SIGPLAN Notices 11
MOLB1.2. Papers 1973 March

[enusceript prepared for the
n Second Annual HMocting of the
Gesellschaft fir Informatik, August 4, 1972
Karlsruhe, October 2-4, 1972

Check for
Updates

MOLBL.2,1, A _Hierarchy of Control Structures

mESREaOTzslNooEgnoorsTsoRnogooonsme

Eberhard Wegner
Informatik-Forschungsgruppe Programmiersprachen und Compiler Il
Technische Universitat Berlin, Berlin 10, Ernst-Reuter-Platz 8

Summary: Four classes of control structures for sequential programs are shown to offer
increasirj expressive power., They allow control to be specified by
(1) four well-chosen structures with one entry and one exit each,
(2) the one=-entry loop with escapes,

) the distributor-entered ioop with escapes, and

)

(3
(4

It is shown that a given program scheme can be described by the one-entry loop with

ihe unrestricted jump.

escapes if and only if all control paths from the start to a cycle enter that cycle
et the same node (irrespective of the number of nodes where the cycle is re-entered).

1. Motivation

Frequently occurring control structures are represented in programming languagas by
speeial constructs in order to make programs easy to understand, to prove covrect, to
modify, to debug, and to optimize globally during compilation., These structures are
used for the "deductive" approach to program construction by stepwise refinement
(Digkstra 1970, Wirth 1971). Programs which were originally designed in terms of
general flowcharts can be "inductively" structured to fit such language constructs
(Ashcroft and Manna 1971) either in order to conform to a programming language not
providing the jump or simply to gain the advantages stated above.

2. Programs controlied by the unrestricted jump

Before describing special control structures, lel us remember the most general form
of control for sequential programs. Let a "program scheme" be a (non-empty and finite;
directed graph containing a distinguished node (the "start") from which paths lcad .o
all other nodes. From any node to any other node there leads at most one edge, and
there is no reflecting edge. A "program" is a program scheme in which each node is
Tabelled by some executable "action" which has a single entry and any number of cxits.
Each exit must identify an edge leaving the node. Let us depict each node by a rect-
angle (labelled or not) and each edge by an arrow connecting two rectangles. Edges

that enter the same node are drawn to flow together before entering the node in order
to indicate that there is only one entry to its action. The start is marked by an
entering edge which leaves no node. A figure representing a part of a program scheme
will contain edges entering or leaving that part.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987000.987002&domain=pdf&date_stamp=1973-03-01

SIGPLAN Notices 12 1973 March
3. The four structurcs with one entry and one exit each
Dijkstra (1970) and Wirth (1971) use four structures for decomposing actions into
subactions: the concatenation, the selection (including two special cases), the pre-
checked loop, and the post-checked loop., Each subaction is either a test which cannot
be further decomposed or a piece of program with any number of internal paths but only

one exit,

]
i
!
:
]
i
i

- e e W] - e

© v oEn e e e o o
-«

o G G Grm e e O -
-
<
- ¥

4
i
]
t
b
H
i
t
i
t
!
1
H
i
{
J
!
t
LS

-
<

Asheroft and Manna (1971) give an algorithm to express any flowchart program by some
of thesc control structures (where control variables and branches must be added if
and only if the flowchart contains {wo or more tests and at least one loop that are
not contained in inner blocks). These structures meet the objectives in section 1
rather well, but occasionally the programmer is burdened with joining several control
paths into th single exit and separating them jmmadiately afterwards. Knuth and
Floyd (1971) show that two familiar programs, a tabie search (a loop with two exits)
and a backtracking program (two crossing loops), are more naturally controlled by
Junns than expressed in terms of these structures by the addition of some actions.

!
i,y SN o 7 ;
sihccompare :jxncrgf?nt§:i>i1nsert —ﬁTéb -=»iw up»—Tf?try _Jiidown >

J

4. Programs controlled by the one-entry loop with escapes

4.1 The jump to a labelled end is frequently used in ALGOL-1ike languages. Several
languages provide special instructions to leave a control construct:

-~ ALGOL 68 with its completer (Wijngaarden, Mailloux, Peck, and Koster 1969),

-= BCPL with the break command (Richards 1969), and

-- BLISS with the escape expressions (Wulf, Russell, and Habermann 1971).

