
SIGPLAN Notices

	

28

	

1973 May

SNOBOL4 as a Language for Bootstrapping a Compile r

Richard Dunn

Abstract : The programming language SNOBOL4 is evaluate d
for the task of bootstrapping the compiler for a new
language . Based on the results of an actual project ,
SNOBOL4 was found to have adequate power to write th e
bootstrap, but could not produce an acceptably effic-
ient translator .

There are circumstances in the design of a new programmin g
language in which it is necessary to have a working compiler be -
fore the language specification is complete, but where this com-
piler will not be the final " production" compiler . One obvious
reason for the existence of such a compiler is to allow th e
language designer to test language features for ease of use b y
writing actual programs, and for ease of compilation by actuall y
trying to translate them . Another use is for languages which
are suitable for compiler writing and in which the productio n
compiler for the language is to be written in the language it -
self . The initial compiler is then termed a " bootstrap" ; it i s
this case which we wish to consider . The evaluation of SNOBOL 4
as a language for such a bootstrap is based on an actual attemp t
to bootstrap a compiler for a language called JANUS . The struc-
ture and complexity of JANUS closely resemble PASCAL(1), al -
though JANUS has no operator precedence relations . The bootstrap
was attempted on a Control Data 6400 computer .

First let us consider the general criteria for producing a
bootstrap compiler ; we may then evaluate particular reasons fo r
which SNOBOL4 meets or fails to meet these criteria . First, we
shall require that the compiler be easily and quickly written .
It is important not to get carried away with the construction o f
this compiler, since it will only be used until the productio n
compiler is operational and then discarded . Related to this i s
the need for a program which can be easily modified, since th e
language that we are compiling will probably change as we are
writing the bootstrap . The third requirement is that the boot -
strap compiler must be reasonably efficient . It will be accept-
able if it is several times slower than the projected speed o f
the production compiler, since the bootstrap will only be in us e
for a short time . Nevertheless, during that short time, it wil l
have to translate the entire production compiler until it is

http://crossmark.crossref.org/dialog/?doi=10.1145%2F986948.986951&domain=pdf&date_stamp=1973-05-01

SIGPLAN Notices

	

29

	

1973 May

working . The production compiler will be a substantial amoun t
of code--say, several thousand lines--and may have to be trans-
lated several dozen times before it is healthy enough to trans -
late itself . (It is this last criterion which limits the use -
fulness of otherwise elegant, powerful schemes for producin g
experimental compilers . It was also this criterion which brough t
the downfall of the compiler described in this paper .)

The requirement that the bootstrap be easily and quickl y
written implies a need for higher-level language features .
SNOBOL4 has a convenient and unusually flexible procedure mech-
anism (in which any line of code may be executed as a part of any
procedure), including recursive procedures . The data structurin g
facilities include dynamically created arrays, tables with auto-
matic lookup on any type of key, and a structure-with-field s
facility . By use of the structure facility, trees, branche d
lists, and recursive structures may be built . A general dynami c
storage allocation scheme is built in and completely transparen t
to the programmer . (At least until he starts running out o f
storage, but more on that later .) The only feature common i n
other languages but not present in SNOBOL4, which proved to b e
irritating at all, was the lack of a conditional of the form :

IF condition THEN option, ELSE option 2

which in SNOBOL4 must be written in one of the forms :

condition : S (Ll)

	

condition option, :S(Ml)
option 2

	

:(L2)

	

or

	

option2

Ll option,

	

Ml .

L2

In either case, the programmer must invent a label or two ; it can
be a nuisance to invent many labels (keeping them unique) in a
large program .

Another factor in allowing easy implementation is the exis-
tence of good debugging facilities . Again, SNOBOL4 looks good
in general, but this time there is a glaring exception . It i s
possible to trace variables as they change values, and procedure s
and labels as they are referenced . A post-morten dump labele d
with variable names is available . All debugging facilities ar e
at the source language level, making them easy to use . The on e
flaw is that there is no provision for examining either the struc-
ture or the contents of a variable whose value is an instance o f
a data structure (defined by the DATA function .) The only

SIGPLAN Notices

	

30

	

1973 May

information directly available for printing is the name of th e
overall structure assigned to a variable . In our compiler, al -
most all variables were structured and we were unable to use man y
of the debugging facilities . It would be possible to write a
structure-dump procedure for a particular program in SNOBOL4, but
this is too tedious . By comparison with other debugging facili-
ties of SNOBOL4, it seems unusual that no structure dump i s
available . Even the diagnostics(perhaps "diagnostic") give prac-
tically no information . The usual error detected is an attempt t o
reference a nonexistent field of a structured value ; the diag= -
nostic is " ILLEGAL DATA TYPE . " No identifying information abou t
which reference was illegal is given . Consider the followin g
(taken from our compiler) :

XMODE (X) = XMODE (LEFT (L))

	

: ($RPROC (LAST (X)))

Even in this statement, " ILLEGAL DATA TYPE " could mean :

L has no LEFT fiel d
X has no XMODE field
LAST(X) has no RPROC field

LEFT(L) has no XMODE fiel d
X has no LAST fiel d

If it still seems that this is only one small point, let me ad d
that bugs of this sort, along with the debugging runs to find
and correct them, accounted for over fifty runs in about thre e
months .

