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There  i s  a g rowing  a w a r e n e s s  o f  t h e  i m p o r t a n c e  o f  s t r u c t u r e  t o  p r o -  
g r a m m i n g [ 1 , 2 , 3 , 4 ] .  The s t r u c t u r i n g  o f  p r o g r a m s ,  h o w e v e r ,  i s  made d i f f i c u l t  
by t h e  l a c k  o f  s t r u c t u r e  i n  t h e  mechan i sms  t h a t  t h e  p r o g r a m s  a r e  w r i t t e n  f o r .  
Structured programming by almost anyone's definition requires the formaliza- 
tion into discrete processing blocks which pass information primarily through 
explicit arguments[S,6]. Yet compiler facilities are almost always developed 
in an ad hoc manner which prevents the structuring of compile time functions; 
operation systems provide loosely related sets of execution time facilities 
which oftenrequire implicit information passing; and computer instruction sets 
provide an inflexible set of computational s~ort cuts. External data storage 
and transmission structures are also very eclectic. 

In this paper, the possibility of integrating such diverse components of 
a system into a single architecture will be explored. A generalized structure 
is developed and formalized to an extent. The relationships between syntax, 
semantics, and context are investigated. Techniques for machine and human re- 
resentation of these structures are discussed. The implications of generaliza- 
tion on error checking are then touched on. And, finally, the economics of 
such a generalized approach are considered. 

Information Syntax 

In many higher level computer languages there is a functional semantic unit 

f(x) 

which is used to represent an action and to return a value. The returning of a 
value might be represented as 

y = f(x). 

This representation of information can be generalized. The first generali- 
zation, available in many higher level computer languagues, is to allow the argu- 
ment to be a vector, as 

y = f(Xl, X2 .... ). 

Further, in some languages (e.g. AED [7] and LISP [8]), vectors or lists 
may be named and referred to in functional notation. Thus "f" might represent 
a vector. Let us allow the "function" to be explicitly represented as a vector 
a l s o ,  

'Y = (fl, f2 .... ) (xl, x2 .... )" 
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The final generalization, allowing the value or return value to be a vector, 
is used in APL [9] and could be represented by 

(Yl,  Y2 . . . .  ) = ( f l ,  f2  . . . .  ) ( x l ,  x2 . . . .  ) .  

Th i s  p r o v i d e s  a v e r y  g e n e r a l  means o f  s t r u c t u r i n g  t h e  r e d u c t i o n  o f  i n f o r m a -  
t i o n .  With t h e s e  g e n e r a l i z a t i o n s ,  a u n i t  o f  i n f o r m a t i o n ,  s a y  a " n o d e " ,  can  be 
r e p r e s e n t e d  by a v e c t o r ,  such  as  

(r, s, t), 

whether it is being viewed as  input, output or function. Single element nodes, 
such as (f) can be expressed without parentheses. Also null nodes will be needed. 

Such g e n e r a l  p u r p o s e  nodes  a f f o r d  some i n t e r e s t i n g  c a p a b i l i t i e s .  F i r s t ,  
t h e  a rgument  may i t s e l f  be  a f u n c t i o n .  For  e x a m p l e ,  i n  

(£, m) (n, o, p ) ( q )  

t h e  f u n c t i o n  (q) would be  e v a l u a t e d  f i r s t  ( i t s  a rgumen t  i s  n u l l )  t o  p r o d u c e  a 
r e t u r n  v a l u e  which i s  t h e  a rgumen t  f o r  t h e  f u n c t i o n  (n ,  o ,  p) which would i n  
t u r n  p r o d u c e  t h e  a rgument  f o r  t h e  f u n c t i o n  (£,  m).  In  e f f e c t  we h a v e  a r i g h t -  
t o - l e f t  p a r s e  be tween  nodes  1 and a l e f t - t o - r i g h t  p a r s e  w i t h i n  n o d e s .  

Second, the return value or output can later be considered as a function 
and further reduced. The execution of a structure may therefore occur over a 
series of execution times. For instance in the above example the evaluation 
of (n, o, p) (q) might produce the vector (r, s). The evaluation of (£, m)(r, s) 
might produce (£, m)(r, s) which would be evaluated in a later execution pass. 

T h i r d ,  t h e  e l e m e n t s  o f  a node ,  such  as  " n " ,  "o"  and " p "  in  (n ,  o ,  p)  a r e  
t h e m s e l v e s  s p e c i a l  c a s e s  o f  node r e p r e s e n t a t i o n ,  so i t  i s  r e a s o n a b l e  t o  a l l o w  
any form o f  node as  an e l e m e n t ,  a l l o w i n g  i n f o r m a t i o n  t o  be  r e p r e s e n t e d  i n  t r e e  
structures. 