Wl (1971) claims that with the escape "the desirable properties of goto-less ¢raphs
are retained", and Clint and Hoare (1972) state that "programs which confine their
Jumping to genuine returns and exits do not present any great difficulty in the proof
of their correctness™. Since such an exit jump may terminale the execution of any
enclosing control construct, we will not adopt the condition that each control

svructure has a single cxit,

SIGPLAN Notices 13 1973 March

4.2 Definitely the most primitive decomposition of an action 4 is the decompositcion
into two subactions Al and AZ' The node labelled by 4 is replaced with two nodes
labelled by Al and Ay The definitions in section 2 imply the following rules foir tnc
"binary decomposition": The single entry to the action 4 will transform into the entry
to onc of the subactions, say AJ. Consequently, all edges entering node 4 will enter
Al and if node 4 is the start, then A, will be the start. A "forward" edge from 4
to 4, must be introduced so that each node can still be reached from the start. A

“bac&ward” edge from A to AJ may be added. Each edge leaving A nust be replaced by

1

an cdga leaving Ay oor by an cdge leaving A, or by both edges. Given an arbitrary
number of exits from 4, the following figure shows the resulting "one-entry loop with
escapes” including all possible control paths:

9 B LB)) B3 S B3 & M@ D eI

V

BN &2 FE0 e R AR &Y 9 §F & D &5

4.3 Convursely, in a given program scheme or progran two nodes forming a one-entry
Toop with escapes may be found ++' combined into a single node. This "binary
composition" is illustrated here for the two programs discussed by Knuth and Floyd:

mop s G e oM MB cim em LES o G D G £4s LD Ewo Sme cam GRS et ESD i LR @o e Lm s o5 e
reas«-;u«a;wme&s-@m&arsrsw.sunce.au.aetsm‘ []

[N] &EWIMW_J ‘ sy
s y ~ i : f 1
compare incrementi__l e insert
; N L_&g_ \ B A Y. ! ,/]
Lg (= = == =3 S S te= G RS G A e e e ﬁ&sl

Iﬂu [-t s OE= &= = el & 2 S B D - [= ") =) B =9 =] =2 s S5 (=] g

and
rA e 1 st . rws | j :)

et W - ol down_ ;

H T e T e e T d

4.4 Theorem; A given program scheme can be reduced to a single node by repeated
birnary composition if and only if all paths from the start to a cycle enter
that cycle at the same node.

Corollary: A given program in linear representation (in which -each transfer of
control is understood as a jump) can be reduced to a single action by repeated
binary composition if there is no forward jump to a point between a backward jump
and its target. (The inverse assertion does not hold since there may be e.g. a
jump out of a loop and a forward jump back into it.)

1.5 As a preparation for the proof of the theorem, we give an algorithm to check a

yrogram scheme for the condition stated and to mark cach édge either as forward or

1s backward., (The edges marked as forward will {mpose a lattice structure on the set

f nodes.) We will use a notation based on ALGOL 68.

SIGPLAN Notices 14 1973 March
proc can be reduced = (programacheme p) bool:

begin
proc mark leaving edges = (node node):

begin mark node as active;
for cach edge lcaving node do
1/ the node entered by edge is marked active
then mark edje as backward;
if edge is marked forward then goto false fi
else mark edge as forward;
if edge is marked backward then goto false fi;
mark leaving edges (the node entered by edge)
fis
ark node as nol active
ends
mark all edges as not forward and not backward;
mark all nodes as not active;
mark leaving edges (start of p); true exit

false: false
4.6 The "only if" assertion of the theorem is obvious. As a proof for the "if"
asserticn we give an algorithm to accept a program scheme which has been successfully
marked by the procedure can be reduced in 4.5 and to deliver a "composition tree",
that is an ordered tree in which the terminal nodes are the wodes of the given program
scheme and in which the terminal nodes of each subtree can be reduced to a single node
by repetitive binary composition,
proc dependent iree = (node node) tree: co assume a global proc composition = (tree ti,
t8) tree: ¢ the ordered tree having t7 and t2 as its direct subtrees ¢; assume a global
program scheme p which has been successfully marked; accept as parameter a node node
of p and deliver a subtree of a decomposit{on tree of p which contains as its termival
nodes exactly those nodes n of p for which each path from the start to n contains node;
if called with the start of p as parameter, this procedure will deliver a composition
tree of p co

begin node n; tree t:= node;

while there is a node n such that each forward cdge entering n- leaves a terminal
node of ¢
do t:= composition (t, if n is entered by a backward edge then dependent tree (n)
else n fi); t
end
4.7 A possible representation of the one-entry loop with escapes is (in semi-precise
explanation, related to the definition of ALGOL 68) rep range r; 815 8, per where r
is a "range identifier" defined by the "range declaration" range r, the pair rep ...

SIGPLAN Notices 15 973-March

per cncloses the two direct subactions 3, and g, to be cxecuted repeatedly, and cach

6, wmay contain conditional escapes of the form £f b then v leave r fi; here b is a

boolecan expression and v yields the value to be delivered by the action if its execution

is completed by the conditional escape. (Note how this escape can replace the jumps and

the completer in the procedure can be reduced above,) For convenience we introduce some

contractions:

== if trus then v leave r fi may be replaced by v leave r.

== gliip leave may be replaced by leave.

==~ lcave r, where r identifics the directly containing range, may be replaced by leave
if simultaneously the declaration of » .is removed.

The following contraction allows to represent a one-entry loop with any number of

constituents and escapes:

~= yep rep ... leave per; ... per way be replaced by rep ...; ... per.

