
SIGPLAN Notices
MOLII1 .2 . Paper s

M nusc.,ipt prepared for the
Second Annual Meeting of th e

Gesellschaft fur Informatik ,

Karlsruhe, October 2-4, 197 2

MOLB1 .2 .1 .

	

A Hierarchy_of =Control Structure s

Eberhard Wegne r

Informatik-Forschungsgruppe Programmiersprachen and Compiler I I

Technische Universitat Berlin, Berlin 10, Ernst•-Reuter-Platz 8

Summary : Four classes of control structures for sequential programs are shown to offer

increasir. .r expressive power . They allow control to be specified by

(1) four well-chosen structures with one entry and one exit each ,

(2) the one-entry loop with escapes ,

(3) the distributor-entered loop with escapes, an d

(4) the unrestricted jump .

It is shown that a given program scheme can be described by the one-entry loop wit h

escapes if and only if all control paths from the start to a cycle enter that cycl e

at the same node (irrespective of the number of nodes where the cycle is re-entered) .

1. Motivation

Frequently occurring control structures are represented in programming languages by

special constructs in order to make programs easy to understand, to prove correct, t o

modify, to debug, and to optimize globally during compilation . These structures ar e

used for the "deductive" approach to program construction by stepwise refinemen t

(Dijkstra 1970, Wirth 1971) . Programs which were originally designed in terms o f

general flowcharts can be "inductively" structured to fit such language construct s

(Ashcroft and Manna 1971) either in order to conform to a programming language no t

providing the jump or simply to gain the advantages stated above .

2. Programs controlled by the unrestricted jump

Before describing special control structures, let'us remember the most general form

of control for sequential programs . Let a "program scheme" be a (non-empty and fiiritc,

directed graph containing a distinguished node (the "start") from which paths lea d

all other nodes . From any node to any other node there leads at most one edge, an d

there is no reflecting edge . A "program" is a program scheme in which each node i s

labelled by some executable "action" which has a single entry and any number of exits .

Each exit must identify an edge leaving the node . Let us depict each node by a rect -

angle (labelled or not) and each edge by an arrow connecting two rectangles . Edges

that enter the same node are drawn to flow together before entering the node in orde r

to indicate that there is only one entry to its action . The start is marked by an

entering edge which leaves no node . A figure representing a part of a program schem e

will contain edges entering or leaving that part .

1973 March

August 4, 197 2

11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987000.987002&domain=pdf&date_stamp=1973-03-01

SIGPLAN Notices

	

12

	

1973 March

3 . The four structures with oneentr and one exiteac h

Dijkstra (1970) and Wirth (1971) use four structures for decomposing actions int o

subactions : the concatenation, the selection (including two special cases), the pre -

checked loop, and the post-checked loop . Each subaction is either a test which cannot

be further decomposed or a piece of program with any number of internal paths but onl y

one exit .

fa.

0

V

Ashcroft and Manna (1971) give an algorithm to express any flowchart program by som e

of these control structures (where control variables and branches must be added i f

and only if the flowchart contains two or more tests and at least one loop that ar e

not contained in inner blocks) . These structures meet the objectives in section 1

rather wel l , but occasionally the programmer is burdened with joining several contro l

paths into th single exit and separating them immediately afterwards . Knuth an d

Floyd (1971) show that two familiar programs, a table search (a loop with two exits)

and a backtracking program (two crossing loops), are more naturally controlled by

jumps than expressed in terms of these structures by the addition of some actions ,

---V: , colaoare

	

~ncremcnt c

4 .	 Programscontrolled	 by theone-entry	 loop with escape s

4.1 The jump to a labelled end is frequently used in ALGOL-like languages .' Severa l

languages provide special instructions to leave a control construct :

-- ALGOL 68 with its completer (Wijngaarden, Mailloux, Peck, and Koster 1969) ,

BCPL with the break command (Richards 1969), an d

-- BLISS with the escape expressions (Wulf, Russell, and Habermann 1971) .

Wulf (1971) claims that with the escape " the desirable properties of goto-less graph s

are retained", and Clint and Hoare (1972) state that "programs which confine thei r

jumping to genuine returns and exits do not present any great difficulty in the proo f

of their correctness" . Since such an exit jump may terminate the execution of an y

enclosing control construct, we will not adopt the condition that each contro l

structure has a single exit .

