Check for
Updates

SIGPLAN Notices 28 1973 May

SNOBOL4 as a Language for Bootstrapping a Compiler
Richard Dunn

Abstract: The programming language SNOBOL4 is evaluated
for the task of bootstrapping the compiler for a new
language. Based on the results of an actual project,
SNOBOL4 was found to have adequate power to write the
bootstrap, but could not produce an acceptably effic-
ient translator.

There are circumstances in the design of a new programming
language in which it is necessary to have a working compiler be-
fore the language specification is complete, but where this com-
piler will not be the final "production" compiler. One obvious
reason for the existence of such a compiler is to allow the
language designer to test language features for ease of use by
writing actual programs, and for ease of compilation by actually
trying to translate them. ZAnother use is for languages which
are suitable for compiler writing and in which the production
compiler for the language is to be written in the language it-
self. The initial compiler is then termed a "bootstrap"; it is
this case which we wish to consider. The evaluation of SNOBOL4
as a language for such a bootstrap is based on an actual attempt
to bootstrap a compiler for a language called JANUS. The struc-
ture and complexity of JANUS closely resemble PASCAL(l), al-
though JANUS has no operator precedence relations. The bootstrap
was attempted on a Control Data 6400 computer.

First let us consider the general criteria for producing a
bootstrap compiler; we may then evaluate particular reasons for
which SNOBOL4 meets or fails to meet these criteria. First, we
shall require that the compiler be easily and quickly written.
It is important not to get carried away with the construction of
this compiler, since it will only be used until the production
compiler is operational and then discarded. Related to this is
the need for a program which can be easily modified, since the
language that we are compiling will probably change as we are
writing the bootstrap. The third requirement is that the boot-
strap compiler must be reasonably efficient. It will be accept-
able if it is several times slower than the projected speed of
the production compiler, since the bootstrap will only be in use
for a short time. Nevertheless, during that short time, it will
have to translate the entire production compiler until it is


http://crossmark.crossref.org/dialog/?doi=10.1145%2F986948.986951&domain=pdf&date_stamp=1973-05-01

SIGPLAN Notices 29 1973 May

working. The production compiler will be a substantial amount

of code--say, several thousand lines--and may have to be trans-
lated several dozen times before it is healthy enough to trans-
late itself. (It is this last criterion which limits the use-
fulness of otherwise elegant, powerful schemes for producing
experimental compilers. It was also this criterion which brought
the downfall of the compiler described in this paper.)

The requirement that the bootstrap be easily and gquickly
written implies a need for higher-level language features.
SNOBOL4 has a convenient and unusually flexible procedure mech-
anism (in which any line of code may be executed as a part of any
procedure), including recursive procedures. The data structuring
facilities include dynamically created arrays, tables with auto-
matic lookup on any type of key, and a structure-with-fields
facility. By use of the structure facility, trees, branched
lists, and recursive structures may be built. A general dynamic
storage allocation scheme is built in and completely transparent
to the programmer. (At least until he starts running out of
storage, but more on that later.) The only feature common in
other languages but not present in SNOBOL4, which proved to be
irritating at all, was the lack of a conditional of the form:

IF condition THEN option, ELSE option

1 2

which in SNOROL4 must be written in one of the forms:

condition :S8(L1) condition optionl : S (M1)
option2 : (L2) or option2
L1 optionl M1

L2

In either case, the programmer must invent a label or two; it can
be a nuisance to invent many labels (keeping them unique) in a
large program.

Another factor in allowing easy implementation is the exis-
tence of good debugging facilities. Again, SNOBOL4 looks good
in general, but this time there is a glaring exception. It is
possible to trace variables as they change values, and procedures
and labels as they are referenced. A post-morten dump labeled
with variable names is available. All debugging facilities are
at the source language level, makina them easy to use. The one
flaw is that there is no provision for examining either the struc-
ture or the contents of a variable whose value is an instance of
a data structure (defined by the DATA function.) The only



SIGPLAN Notices 30 1973 May

information directly available for printing is the name of the
overall structure assigned to a variable. 1In our compiler, al-
most all variables were structured and we were unable to use many
of the debugging facilities. It would be possible to write a
structure-dump procedure for a particular program in SNOBOL4, but
this is too tedious. By comparison with other debugging facili-
ties of SNOBOL4, it seems unusual that no structure dump is
available. Even the diagnostics (perhaps "diagnostic") give prac-
tically no information. The usual error detected is an attempt to
reference a nonexistent field of a structured value; the diag-
nostic is "ILLEGAL DATA TYPE." No identifying information about
which reference was illegal is given. Consider the following
(taken from our compiler):

XMODE (X) = XMODE (LEFPT (L)) : (SRPROC{LAST (X)))
Even in this statement, "ILLEGAL DATA TYPE" could mean:

L. has no LEFT field LEFT (L)Y has no XMODE field
X has no XMODE field X has no LAST field
LAST (X) has no RPROC field

If it still seems that this is only one small point, let me add
that bugs of this sort, along with the debugging runs to find
and correct them, accounted for over fifty runs in about three
months.

