q} and
output it.

R.ecall that Td(n, m) is an upper bound on the time it
takes to compute {p,q} if n = [P[and m = [Q]. Let
T~ (n + m) be the running time of the above algorithm
for dimensionality k, and for sets P of size n and Q
of size m in [Ed. We have T~°(n + m) = Td(n, m), and
assuming m) = + m) we have

for k > 1. Without further assumptions we get
Tdd(2N) = O(Td(N, N) log a N). However, if Td(n, m) =
f~((n 4- m)l+c), for some fixed E > 0, then TJ(2N) =
O(Td(N, N)). We summarize the results of this section.

T h e o r e m 5 Let Td(n, m) be the time required to com-
pute a bichromatie closest pair for n red and m blue
points in E ~. I f ~ (n , m) = f~(n + m) then a Eu-
clidean minimum spanning tree of N points in E a can be
computed in time O(Td(N, N) log a N). I f furthermore
Td(n, m) = n ((n + m) t + ') , for c > O, then O(Td(N, N))
time su~ces to compute a Euclidean minimum spanning
tree.

5 Computing bichromatic closest pair

In this section we present a fast randomized algorithm
for the three-dimensional BCP problem: Given a set P
of n red points in E 3 and another set Q of m blue points
in [E 3, determine a pair of points p E P and q E Q such
that d(p, q) = d(P, Q) .

This problem can be obviously solved in time O(mn)
by trying all red-blue pairs of points. The goal of
this section is to develop a significantly faster algo-
rithm. The main result is a randomized algorithm
whose expected running time is O((nrn log n log m)'Z/3 +
rn log 2 n + n log 2 m).

206

5.1 B C P fo r u n b a l a n c e d p o i n t se t s

We start by considering the case when the number of red
points is much smaller than the number of blue points.
Our algorithm uses ideas from [Se, CS, ESh]. We in-
crementally construct a triangulation of the Voronoi
diagram of the red points. More specifically, we
use what we call the bottom-vertez-triangulation (by-
triangulation) of the Voronoi diagram defined as fol-
lows. For every bounded face of the Voronoi diagram
choose the (lexicographically) smallest vertex v and
form triangles with v and every edge of the face that
is not incident to v; we do not triangulate unbounded
faces and cells. In the same manner, choose the (lexi-
cographically) smallest vertex v for every bounded cell
and form a tetrahedron with v and every triangle on
the cell's faces (which are now triangulated, since they
are all bounded).

Let Vor(S) denote the Voronoi diagram of S and let
by- Vor(S) be its by-triangulation. The by-triangulation
has the nice property that it is unique and it is com-
pletely determined locally. In fact, four vertices of a
bounded Voronoi cell of Vor(S) form a tetrahedron A of
by- Vor(S) if and only if A is a tetrahedron of by- Vor(T),
where T C S is the set of at most 10 points defining the
four vertices of A. (We arrive at 10 points because four
points in S define a vertex of the Voronoi diagram, but
six of the 16 points are duplicates.)

To make the above remark more formal we introduce
a few definitions. For a finite point set S C IE 3 let Ts
be the set of tetrahedra A in by- Vor(T), for all T C ,5'
with IT I LS 10. Because we assume that S is in gen-
eral position, the subset T defining a tetrahedron A is
unique and denoted by Ta. For A E Ts, let P a be the
point in Ta that generates the Voronoi cell containing
A, and let

reg(A) = {= E E 3 13y E A, d(z , y) < d(y, pa) }.

We have the following result which we state witlmut
proof.

L e m m a 6 A tetrahedron A E by-Vor(S) if and only if
A E Ts and tog(A) n S = 0.

Before we proceed to the algorithm we need to discuss
the unbounded cells of Vor(S), as they pose a slight
problem when it comes to triangulating Vor(S). We
decided not to triangulate an unbounded cell because
its bot tom vertex may not be defined. To cope with the
thus arising difficulties, we introduce a set U of four
points forming a sufficiently large tetrahedron, where
sufficiently large means that

(i) the convex hull of P U Q u U is the tetrahedron U,
and

(it) for any two points z, y E P U Q we have d(z, y) <
d(=, tr).