SIGPLAN Notices

	

13

	

1973 March

4 .2 Definitely the most primitive decomposition of an action A is the decompose,io n
_see

into two subactions A I and A 2 . The node labelled by A is replaced with two node s

labelled by A I and A 2 . The definitions in section 2 imply the following rules for the

"binary decomposition" : The single entry to the action A will transform into the entry

to one of the subactions, say A l . Consequently, all edges entering node A will ente r

A l , and if node A is the start, then A I will be the start . A "forward" edge from A I

to A,, must be introduced so that each node can still be reached from the start . A

"backward " edge from A 2 to A I may be added . Each edge leaving A must be replaced by

an edge leaving A I or by an edge leaving A 2 or by both edges . Given an arbitrary

number ofexits from A, the following figure shows the resulting "one-entry loop wit h

escapes" including all possible control paths :

4 .3 Conversely, in a given program scheme or program two nodes forming a one-entr y
se_

loop with escapes may be found .,' combined into a single node . This "binary

composition" is illustrated here for the two pro g rams discussed by Knuth and Floyd :
Ca.

	

fr e+.~ e. .a ro .~ ~e..a sue.

	

R--~ r

	

e3
:.., . .. n .E. . _ _

	

r	 ~

	

. -~ .~

	

~
r

t

	

i t

-

	

com pare	 	 v 3 incrementL	 1	 insert er

	

f-°°->

an d

	 I---

	

pup

	

r% _e t

	

? .

	

` dor m

6.9

4 .4 Theorem : A given program scheme can be reduced to a single node by repeate d
se_ _	

binary

	

composition if and only if all paths from the start to a cycle ente r

that cycle at the same node .

Corollar

	

A given program in linear representation (in which each transfer o f

control is understood as a jump) can be reduced to a single action by repeate d

binary composition if there is no forward jump to a point between a backward jum p

and its target . (The inverse assertion does not hold since there may be e .g . a

jump out of a loop and a forward jump back into it .)

L5 As a preparation for the proof of the theorem, we give an algorithm to check a

rrogram scheme for the condition stated and to mark each edge either as forward o r

is backward . (The edges marked as forward will impose a lattice structure on the se t

)f nodes .) We will use a notation based on ALGOL 68 .

	

SIGPLAN Notices

	

14

	

1973 March

pros con be reduced = (programecheme p) boot :

begin

proc mark leaving edges = (node node) :

begin mark node as active ;

for each edge leaving node do

if the node entered by edge is marked active

then mark edge as backward;

if edge is marked forward then goto false i

el-cc mark edge as forward;

edge is marked backward then goto false

mark leaving edges (the node entered by edge)

mark node as not active

en?;

mark all edges as not forward and not backward;

mark all nodes as not active ;

mark leaving edges (start .L p) ; true exi t

false : false

en d

4 .6 The "only if" assertion of the theorem is obvious . As a proof for the "if "

assertion we give an algorithm to accept a program scheme which has been succcssfu l l y

marked by the procedure can be reduced in 4 .5 and to deliver a "composition tree" ,

that is an ordered tree in which the terminal nodes are the nodes of the given progra m

scheme and in which the terminal nodes of each subtree can be reduced to a single nod e

by repetitive binary composition .

proc dependent tree = (node node) tree : co assume a global proc composition = (tree tl ,

t2) tree : c the ordered tree having t1 and t2 as its direct sybtrees

	

assume a globa l

program scheme p which has been successfully marked ; accept as parameter a node node

of p and deliver a subtree of a decomposition tree of p which contains as its termina l

nodes exactly those nodes n of p for which each path from the start to n contains node ;

if called with the start of p as parameter, this procedure will deliver a compositio n

tree of p co

b gin rode n; tree t := node;

while there is a node n such that each forward edge entering n leaves a termina l

node of t

	

do t := composition (t,

	

n is entered by a backward edge then dependent tree (n)

else n Li) ; t

en d

4.7 A possible representation of the one-entry loop with escapes is (in semi-precis e

explanation, related to the definition of ALGOL 68) Il e. range. r; s 1 ; s2 per where r

is a "range identifier" defined by the "range declaration" range r, the pair rep . . .

SIGPLAN Notices

	

15

	

973 March

?cr encloses the two direct subactions s l and s2 to be executed repeatedly, and eac h

si may contain conditional escapes of the form if b then v Leave r L; here b is a

boolean expression and v yields the value to be delivered by the action if its executio n

is completed by the conditional escape . (Note how this escape can replace the jumps an d

the completer in the procedure can be reduced above,) For convenience we introduce som e

contractions :

-- it true then v leave r fi may be replaced by v leave r .
°- hip lcavn, may be replaced by

	

leave .

-° leave r, where r identifies the directly containing range, may be replaced by leave

if simultaneously the declaration of r is removed .

The following contraction allows to represent a one-entry loop with any number o f

constituents and escapes :

-- r 1' rc	 ; leave Er; . . , jeer may be replaced by rep . . . ; . . . Ell.

In order to obtain representations of the four one-exit structures, we give some mor e

syntactic sugar :

-° r

	

. . .,

	

leave per may be replaced by plain

	

end .

-- rep

	

not b i then v i leave , fij s ; L:f not b 2 then v2 Leave LEE may be replaced by

v 1 thilcz b 1 rep. sLer v2 while b 2 ,

e- ski t') while true may be omitted .

