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A b s t r a c t .  This  paper  presents  a connect ion  

between the problem of drawing a graph with 

minimum number  of  edge cross ings ,  and the 

theory of  a r r angemen t s  of  pseudol ines .  In 

particular, we show that any given arrangement  

can be forced to occur in every minimum-crossing 

drawing of an appropriate graph. Using recent 

results of  Goodman,  Pollack and Sturmfels,  this 

yields that there exis ts  no p o l y n o m i a l - t i m e  

algorithm for producing a straight-l ine drawing 

of a graph, with minimum number of  crossings 

from among all such drawings. We also study the 

problem of drawing a graph with polygonal edges. 

Here we obtain a tight bound on the smallest  

number of breakpoints which are required in the 

p o l y g o n a l  l ines,  in order  to a c h i e v e  the 

(unrestricted) minimum number  of crossings.  

1. Introduction. 

A drawing of a simple graph G is a subset of  

the plane ~q2 where each vertex is represented by 
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a different point, a n d e a c h  edge is represented by 

a homeomorph of the closed unit interval I 1, with 

appropr ia te  ends. Further,  the drawings of any 

two edges meet at most once, and if they do, then 

either the two edges are incident to a common 

vertex,  where their drawings meet ,  or the two 

drawings cross at their  intersect ion point (the 

term cross is assumed to be understood).  The 

crossing number problem consists of  producing a 

drawing of G so as to achieve the least possible 

number  of  crossings (this parameter  is called the 

crossing number of G and denoted cr(G)). This 

p rob lem is o f  interest  in VLSI theory and in 

wiring layout problems (see [Le]), and it has long 

been of interest in the graph theory communi ty  

(see lEG1],  [Th2], [Tu]). Test ing whether the 

crossing number of  a graph is at most  an input 

number k is an NP-complete problem [G J]. 

In many  of  the appl icat ions,  further,  it is 

desirable that the edges be drawn as straight-line 

segments,  with no restriction to orientation. Such 

a drawing has classically been called rectilinear, 

and the smallest  number  of crossings in all such 

drawings is cal led the rect i l inear  crossing 

n u m b e r ,  denoted c r l ( G ) .  We remark  that 

practical ly every paper  on crossing numbers has 
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in fact  also deal t  with rec t i l inear  cross ing 

numbers  (the la t te r  some t imes  used  to 

approximate the former). Using the proof in [GJ], 

it can be shown that computing the recti l inear 

crossing number is NP-hard. While this Problem 

is not yet known to be in NP, c lear ly  the 

(car tes ian)  coord ina tes  of  the ver t ices  in a 

drawing can be assumed to be rational, and thus, 

i n t eg ra l .  

In this paper we study the connection between 

crossing number  problems and the theory  of  

arrangements  of  pseudol ines ,  an area of  high 

interest  in combinator ia l  geometry ,  which has 

most  no tab ly  been studied by Grt inbaum, 

Goodman, Pollack and others (see [Gr], [GP1-6]). 

For the purposes of  this paper, a pseudoline is a 

homeomorph in the plane of  the real line E.  An 

arrangement of pseudolines is a collection of  

pseudolines, every two of which meet at exactly 

one point, where they cross. The pseudolines in an 

arrangement  are usually drawn truncated,  with 

their ends in the infinite region of the drawing]. 

An arrangement divides IR 2 into regions or faces, 

and two arrangements are said to be isomorphic 

(or that one is a realization of the other) if they 

have the same facial structure. 

Our first  resul t  is as fo l lows (stated in 

abridged form here): 

T h e o r e m  1. Let  A be an arrangement of  

pseudolines. There is a graph G A, so that 

(i) Every drawing of G A with cr(GA) crossings 

contains a realization of A. 

(ii) If the members of A are straight-lines, then 

every  rec t i l inear  drawing of  G A with 

c r l ( G  A)  crossings contains a straight-line 

realization of A. | 

Thus if  we can construct  arrangements all of 

whose realizations are "bad" in some technical 

sense, we will also have graphs, all of  whose 

minimum-crossing drawings are also "bad" in the 

same sense. In part icular ,  recent  work of 

Goodman,  Pol lack  and Sturmfels  implies the 

fol lowing result: 

T h e o r e m  [ G P S ] .  For any n there exists an 

a r r a n g e m e n t  E n of  straight-lines, such that in 

every straight-line realization of E n the equations 

of  the lines require exponentially many bits. | 

Together with Theorem 1, this yields: 