Property (i) ensures that for any P ' C P, the only un-
bounded cells of Vor(P'U U) are those generated by
the four points in U. On the other hand Property (it)
implies that if • E P ' and y E P U Q then y lies in
a bounded cell of Vor(P' U U). This will be conve-
nient later when we perform point location queries in
Vo~(P' U U).

We now have the tools ready to give the algorithm
that proves the following result.

L e m m a 77 The BCP problem for a sex P of n red and a
sef'Q of m blue points in E 3 can be solved in randomized
ezpected time ¢)(n 2 + rnlog:' n).

P r o o f . As in [CS], we construct bv-Vor(P) by incre-
mentally adding one point after the other in some ran-
dom order P z , . . . , P , . However, we maintain not only
the Voronoi diagram, but also its by-triangulation dur-
ing the process. We start with by-Vor(UU {Pt)). When
a new point Pi is added to bv-Vor(U U {Pz, P i -z)) ,
we first find, in O(i) time, the nearest neighbor of Pi
in P l , . . . , Pi-1 by exhaustive search; Pi is contained in
the Voronoi cell of this nearest point. By spending an-
other O(i) time we can find the tetrahedron A in this
cell that contains Pi. The total time for this step over
all points is thus E i ~ t O(i) = O(n2).

We then compute the set D of all tetrahedra that have
to be deleted when we add Pi. Recall that a tetrahedron
A has to be deleted from bv-Vor(UU{p, Pi- t))
if and only if Pi E red(A), that is, A intersects the
half-space formed by the bisecting plane of Pi and Pa ,
and containing the point Pi. Notice that it suffices to
check the four vertices of A. Clearly, 9 is exactly the
set of tetrahedra intersecting the Voronoi cell of Pl in
bv.Vor(U U {Pt , . . . ,Pi}). Hence, D is connected in the
sense that for any two tetrahedra At and A2 in 79 there
is a sequence of tetrahedra in :D starting with At and
ending with A2 so that any two adjacent tetrahedra
share a face. It follows that :D can be found using
a graph search algorithm (such as depth first search)
starting at the tetrahedron that contains Pi; this takes
time O(IDI).

We insert the Voronoi cell of Pi, triangulate it and
complete the triangulations of all adjacent cells. All
this can be accomplished in time O(1791) because a
Voronoi cell gets a new bot tom vertex only if all
tetrahedra sharing the old bot tom vertex are in 79.
Clearly, the total number of tetrahedra deleted in
the course of the algorithm is not larger than the
total number of tetrahedra created. Using Seidel's
backwards-analysis [Se2], we find that the average num-
ber of tetrahedra created when inserting Pi is O(i).
To see this consider a tetrahedron A that exists in

207

bv. Vor(U U { P l , ' " , P i }) and notice that it ceases to
exist in bv-Vor(UU {Px, . . . ,Pi -1}) if and only if the
removed point Pi is one of the IT~I points defining A.
The probabili ty that this happens is at most ~ . Since
there are ¢3(i') tetrahedra in by- Vor (U U {Pl , . . . , Pi }),
the expected number of tetrahedra ceasing to exist is
o (i) .

We can thus bound the expected total number of
tetrahedra created, and thus the expected running time
of the algorithm, by O(n2).

The set of tetrahedra created during the algorithm
is used to create a point location structure as follows.
For each A, we store the point Pi that causes the dele-
tion of A. In addition, for every Voronoi cell changed
by Pi we store a two-dimensional point location struc-
ture [EGS, ST] so that if a point lies in a newly created
tetrahedron we can find it in t ime O(logn). These ad-
ditional structures can be computed within the above
time bounds.

Now we locate every point q E Q in bv-Vor(U U P).
We thus find for every blue point q E Q a nearest red
point. This suffices to solve the BCP problem.