°- bogie range r; bez.11. if. h then leave i ; s2 leave r end; s 1 end may be replaced by

if b then 8 1 elect s 2 f1%

°- else skip. fi may be replaced by L.

_-

	

i-1 then e l else s fi may be replaced by case i in el out s esac .

i=n then sn else case i in s 1 , . . ., sn_1 out s esac , for ne2 may be replaced by

case i in s 1 , ., ., sn out s esac .

4 .8 The escape from any enclosing control construct is provided in BLISS . The BCPL

break command is restricted to escape from the smallest enclosing loop . The ALGOL 6 8

completer causes completion of the elaboration of the directly surrounding serial -

clause but not of a repetitive statement ; it can be generalized to complete the elab-

oration of any containing serial-clause (Wegner 1972) . The BLISS escape must and th e

BCPL break cannot deliver a value, while the ALGOL 68 completer may .

4 .9 As Wulf (1971) reports, the escape allows to program conveniently without the jump .

The contractions in 4 .7 show that the one-entry loop with escapes is at least as power -

ful as the collection of one-exit structures . Indeed, it is even more powerful since i t

can describe the two examples of Knuth and Floyd as well as the program that Ashcrof t

and Manna constructed to demonstrate the need for additional control variables . How-

ever, it is less powerful than the unrestricted jump, since the following progra m

cannot be reduced to a single node by binary composition :

--_°°°---Y .'

	

h wi i it ;? p

trite roves ,` [31ack moves

SIGPLAN Notices

	

16

	

1973 March

5̀ The distributor ent;ere~i loop with esca~>e s

5 .] The fact that the simple game in 4 .9 cannot be described by the one-entry loo p

with escapes gives rise to an afterthought . Here is a more powerful and complicate d

control structure, a loop preceded by a distributor to its constituents :

$

$

t

5 .2 By a slight extension to the argument in 4 .5 and 4 .6, a given program scheme ca n

be reduced to a single node by repeatedly combining nodes into such a "distributor -

entered loop with escapes" if and only if all paths from the start to a cycle ente r

that cycle by edges that leave the same node .

5 .3 The cases where the distributor s 0 delivers an integer i or a boolean b len d

themselves to the representations at i enterloop o 1 ,

	

s YZ out sn+1 endloop

('.here the out
sn41

is easily built around the basic construct) and on h enterloor

s 1 otherwise s 2 endloop . This latter construct effectively allows to transfer contro l

between the then and the else clauses of an L construct . The general construct migh t

read performing s0 enterloop s 1 , . . ., sn endloop where c o may contain enter stacement s

identifying a loop constituent, and each si for ip 0, 1,

	

n may contain escapes .

5 .4 -1; .)ne-entry loop with escapes is a special case of this structure ; let s 0 b e

enter I . Here is a program which cannot be expressed even by the distributor-entered

loop with escapes :

„.+ f moves first ?
Lac.

,iii to moves r) ho movesnext?	 Black manes

SIGPLAN Notices

	

17

	

1973 March

Reference s
.esee _see_

E . Ashcroft and Z . Manna, The translation of "go to" programs to " while" programs ,

IFIP Congress, Ljubljana, preprint TA-2, 147-152, August 1971 .

M . Clint	 and C .A
.R

. Hoare, Program proving : jumps and functions ,

Acta informatica 1,214-224, 1972 .

E .W . Dijkstra, Notes on structured programming ,
es__ es_

Report 70-Wsk-03, Technical University Eindhoven, April 1970 .

D .E . Knuth and R .W . Floyd, Notes on avoiding "go to" statements ,

Information processing letters 1, 23°31, February 1971 .

M. Richards, BCPL : A tool for compiler writing and systems programming ,
ea_	

AFIPS SJCC 34, 557-566, 1969 .
_se

E . Wegner, A generalized completer for ALGOL 68 ,
_ea

ALGOI. Bulletin, to be published .

A .van Wijngaarden, P .J . I .lailloux, J .E .L . Peck, and C .H .A . Koster ,

Report on the algorithmic language ALGOL 68 ,

Numerische Mathematik 14, 79-218, 1969 .

N. Wirth, Program development by stepwise refinement ,

Comm . ACM 14, 221•°227, April 1971 .

W .A . Wulf, Programming without the goto ,

JU LICongress, Ljubljana, preprint TA-3, 84-88, August 1971 .

W .A Welf, D .B . Russell, and	 A .N .	 Habermann, BLISS : A language for systems programmin ,

Comm. ACM 14, 780-790,•December 1971 .

Editors note :

This paper is to be included in the Springer lecture note s

on operations research and mathematical systems . It i s

printed here so that the MOLB readership need not suffe r

through the lead-time of conventional publication .