T h e o r e m  2. There exists an infinite family of 

graphs  {G n},  such that in every  rect i l inear  

drawing of  G n with c r l ( G n )  cross ings ,  the 

coordinates  of  the vert ices require  more than 

polynomially many bits. | 

As a result, there does not exist a polynomial- 

t ime a lgor i thm for  p roduc ing  a r ec t i l inea r  

drawing of a graph which achieves the rectilinear 

crossing number. Here we are assuming a model 

where either (a) A physical  drawing must be 

produced (as in the VLSI applications), or (b) The 

coordinates  of  the ver t ices  must be expl ic i t ly  

written down. Of course, the result does not 

imply P~NP, for the simple reason that there may 

be a polynomial-time algorithm for computing the 

rectil inear crossing number, which does not rely 

on drawing the graph. In fact such an algorithm 

could not  even write the coordinates  of all 

v e r t i c e s .  

Let t>_l. Rather than drawing a graph with 

straight-line edges, one might ask instead for t- 

polygonal drawings, in which each edge is drawn 

as a t-polygonal line (a polygonal  line with at 

most t segments.  Thus t=l  yields recti l inear 
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drawings). As shown in [BD], in fact, using t=2 

instead of  t=l  can dramat ica l ly  decrease the 

number of crossings. However,  we remark that 

for any f ixed t there is a result  similar to 

Theorem 2. On the other hand, already with t=2, 

in polynomial  space ( logari thmical ly  many bits 

per vertex) one can get within a quadratic bound 

of the crossing number. Details are left to the 

full paper. 

How compl ica ted  can a min imum-cross ing  

drawing of a graph be? In other words, is there a 

fixed number t, so that for all graphs G, the 

crossing number of G can be achieved with a t- 

polygonal drawing? We show the answer is no, 

and thus, for graphs of crossing number k or less, 

the minimum possible such t depends on k; let us 

call it t(k). We prove: 

T h e o r e m  3. There exist constants Cl and c2, so 

that for every k_>l, 

Cl k 1/2-< t(k) _< c 2 k  1 / 2 . 1  

To obtain the lower bound, we apply a recent 

result  of Kra tochvi l  and Matousek [KM] on 

p o l y g o n a l  r e a l i z a t i o n s  o f  p s e u d o l i n e  

arrangements, and our construction in Theorem 1. 

The upper bound is obta ined by a di rect  

c o n s t r u c t i o n .  

2. P roo f  of T h e o r e m  I .  

In this section we will provide a proof  of  

Theorem 1. The full statement of the theorem, for 

the non-rectil inear case, is: 

T h e o r e m  1. Let  A be an arrangement of n 

pseudolines.  There  exists a graph G A with 

c r ( G A ) = 5 n ( n - 1 )  and IE(GA)I = O(n3),  with a 

dis t inguished subset S A of edges, such that in 

every drawing of  G A with cr(G A) crossings, S A 

contains a realization of A. 

Proof: The graph G A is obtained in several steps. 

See Fig. 1 for an example. 

1. We begin by replacing each x e A with two 

copies, x 1 and x 2 drawn very close to each other. 

Next, we obtain a plane graph L by placing a 

vertex at crossing and at each end of  every  

(truncated) pseudoline. Thus, for each xe A, L 

contains two edge disjoint paths Pl(X) and p2(x) ,  

where Pi(X) has ends (degree one vertices) Uil(X), 

u i2(x)  (we assume the labeling has been done so 

that U2k(X) and Ulk(X) are next to each other in 

the outer face of L, see Fig. 1 (b)). Next, we add to 

L a cycle C, joining all the vertices Uik(X) in the 

cyclic order, so as to form with L a plane graph. 

Further, C contains a vertex Vk(X) between every 

two consecutive vertices Ulk(X), U2k(X), k=l,2,  x 

c A .  

2. For each x e A, we add an edge e(x) with 

endpoin ts  Vl(X) and v2(x) ,  and so that e(x) is 

drawn inside C and "between" Pl(X) and P2(X). 

Let S be the set of  all edges e(x), x e A, and H = 

L u C u S .  See Fig. 1 (c). 