In order to obtain representations of the four one-exit structures, we give some more

syntactic sugar:

== rep ... leave per may be replaced by begin end.

———

== rep 1 not bl then v, leave fi; s; tf not b2 then vy leave fi. per may be replaced by

1

vy gh1lv bl rep 8 per v2 while bg.

-~ gkip while truec may be omitted.

== begin range r; begin if b then leave fi; 8, leave r end, 8, end may be replaced by
if b then 8, ¢ else 8, [t

-~ clse skip fi may be replaced by ft.

== if =1 then s, else & [may be replaced by case © in &, out & esac.

== 1f i=n then 8, else case T in S5 1ees 8

., 8, out & esac.

1 out 8 esac fi for n22 may be replaced by

case 1 in 8ys o
4.8 The escape from any enclosing control construct is provided in BLISS. The BCPL
break command is restricted to escape from the smallest enclosing loop. The ALGOL 68

completer causes completion of the elaboration of the directly surrounding serial-

clause but not of a repetitive statement; it can be generalized to complete the elab~
oration of any containing serial-clause (Wegner 1972). The BLISS escape must and the
BCPL break cannot deliver a value, while the ALGOL 68 completer may.

4.9 As Wulf (1971) reports, the escape allows to program conveniently without the jump.
The contractions in 4.7 show that the one-entry loop with escapes is at least as power-
ful as the collection of one-exit structures. Indeed, it is even more powerful since it
can describe the two examples of Knuth and Floyd as well as the program that Ashcroft
and Manna constructed to demonstrate the need for additional control variables. How-
ever, it is less powerful than the unrestricted jump, since the following program
cannot be reduced to a single node by binary composition:

—-~=——=—=—=-> Hr) hm.m’? i

gﬁh{th MOV es t;l bF Black moves}

SIGPLAN Notices 16 1973 March

5. The distributor-entercd loop with cscapes

5.1 The fact that the simple game in 4.9 cannol be described by the one-entry lonp
with escapes gives rise to an afterthought. Here is a more powerful and complicated
control structure, a loop preceded by a distributor to its constituents:

~

\‘/

- s e

s I
r ¥
~ ”!] A
e
Pt
§
<
_ Y
7 3

- ., =
=

5.2 By a slight extension to the argument in 4.5 and 4.6, a given program scheme can
be reduced to & single node by repeatedly combining nodes into such a "distributor-
entered loop with escapes" if and only if all paths from the start to a cycle enter
that cycle by edges that leave the same node.

5.3 The cases where the distributor 8, delivers an integer < or a boolean b lend
themselves to the representations at © enterloop Oys wers O out 8y e endloop

(where the out g is casily built around the basic construct) and on b enterloop
5, otherwise 84 endloop. This latter construct effectively allows to transfer control

between the then and the else clauses of an zf construct. The gencral construct might

read performing 8, enterloop $,, «.., 8 endloop vihere &, may contain enter stateents
jdentifying a loop constituent, and each 8y for 2= 0, 1, ..., n may contain escapes.
5.4 i one-entry loop with escapes is a special case of this structure; let 8, be
enter 1. Here is a program which cannot be expressed even by the distributor-entcred

loop with escapes:

= it

i maves first? “ﬁj

== — ,__}]_I__ [Ainaies Y ~ 0
N oves next?}c |

j unite moves 52 Who n

Black moves)

SIGPLAN Notices 17 1973 March

References
E. Ashcroft and Z. Manna, The translation of "go to" programs to "while" programs,
“h”IFIP Congress, Ljubljana, preprint TA-2, 147-152, August 1971.
M. Clint and C.A.R. Hoare, Program proving: jumps and functions,
Acta informatica 1,214-224, 1972,
E.W. Dijkstra, Notes on structured programming,
Report 70-Wsk-03, Technical University Eindhoven, April 1970,
D.E. Knuth end R.W. Floyd, Notes on avoiding "go to" statements,

Information processing letters 1, 23-31, February 1971,
M. Richards, BCPL: A tool for compiler writing and systems programming,

AFIPS SJCC 34, 557-566, 19G9.
E, Wegner, A generalized completer for ALGOL 68,

ALGOL Bulletin, to be published,

PR, S

Report on the algorithmic language ALGOL 68,
Numerische Mathematik 14, 79-218, 1969,
N. Wirth, Program development by stepwise refinement,
Comn. ACM 14, 221-227, April 1971,
WAL Wulf, Programning without the goto,
IF1P Congress, Ljubljana, preprint TA-3, 84-88, August 1971,
WA Wif, 0.8, Russell, and A.N. Habermann, BLISS: A langurge fur systems progran

Comm, ACM 14, 780-790, -December 1971.

Editors note:

This paper is to be included in the Springer lecture notes
on operations research and mathematical systems. It is
printed here so that the MOLB readership need not suffer

through the lead-time of coriventional publication.