F o u r t h ,  s i n c e  a s e q u e n c e  o f  n o d e s  can  be  r e d u c e d  t o  a s i n g l e  n o d e ,  i t  
f o l l o w s  t h a t  such  s e q u e n c e s ,  which  w i l l  be  c a l l e d  n e s t s ,  s h o u l d  be  a l l o w e d  as  
e l e m e n t s  o f  more complex  n o d e s .  

Finally, it is natural to represent a complex node with a single element 
node, i.e., a name. For example, if "f" were defined as (r, s) 

then 

( r ,  s )  (x ,  y ,  z) 

and 

f (x, y ,  z) 

would be e q u i v a l e n t  and c o u l d  be  u s e d  i n t e r c h a n g e a b l y .  The e x i s t e n c e  o f  such  
d e f i n i t i o n s  d e t e r m i n e s  t h e  c o n t e x t  i n  which t h i s  s t r u c t u r e  i s  r e d u c e d .  T h i s  
w i l l  be p u r s u e d  f u r t h e r  in  t h e  s e c t i o n  on s e m a n t i c s .  

INOTE: A slight modification to this will be introduced later. 
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I t  s hou l d  be n o t e d  t h a t  t h e s e  nodes  a r e  amenab l e  t o  g e n e r a l i z e d  h a n d l i n g .  2 
They can be s a v e d ,  moved, o r  t r a n s f o r m e d  w i t h o u t  d i s t u r b i n g  t h e i r  i n t e r n a l  
s t r u c t u r e .  For i n s t a n c e ,  t h e y  may be  queued o r  s t a c k e d .  The r e p r e s e n t a t i o n  

(.~, m) (n, o, p) (q) 

used  a b o v e ,  i s  a v i s u a l  s t a c k .  Given  t h e  p r o p e r  r e p r e s e n t a t i o n  t h e s e  n o d e s  can  
be  h a n d l e d  by humans,  c o m p u t e r s ,  m a g n e t i c  s t o r a g e ,  and t r a n s m i s s i o n  l i n e s .  

Information Semantics 

~e syntax outlined above includes no semantic information. The two aspects 
of information can therefore be completely separated to allow greater flexibility 
in reducing the information. The meaning of a single element node(name) depends 
on what definition (if any) has been made for that name. These definitions con- 
stitute the context for the information. With semantics separated from syntax, 
context can be limited to a set of explicit definitions such as an association 
list :in LISP [8]. 

The c o n t e x t  w i t h  t h e  s t r u c t u r e  c o m p r i s e s  t h e  meaning  o r  t h e  i n f o r m a t i o n .  
The meaning o f  a s t r u c t u r e  may be  r e p r e s e n t e d  as  a 2 - t u p l e  

[ n e s t ,  c o n t e x t ]  

where "nest" is a function and its argument, and "context" is an association 
list or tree. "Interpretation" can be defined as the process of reducing a 
structure within a context to produce specified actions and a value. 

Physical actions (such as tape movement) which result from functions may 
have impact on the meaning of subsequent functions. Such side-effects will not 
be explored in this paper. There is another class of side effects which appears 
to be intrinsic to information handling~ That is the modification of context, 
the creation of definitions and their scopes. We could therefore view an inter- 
pretation as also producing a 2-tuple 

[ v a l u e ,  new c o n t e x t ]  

Now when a n e s t  i s  i n t e r p r e t e d ,  i t s  r e t u r n  v a l u e  nodes  would be  a n e s t  o r  
s t r u c t u r e  which  i s  d e t e r m i n e d  b y  t h e  s t r u c t u r e  and c o n t e x t  o f  t h e  p a r e n t  n e s t .  
For  i n s t a n c e ,  i f  f u n c t i o n  f r e d u c e d  t o  v a l u e  r i n  c o n t e x t  A and f u n c t i o n  g o f  
a rgument  (m, n) r e d u c e d  t o  v a l u e  ( s ,  t ,  u) i n  c o n t e x t  A. 

Then the interpretation of 

f g (m, n) 

in context A, would produce 

r ( s ,  t ,  u ) .  