The point location is done by following the pointers
established before, start ing at the Voronoi cell of Px
in bv-Vor(U U {Pl)) , which happens to be a tetrahe-
dron. For every A with q E A we look up the point
Pi causing the deletion of A and determine whether or
not q falls into the cell of Pi- In either case, we find
the appropriate new tetrahedron A' in time O(logn)
using the established point location structures. It re-
mains to bound the expected number of tetrahedra
visited during the search. Again, we use backwards-
analysis. The probabil i ty that the tetrahedron A E
by-Vor(U U { P l , ' ' ' , Pi}) containing q ceases to exist in
bv. Vor(UU { P l , . . - , P i - I }) is O(,1-.) by the argument
above. This implies that the expected length of the
search chain is O (~ i ~ x ~-) = O(logn). We thus ob-
tain a search time of O(log 2 n) per point in Q, which
completes the proof of the lemma. []

R e m a r k : Actually the above BCP problem can be
solved deterministically in t ime O(n2+ m log 2 n), using
the convex hull algorithm of Seidel [Se] and the spar
tim point location algorithm of Prepara ta and Tamas-
sis [PT].

The running time of the above algorithm can be im-
proved by dividing P into ~ = [n/(v/~logn)] subsets
P1, . . . ,Pt of size at most Fn/t] each and then solv-
ing the problem with the above method for every pair
(Pi, Q). This results in an expected running time of
O (t . (~)2 + t - m l o g ~" n) = O (nv/-mlogn + mlog 2 n).
We thus have the following result.

C o r o l l a r y 8 The BCP problem for a set of n red and
a seg ofrn blue points in E a can be solved in randomized
ezpected time O (n v r ~ l o g n + rn log 2 n).

5.2 B C P for b a l a n c e d p o i n t se t s

When n and rn are of about the same size we use a
technique similar to that of [CEGSW], combined with
ideas of [CS]. We take a random sample of the blue
points and use it to decompose the problem into many
small problems. The idea relies on the fact that the
expected size of the subproblems will be unbalanced
enough so that we can use the algorithm of the previous
s~t ion.

The description of the algorithm follows. Let again P
be a set of n red points and Q a set of rn blue points in
tE 3. We assume that n _< rn; otherwise, we swap colors.

If n/log n _< x/~, a bichromatic closest pair can be
computed, in time O(n2+ mlog 2 n) = O(mlog 2 n), us-
ing the algorithm described in the proof of Lemma 7.

Otherwise, i.e. ~ > v/Tn, take a random sample R
of r blue points (r will be specified below). We com-
pute, in time 0(r22), the Voronoi diagram of R and its
by-triangulation T = bv-Vor(U U R), where U satis-
fies the conditions (i) and (ii) specified above. T is a
cell complex of O(r 2) tetrahedra. For every A E T,
we determine a set Pa of red points and a set Qa of
blue points defined as follows. Pa = P Q A, that is,
P a is the set of all red points p E P contained in A,
and Q,~ = Q fq reg(A), that is, a blue point q E Q is
in Q a if and only if there exists a point y E A with
d(y, q) < d(y, qLx).

It is easy to compute Pa for all A E 7" in time
O(n log 2 r) by performing a point location for every red
point. If n a is the number of points in P~, we have

Now observe that the set of tetrahedra A with Qa
containing a fixed blue point q is exactly the set of all
tetrahedra that would be deleted if q were inserted into
by- Vor(U tO R). As in the last section, we can therefore
use a point location query and a graph search to iden-
tify all A E 2" with q E Q,x. The total running time
for this procedure is 0 (~ ¢ T rn,a), where rntx is the
cardinality of Qa .

Finally, we use the algorithm of Corollary 8 to find
the closest (Pa, Qa)-pai r for every tetrahedron A. We
output the pair with the shortest distance as a closest
(P, Q)-pair.

w e set r = w e can prove I f
/ i

the following result,

T h e o r e m 9 The algorithm above computes a bichro-
rustic closest pair off a set of n red and a see off m blue

208

points in E a in randomized expected time

~'~(., m) = O ((n m l o g n m ; -/~ + mlog" n + nlog ~ , ~) .