3. Take a copy H' = C ' u L ' u S '  of H, drawn outside H 

(and with the obvious notation), and a matching M 

joining the vertices of C to those in C', so that 

L u C u L ' u C ' u M  is plane. We replace every edge 

e={u,v} of C u C ' u M ,  in this drawing, by a set b(e) 

of m edge-disjoint paths of length 2 (where m = 

5n(n-1)+l)  from u to v. Let W be the graph 

obtained from C ~ C ' u M .  Thus the edges of W have 

no crossings. The resulting graph is G A, and we 

set S A = SuS' .  See Fig. l(d) 

Let  D A be the drawing we have just  

c o n s t r u c t e d ,  which  has 5n (n -1 )  c ros s ings .  
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Suppose now that D* is a drawing of G A w i t h  

cr(G A) _< 5n(n-1) crossings. Consider an edge t of 

C u C ' u M .  Since m > cr(GA), it follows that at least 

one of the paths in b(t) has IL0_ crossings in D*. 

Thus we obtain a plane drawing of C U C ' U M  in the 

obvious way. Since C u C ' u M  is 3-connected, it has 

a unique plane embedding, and its drawings in D* 

and D A are homeomorphic in the sphere. So in D* 

both C and C' bound faces of C ~ C ' u M ,  which must 

conta in  the drawings  of  C u L  and C ' u L '  

(respectively).  Next, let x, y e A. Then, by 

const ruct ion,  the endpoints  of  e(x)  and e(y) 

alternate along C. In fact, the endpoints of e(x) 

and the ends of each path Pi(Y), i=1,2, alternate 

along C (and similarly, the endpoints of e(y) and 

the ends of each path Pi(X), i=1,2, alternate along 

C). Since for any z e A, p l (z)  and p2(z) are edge- 

disjoint, we count 5 crossings in D* corresponding 

to the pair x,y (the Jordan curve theorem). In this 

way we count 5n(n-1)/2 crossings in the region 

bounded C. Similarly with C'. Thus 5n(n-1) = 

c r ( G A ) ,  and the 5n(n-1)/2 crossings we have just 

counted are a l l  the crossings in the region 

bounded by C (resp. C'). Either C or C' bound an 

inner face of  C u C ' u M  in D*, say C does. 

Consequently, in D*, (i) the drawing of CU L is 

plane, and (ii) For each xe  A, e(x) does not cross 

any edge in pi(x), i=1,2. Then (ii) implies that for 

each x e  A, e(x) is drawn "between" Pl(X) and 

P2(X). We conclude that S realizes A. l 

C o m m e n t :  The graph G A has vertices of large 

degree, but the same result can be achieved with a 

graph of maximum degree 3. 

The rect i l inear  vers ion  of  Theorem 1 is 

obtained by subdividing the edges in M O(1) 

times, so that D A is rectilinear. Using for A one 

of  the straight-line arrangements obtained from 

the results in [GPS], we have: 

Theorem 2. There exists an infinite family of 

graphs  {G n} ,  such that in every  rect i l inear  

drawing of  G n with c r l ( G n )  cross ings ,  the 

coordinates  of  the vert ices require more than 

exp(c I E(G n) 1% ) many bits, where c is a fixed 

constant. I 

3 .  Approximating the crossing number 

with polygonal edges. 

Let us denote with cr t (G) the t -po lygonal  

crossing number of G. In [BD], the following 

results where obtained: 

Theorem [BD] For every  m>_l there exists a 

graph G m with cr(G m)  = 4, but c r l ( G  m)_>m.  On 

the other hand, for every graph G, cr2(G) _< 2 

(cr(G)) 2. I 

As a result, the natural question arises, is 

there any fixed t, so that for all G, crt(G) = cr(G)? 

The answer to the question turns out to be no. In 

fact, let us define 

t ( k ) = m i n  { t :c r t (G)  =c r (G)  for a l l G  

with cr(G) _< k}. 

Then, as stated in Theorem 3 in the introduction, 

there are constants C l and c2, so that for every 

k_>l, 

Cl k 1/2 -< t(k) <_ c 2 k  1/2. 

In the rest of the paper we will sketch the proofs 

of the lower and upper bounds in (1). 

3.1.  The lower bound. 

In order to obtain the lower bound, we will use 

the fo l lowing  theorem,  r ecen t ly  p roved  by 

Kratochvil and Matousek. 
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T h e o r e m  [ K M ] .  For each n, there exists an 

arrangement Z(n) of n pseudolines, which cannot 

be realized with t-polygonal pseudolines unless t 

_> cn, where c is a constant. | 

[Remark: in [KM], arrangements are allowed to 

have pairs of pseudolines that do not meet, but 

this detail is easily dealt with to obtain the above 

theorem].  

Now given n, consider  the graph G Z ( n )  

produced by Theorem 1. Write H = GZ(n).  We have 

that c r (H)=O(n2) .  On the other hand, unless t _> 

cn, we also have crt(H) > cr(H) by definition of 

Z(n). Thus the lower bound in Theorem 3 is 

p roved .  