2"this entire development is actually an extension of the "common referent 
notation" approach in AED [7]. 
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This output  could be f i n a l  or  could  be reduced in  a n o t h e r  c o n t e x t .  The r e t u r n  
w~lues produced in i n t e r p r e t i n g  a n e s t  could  be g e n e r a l l y  ) i ewed  as a n o t h e r  
nes t  which !nay or  may not  be r e - i n t e r p r e t e d .  The p rocess  o f  i n t e r p r e t i n g  o r  
reducing  i n f o r m a t i o n  could t h e r e f o r e  be viewed as mapping a 2 - t u p l e  (nes t  and 
c on t e x t )  tO ano the r  2~tup le  (nes t  and c o n t e x t )  whi le  p roduc ing  c e r t a i n  un~mapped " 
phys i c a l  a c t i o n s ,  s y m b o l i c a l l y  

interpretation [nestl, contextl] ÷ [nest2, context2] + actions 

where, for the purposes of this paper the actions are assumed to have no effects 
on subsequent interpretations. 

I n t e r p r e t a t i o n  Machines 

A mechanism which produces  such a mapping might be c a l l e d  an i n t e r p r e t a t i o n  
machine. Note t h a t  ou tpu t  from one i n t e r p r e t a t i o n  machine may be inpu t  to  a n o t h e r  
i n t e r p r e t a t i o n  machine, ad i n f i n i t u m .  Also,  t he  inpu t  medium f o r  an i n t e r p r e t a -  
t i o n  machine may be d i f f e r e n t  from i t s  o u t p u t .  Thus a s e r i e s  o f  machines may 
g r e a t l y  a l t e r  the  p h y s i c a l  n a t u r e  o f  the  i n f o r m a t i o n .  

There are many forms of such "machines" in use. For instance, a human might 
read a series of symbols (nest) which he knew (context) represented a FORTRAN 
program and punch cards to produce a source deck (nest) and control cards to 
run the FORTRAN compiler (context). The cards would then be read by the operating 
system and compiler to produce a disk representation which would eventually be put 
in computer storage (nest) and executed by a given machine running under a given 
operating system (context) 3 

An example o f  a c o n t e x t  be ing  a l t e r e d  a t  e x e c u t i o n  t ime i s  any i n t e r a c t i v e  
system which p rov ides  commands to  a l t e r  some c h a r a c t e r s  and p a r a m e t e r s ,  such as 
backspace and l i n e  length~ In t h e s e  examples ,  c o n t e x t  i s  handled  in  an ad hoc 
manner and meaning may even be embedded in  t he  syn tax  be ing  used .  I t  i s  p o s s i b l e  
however, to  s e p a r a t e  semant ics  from s y n t a x ,  and to  o r g a n i z e  c o n t e x t  i n f o r m a t i o n  
j u s t  as any o t h e r  d a t a .  

Machine R e p r e s e n t a t i o n  

Machine r e p r e s e n t a t i o n s  o f  n e s t s  and e x p l i c i t  c o n t e x t s  can be e a s i l y  dev i sed  
and implemented, a l though  end le s s  r e f i n e m e n t  i s  p o s s i b l e .  Many e x p l i c i t  c o n t e x t s  
have been implemented,  n o t a b l y  symbol t a b l e s  and  e x t e r n a l  symbol d i r e c t o r i e s .  

Nests such as 

(6, m) (n, o, p) (q) 

3This ske tch  i s  o f  course  g r e a t l y  s i m p l i f i e d .  I p r e f e r  to  view the  meaning i t s e l f  
as the phys i ca l  a c t i o n s  which occur  in  t r a n s f o r m i n g  the  i n f o r m a t i o n  ne s t  and c o n -  
t e x t .  Thus, t he  human t r a n s l a t e s  O p t i c a l  marks and s t o r e d  knowledge to  k e y s t r o k e s ;  
the  keypunch t r a n s l a t e s  k e y s t r o k e s  t o  punch a c t i o n s  w i th in  the  c o n t e x t  o f  the  
swi tches ;  the  card r e a d e r  i s  a machine which, g iven  the  r i g h t  c o n t r o l  s i g n a l s ,  
t r a n s l a t e s  card ho les  i n t o  e l e c t r i c  s i g n a l s .  And so f o r t h .  

"Many t i :ne-sharing e d i t o r s  have such c a p a b i l i t i e s ,  f o r  i n s t a n c e  the  S t a n f o r d  
Wylbur system [10].  
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can be parenthesized to show their heirarchical nature 

((Z, m) ({n, o, p) (q))). 