P r o o f . The correctness of the algorithm is based on
the observation that q is in Qa if {p,q} is a closest
(P, Q)-pair and A is the tetrahedron containing p.

The running time of the algorithm is O(mlog2 n) if
ii log. <- v/~" Otherwise, the running time is

O (C (n a v f ~ ' l o g n a + rna logna) + r2 + nlog'~r),

\ a c t

which is bounded by

acT acT

We show below that the expected value of ~ T na
is O(nV/~) and the expected value of ETma is
O(mr). For the given choice for r, the expected running
time is thus

O(n2/am 2/3 log 4/3 n + mlog ~ n).

Without the assumption n _< m we obtain the symmet-
ric bound on the running time given in the theorem.

It is interesting to compare the time bound of the three-
dimensional BCP algorithm with the currently best up-
per bound on the number of bichromatic minimum dis-
tance pairs which is O(n2/Sm 2/a + n + m) [ESh]. To
complete the proof of the theorem we still need to es-
tablish the claimed expectations. Following [CEGSW]
and [CS] we start with an elementary lemma.

L e m m a 10 At most 10 tetrahedra ~ in TcruR contain
some fixed point p ~ P and have Ireg(~) n R I = 1.

P r o o f . For every set R r C R there is a unique tetrahe-
dron AR' E T~ruR, w i t h p E A/t, and reg(&R,)N.R' = @.
Now consider a tetrahedron A E TvuR that contains p
and [reg(~)A R[= 1. Let q = reg(A)(1 R. Clearly,

= &a\{q}. The result follows since A~\{q} = &n
if q ~ Tan (that is, q is not one of the points defining
&R), and since ITan } < 10. []

With this result we can now go ahead and prove the
claimed expectations.

L e m m a II If R C O is chosen at random, we have

t~T

= O(mr)
teT"

and

P r o o f . Consider the first equation. We observe that
fa

the sum is the same as ~ j = t v ~ ' , where qi is the car-
dinality of Qa for the tetrahedron A containing the
point Pi E P. Since the expectation is additive, and

since by 3ensen's inequality E[v/~] _< v / ~ , we can
concentrate on showing that E[qi] = (7-)"

Let p E P be fixed and let q = IQaol for the tetra-
hedron A0 E by- Vor(U 1.3 R) with p E Ao. We want to
show E[q] = O (~) . Define T~ = {& E 7"s I P e &}, let
IA[= Jreg(A) M QI, and let P r a denote the probability
that A = A0 under the assumption that p E A. With
these definitions, E[q] = ~aeTr~uQ__ IAl" P ra .

By Lemma 6, we can bound P r a as follows. Clearly,
A = A0 for A E Td.uc t if and only if A E T~.uR and
reg(A) N R = 0. Now recall that there is a unique set
Ta C UUQ with ITal < 10 such that A E TuuR if and
only if Ta C_ U U R (this is true because of our general
position assumption).

To put & in T~uR, we must choose these]Ta[points.
To satisfy the second condition, the remaining r - ITAI
points must be chosen from Q \ (reg(&)tAT, x). We thus
have

. = / (=) .
Since

\ ~-ITal-1 J '

we have

E[q]

Observe that the summand,
. - I T a l

is the probability that A is a tetrahedron in Tt~uR with
[reg(A) tq RI = 1. The sum is therefore the expected
number of such tetrahedra. By the last lemma, this
expectation is at most 10.

Now consider the second equation. We use a similar
argument as above, substituting the set T for T'. We
thus obtain

m

real = o(-7)
\ r-IT I- }

Here, the sum on the right side is tile expected number
of tetrahedra A with [reg(&) N R[= 1. Theorem 3.2 of
[CS] can be used to show that this expectation is O(r2).
[]

Putting Theorem 5 and 9 together, we obtain

209

T h e o r e m 12 A Euclidean minimum spanning ~ree of
a set of h r points in E 3 can be computed in ezpected
time O(N 4/3 log ~/3 N) by a randomized algorithm.