We point out that as a corollary of the lower 

bound, one can prove the fol lowing (curious) 

r e su l t :  

C o r o l l a r y .  For every t > 1 there exists a graph 

G, with cr(G) = crt(G), and such that for every t _>i 

> 1, cri(G) < cri_l(G ). I 

3.2. The upper bound. 

We will next outline a proof  of the upper 

bound t(k) _< O(k 1/2) (a complete proof is given 

in the full paper). Let D be a drawing of G with 

cr(G) = k crossings. We partition the edges of G 

into (at most) two classes, H and L, where 

H = set of edges with more than 2k 1/2 

crossings in D, and 

L = set of edges with at most 2k 1 /2  

crossings in D. 

(For convenience, we will also use H and L to 

refer to the corresponding subgraphs of G). Now 

if H is empty, then we are essentially done: we 

obtain, from D, a planar graph by placing a new 

vertex at each crossing point, in addition to the 

vertices of G. Since any planar graph has a 

straight-line drawing (see [Th2] for a short proof), 

we will obtain a (2k l /2) -po lygonal  drawing of  G 

with cr(G) crossings, as desired. In general, H is 

of course nonempty, but still this basic construct 

is the appropriate idea to use. 

Our procedure is to first draw H, and then L, 

always obtaining drawings homeomorphic to those 

in D. The key fact here is that I H I < k 1/2. So if 

we draw H, ignoring L, and using the planar graph 

construct ion as in the previous paragraph, the 

members of H will be (kl /2  + 1)-polygonal lines 

(we stress that the crossings of edges in H with 

edges in L are ignored here). Similarly, if we 

independently draw L, the edges will be O(k l /2 )  - 

polygonal lines (by definition of L). As sketched 

below, by building more structure especially into 

the drawing of H, we will be able to piece together 

the two drawings as desired. 

Consider the drawing of  H provided by D. In 

general ,  this drawing will have several  arc- 

connected components, which we call pieces. Each 

piece consists of  possibly more than one graph- 

theoretic component  of  H, and each edge in H 

appears in one piece. We will draw each piece 

separately, with some added structure. 

Let Z be a piece. Then the complement in 8 2 of 

Z consists of several connected regions, or faces 

(so if Z is planar these are faces in the standard 

sense). [Notice that the boundary of a face may 

not be simple]. One of  the faces is unbounded, in 

the sense that  it is h o m e o m o r p h i c  to the 

complement of a closed disk. Further,  the 

complement in 8 2 of H is partitioned into several 

connected regions, which we call plots. Each plot 
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is in general the intersection of several faces 

corresponding to different pieces, as discussed 

above. Thus, in general, each plot P will be 

incident to several pieces, all of whom, with at 

most one exception, are enclosed by P (and the one 

exception encloses P). In other words, P is 

homeomorphic to an open disk (or to B 2) with 

several holes cut out (where each boundary 

component of P corresponds to a different piece). 

How do H and L fit together? As follows: each 

edge in L is partitioned into sections, each 

contained in a separate plot. 

The basic idea is that we can draw any piece of 

H, using the planar graph method described above, 

so that in addition each face has "bounded link 

distance" (that is, any two points in the face can 

be joined by a 2-polygonal line). This is achieved 

(roughly) by adding, to each face, an additional 

vertex to act as a "center", with edges joining this 

point to all vertices on the boundary of the face, 

and then drawing the new graph. 

We next draw each "chunk" of L contained in a 

plot, as follows. Consider any given plot P. Regard 

it as drawn on the sphere. Then contract to a 

point every piece of H incident to P. We obtain a 

drawing which is (essentially) homeomorphic to 

the subset of L contained in P. As above, we now 

construct a planar graph by placing a vertex at 

each crossing, and also at each "shrunken piece". 

It is not difficult to see that, having drawn all 

of L as in the previous paragraph, we can now 

integrate this drawing with small copies of the 

drawings of the pieces of H produced before, to 

obtain a drawing of G homeomorphic to that in D. 

Further, because of the bounded link distance 

property of the faces (of pieces of H), the drawing 

of any edge of L requires O(1) additional 

breakpoints as it crosses from one plot to another. 

Thus, in total, the number of breakpoints in any 

edge e in L is in the worst case proportional to the 

number of crossings e has in D. Hence every edge 

is drawn as an O(kl/2)-polygonal line, as desired. 

This concludes the sketch of the proof of, the 

upper bound t(k) _< O(kl/2) .  
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