Another debugging facility which would have been helpful i s
a provision for declaring the modes of variables, forcing th e
compiler to check usage of such variables . First, notice tha t
this is not necessarily at odds with the SNOBOL 4 design philo-
sophy of not requiring the programmer to provide declarations ; i t
only allows him to provide declarations as a check against hi s
own carelessness . Second, notice that this provides a more use-
ful check than an execution-time diagnostic about the use of a
value of the wro ng mode . It allows the error to be detected when
the incorrect value is first stored, not later when it is refer-
enced (possibly after being copied about from one variable t o
another several times .)

The requirement of easy modification of the compiler mani-
fests itself in a need for succinct, lucid ways of expressing th e
structures and operations of the compiler . In SNOBOL4, the easy
manipulation of character strings allows storage and use of con-
stants with mnemonic value such as "INT", "REAL,ARRAY", an d
"PROC,BOOL,EXT " rather than encoding all such values into integers
or bit strings . The free use of data structure field selectors

SIGPLAN Notices

	

31

	

1973 May

allows one to follow pointers into a complicated structure in a
natural fashion . Modifications to the lexical analyzer of a
SNOBOL4-coded compiler are naturally trivial since a strong poin t
of SNOBOL4 is its ability to manipulate strings of characters .
The high-level language features mentioned earlier are an asse t
in making the program easy to modify . For example, the compiler
may not use recursive procedures in its initial form, but a chang e
in the syntax may introduce recursion of a particular syntacti c
element which can best be expressed by simply allowing the cod e
which processes that element to call itself . In our experience ,
the bootstrap was very easy to modify once the main sections o f
code were well debugged .

The final criterion was that the bootstrap compiler b e
reasonably efficient . In a multiprogramming environment (such as
the CDC 6400 on which our project was attempted) the program
should be efficient with respect both to time and to memory used .
Fortunately, SNOBOL4 allows the programmer to have control ove r
the balance here . He may choose to use less memory with a con-
sequent increase in running time due to more frequent garbag e
collections . Unfortunately, SNOBOL4 tends to use unusually hig h
amounts of storage and time for rather simple tasks . The fact
that all variable modes are latent forces run-time checks befor e
every operation, and it requires storage for type informatio n
associated with each value . With heavy use of data structures th e
problem gets worse, since the interpreter must first find eac h
field which is referenced, and additional information must b e
provided to identify the fields . In a compiler which is con-
stantly generating and discarding structured values, the extr a
storage used for each structure also becomes apparent in in -
creased execution time--due to more frequent garbage collections .
(In our bootstrap compiler, it was not unusual at all to have a
garbage collection occurrinq every five or six lines of code .)

A separate problem of excessive storage use is the lack of a
data initialization statement, particularly if the compiler i s
essentially tabledriven (as ours was .) Tables must be preset by
executable code which will stay in memory after it has served it s
purpose . In our compiler, the initialization code represente d
about one-fourth of the total number of statements in the com-
piler, and these statements were by far the most complex due t o
the number of structure references . This extra code caused a
problem which was compounded by the large amount of memory use d
by the SNOBOL4 interpreter itself . For our bootstrap to run
efficiently, it required about three times the memory that th e
FORTRAN compiler (which itself is somewhat large and not overlaid)

SIGPLAN Notices

	

32

	

1973 May

normally uses . Stating it differently, the bootstrap needed abou t
80% of the available memory in the whole machine to run without
too-frequent garbage collections . It would not run at all with -
out at least 67% of the available memory .

SNOBOL4 provides no "object program" format, which required
that the compiler be retranslated each time that it was used ,
using about 17 seconds of CPU time . (With a special assembly -
language subroutine, a thorough knowledge of the machine an d
operating system, and a couple of tricks, one might be able t o
circumvent this problem.) The initialization code took another
two seconds--all before any compilation actually took place .
When the bootstrap was finally running, it would translate abou t
four lines of simple code (excluding comments) per second of CP U
time . This is at least a factor of 40 slower than the FORTRA N
compiler on similar text, and was reached after some carefu l
tuning of certain parts of the bootstrap . We regretfully decide d
that this was unacceptably slow, showing no prospect of admittin g
enough optimization to make it acceptable . We were able to mak e
the decision even without considering the compiler's voraciou s
appetite for memory .

I should emphasize that the preceding, rather dismal apprais-
al applies only to the use of SNOBOL4 for the particular problem
of bootstrapping a compiler and not to the general utility o f
the language . Part of the problem may have been an overly genera l
parsing algorithm . This would not have made a difference in ou r
case, but it does seem to indicate that SNOBOL4 is useful fo r
writing "toy" (non-production) compilers which will only translat e
a small number of comparatively short programs in their usefu l
lifetimes, either for instructional or for research uses . For th e
bootstrapping problem, perhaps the reasons for the failure of th e
SNOBOL4-coded bootstrap will indicate a more suitable language .
I feel that the problems can be summed up by stating that SNOBOL 4
allows for too much freedom and too many generalities, withou t
treating simple cases specially, to allow it to be made suffi-
ciently efficient to produce a good bootstrap compiler for a
practical higher-level language .

1 . Wirth, N . "The Programming Langua ge Pascal," Acta
Informatica, Vol . 1, Fasc . 1(1971) .