6 C o n c l u s i o n

We have shown a close relationship between the Eu-
clidean minimum spanning tree problem and the biehro-
matic closest pair problem in [Ea. As a result we get
an improved algorithm for the three-dimensional EMST
problem.

It should be noted that the techniques developed in
this paper permit the computation of minimum span-
ning trees for metrics with polyhedral unit ball, such as
the LI- and the Loo-metric. The idea is to construct a
sufficiently narrow frame as a refinement of the frame
induced by the edges of the unit ball. The distances in
every cone of this frame are then determined by only
one dimension. We can thus apply range trees and Yao's
result to compute a EMST in time O(N log a N). This
is better than the algorithms of [GBT] for the Lx-metric
and dimension greater than 5, while for the Loo-metric
and for the Ll-metric with d _< 5 their algorithms are
better by one or two log-factors.

We have no reason to believe that our algorithm is
optimal, so it remains an open question whether the
running time can be further improved. Also, it would be
interesting if we could determinize our algorithm with-
out increasing the running time.

R e f e r e n c e s

[c1] K. Clarkson, Fast expected-time and approxi-
mate algorithms for geometric minimum span-
ning tree, Proceedings 16 tn Annual A CM Sym-
posium on Theory of Computing, 1984, pp.
342-348.

[CEGSW] K. Clarkson, H. Edelsbrunner, L. Guibas,
M. Sharir and E. Welzl, Combinatorial com-
plexity bounds for arrangements of curves and
spheres, Discrete and Computational Geome-
try 5 (1990), 99-160.

[cs] K. Clarkson and P. Shot, Applications of
random sampling in computational geometry
II, Discrete and Computational Geometry 4
(1989), 387-422.

[Ed] H. Edelsbrunner, Algorithms in Combinatorial
Geometry, Springer-Verlag, Heidelberg, 1987.

[ECS] H. Edelsbrunner, L.J. Guibas, and J. Stolfi,
Optimal point location in a monotone subdivi-
sion, SIAM J. Computing 15 (1986), 317-340.

[ESh]

[GBT]

[PSI

[PT]

[ST]

[Se]

[Se2]

[sa]

H. Edelsbrunner and M. Sharir, A hyperplane
incidence problem with applications to count-
ing distances, manuscript, 1990.

H. N. Gabow, J. L. Bentley and I~. E. Tar-
jan, Scaling and related techniques for geom-
etry problems, Proceedings 16 th Annual ACM
Symposium on Theory of Computing, 1984, pp.
135-143.

F. Preparata and M. Shamos, Computational
Geometry - an Introduction, Springer-Verlag,
New York, 1985.

F. Preparata and R. Tamassia, Efficient spa-
tial point location, Lecture Notes in Computer
Science 382 (1989), 3-11.

N. Sarnak and 1l. Tarjan, Planar point location
using persistent search trees, Communications
of ACM 29 (1986), 669-679.

R. Seidel, A convex hull algorithm optimal
for point sets in even dimensions, Technical
Report 81-14, Dept. Computer Science, Univ.
British Columbia, Vancouver, 1981.

1~. Seidel, Linear programming and convex
hulls made easy, Proceedings 6 th Annual Sym-
posium on Computational Geometry, 1990, to
appear.

M. Shamos and D. Hoey, Closest-point prob..
lems, Proceedings 16 th Annual IEEE Sympo-
sium on Foundations of Computer Science,
1975, pp. 151-162.

P. Vaidya, A fast approximate algorithm
for minimum spanning tree in k-dimensional
space, Proceedings 25 th Annual IEEE Sym-
posium on Foundations of Oornputer Science,
1984, pp. 403-407.

A. Yao, On constructing minimum spanning
trees in k-dimensional spaces and related prob..
lems, SIAM J. Computing 11 (1982), 721-736.

210