Another debugging facility which would have been helpful is
a provision for declaring the modes of variables, forcing the
compiler to check usage of such variables. First, notice that
this is not necessarily at odds with the SNOBOL 4 design philo-
sophy of not requiring the programmer to provide declarations; it
only allows him to provide declarations as a check against his

own carelessness. Second, notice that this provides a more use-
ful check than an execution-time diagnostic about the use of a
value of the wronag mode. It allows the error to be detected when

the incorrect wvalue is first stored, not later when it is refer-
enced (possibly after being copied about from one variable to
another several times.)

The requirement of easy modification of the compiler mani-
fests itself in a need for succinct, lucid ways of expressing the
structures and operations of the compiler. In SNOBOL4, the easy
manipulation of character strings allows storage and use of con-
stants with mnemonic value such as "INT", "REAL,ARRAY", and
"PROC,BOOL,EXT" rather than encoding all such values into integers
or bit strings. The free use of data structure field selectors



SIGPLAN Notices 31 1973 May

allows one to follow pointers into a complicated structure in a
natural fashion. Modifications to the lexical analyzer of a
SNOBOL4-coded compiler are naturally trivial since a strong point
of SNOBOL4 is its ability to manipulate strings of characters.
The high-level language features mentioned earlier are an asset
in making the program easy to modify. For example, the compiler
may not use recursive procedures in its initial form, but a change
in the syntax may introduce recursion of a particular syntactic
element which can best be expressed by simply allowing the code
which processes that element to call itself. In our experience,
the bootstrap was very easy to modify once the main sections of
code were well debugged.

The final criterion was that the bootstrap compiler be
reasonably efficient. In a multiprogramming environment (such as
the CDC 6400 on which our project was attempted) the program
should be efficient with respect both to time and to memory used.
Fortunately, SNOBOL4 allows the programmer to have control over
the balance here. He may choose to use less memory with a con-
sequent increase in running time due to more frequent garbage
collections. Unfortunately, SNOBOL4 tends to use unusually hiagh
amounts of storage and time for rather simple tasks. The fact
that all variable modes are latent forces run-time checks before
every operation, and it requires storage for type information
assocliated with each value. With heavy use of data structures the
problem gets worse, since the interpreter must first find each
field which is referenced, and additional information must be
provided to identify the fields. In a compiler which is con-
stantly generating and discardinag structured wvalues, the extra
storage used for each structure also becomes apparent in in-
creased execution time--due to more frequent garbage collections.
(In our bootstrap compiler, it was not unusual at all to have a
garbage collection occurring every five or six lines of code.)

A separate problem of excessive storage use is the lack of a
data initialization statement, particularly if the compiler is
essentially tabledriven (as ours was.) Tables must be preset by
executable code which will stay in memory after it has served its
purpose. In our compiler, the initialization code represented
about one-fourth of the total number of statements in the com-
piler, and these statements were by far the most complex due to
the number of structure references. This extra code caused a
problem which was compounded by the large amount of memory used
by the SNOBOL4 interpreter itself. TFor our bootstrap to run
efficiently, it required about three times the memory that the
FORTRAN compiler (which itself is somewhat large and not overlaid)



SIGPLAN Notices 32 1973 May

normally uses. Stating it differently, the bootstrap needed about
802 of the available memory in the whole machine to run without
too-frequent garbage collections. It would not run at all with-
out at least 67% of the available memory.

SNOBOL4 provides no "object program" format, which required
that the compiler be retranslated each time that it was used,
using about 17 seconds of CPU time. (With a special assembly-
language subroutine, a thorough knowledge of the machine and
operating system, and a couple of tricks, one might be able to
circumvent this problem.) The initialization code took another
two seconds--all before any compilation actually took place.

When the bootstrap was finally running, it would translate about
four lines of simple code (excluding comments) per second of CPU
time. This is at least a factor of 40 slower than the FORTRAN
compiler on similar text, and was reached after some careful
tuning of certain parts of the bootstrap. We regretfully decided
that this was unacceptably slow, showing no prospect of admitting
enough optimization to make it acceptable. We were able to make
the decision even without considering the compiler's voraciocus
appetite for memory.

I should emphasize that the preceding, rather dismal apprais-
al applies only to the use of SNOBOL4 for the particular problem
of bootstrapping a compiler and not to the general utility of
the language. Part of the problem may have been an overly general
parsing algorithm. This would not have made a difference in our
case, but it does seem to indicate that SNOBOL4 is useful for
writing "toy" (non-production) compilers which will only translate
a small number of comparatively short programs in their useful
lifetimes, either for instructional or for research uses. For the
bootstrapping problem, perhaps the reasons for the failure of the
SNOBOL4-coded bootstrap will indicate a more suitable language.

I feel that the problems can be summed up by stating that SNOBOL4
allows for too much freedom and too many generalities, without
treating simple cases specially, to allow it to be made suffi-
ciently efficient to produce a good bootstrap compiler for a
practical higher-level language.

1. Wirth, N. "The Programming Languaage Pascal," Acta
Informatica, Vol. 1, Fasc. 1(1971).