In this form, nests have a well defined machine representation in LISP [8]. In 
general, all we need is two distinguishable delimitableunits,'where a delimitable 
unit is a variable-length field with a recognizable type indication. One type of 
unit would represent elements separated by commas. The second type would repre- 
sent elements separated by spaces. For instance, the example 

[~, m) (n, o, p) q 

would consist of: 

[type 2 

[type ,I Z] 
[type 1 m] ] 

[type 2 

[type I n] 
[type 1 o] 
[type I p] ] 

[type 2 q]. 

Human Representation 

Representing these information structures in a humanly readable form is 
a more interesting problem. As LISP has shown, complex parenthesizing can 
become quite tedious and confusing. Many improvements to the LISP syntax have 
been devised, such as the A-Language of Henneman [II]. This paper will approach 
human readability without reviewing LISP modification schemes, primarily because 
the notions generally come from the more common higher-level languages, such as 
FORTRAN, Algol, and PL/I. 6 Some semantics will be injected into this syntax but 
only where this is judged important to human usability, and the semantics are 
always separablc hy an initial parse. 

NESTING 

We have already seen one simplification from LISP parenthesizing by intro- 
ducing two field delimiter types (comma for sequential separation and no de- 
limiter for nested or heirarchical separation) while viewing parentheses as 
bracketing symbols only and not field type indicators. Thus, what would be 

CA CB (C CD E))))  

6 The human representation of this syntax is being explored in an experimental 
language, tentatively named HOLOGO. 
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in LISP a t  the  EVAL l e v e l ,  could be 

A B C (D E) 

in the syntax proposed above. 

SEPARATING 

As was indicated above, nodes would be either nested, i.e. have no 
separators between them, or they would be separated. For instance, an argument 
vector is nested tO its function while the elements of the argument vector are 
separated from each other. Explicit control of parallel processing might be 
desirable. One very readable way of approaching this is to allow two separators: 
the semicolon to separate serial elements and the comma to separate parallel 
elements. For instance, 

DO (20; 

READ CA, B); 

WRITE SUM (A, B) ) 

would indicate that READ and SUM can evaluate their arguments in parallel but 
DO must evaluate its arguments in series. 7 This approach introduces semantics 
into syntax. The separation of semantics could be accomplished for machine 
representation by the transformation 

(a, b .... ) ÷ fork (a; b; ...). 

Alternatively "," and ";" might be used as terminators rather than separators 
( [12 ] ,  p . 1 4 ) .  

BRACKETING 

An obvious  s tep  toward r e a d a b i l i t y  i s  t o  use  BEGIN and END as b r a c k e t i n g  
symbols l i k e  " ( "  and " ) " .  Various forms o f  l a p e l e d  and u n l a b e l e d  b r a c k e t s  have 
been de v i s ed .  8 One form o f  b r a c k e t i n g  t h a t  might be p r o f i t a b l y  used as an ex- 
t e n s i b i l i t y  f u n c t i o n  would be b r a c k e t i n g  by s e p a r a t o r s .  The s e p a r a t o r s  THEN 
and ALSO would be Used s i m i l a r l y  to  semicolon and comma r e s p e c t i v e l y ,  but  would 
imply a b r a c k e t i n g  a l s o .  For example,  

WRITE (A; B; C) 

could be expressed  as 

WRITE A THEN B THEN C 

7I t  would be a descendant  f u n c t i o n  o f  DO which would a c t u a l l y  e v a l u a t e  the  
arguments and use t h i s  i n f o r m a t i o n  i f  t he  program were be ing  computed. 

SSec fo r  i n s t a n c e  Wegner [13, p .40]  
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and 

WRITE (A, B, C) 

c o u l d  be e x p r e s s e d  as  

WRITE A ALSO B ALSO C. 

Note  t h a t  IF A THEN B i s  s i m p l y  t h e  f u n c t i o n :  IF (A; B).  O t h e r  s p e c i a l  p u r p o s e  
s e p a r a t o r s  c o u l d  b e  u s e r  d e f i n e d  t o  a i d  r e a d a b i l i t y  o f  i n d i v i d u a l  f u n c t i o n s .  

LABELING 

Labeling is a specialized form of definition and could be left to definition 
functions. Most languages, however, allow the convenience of a syntactic defini- 
tion Ci.e., labels ) for functions which have no explicit arguments (i.e., are 
used as addresses). A label syntax like that used in PL/I could be used, letting 
the label be separated from the node being named by a semicolon. 

PARAMETERIZING 

The definition processes require some definition-time functions to specify 
binding and return values for a function. 

One possible approach to binding is specifying the arguments of a function 
along with the label. Using an image of the execution structure-left of the 
colon as in 

F ( a r g l ,  a r g 2 ,  a r g 3 )  : d e f i n i t i o n  

i n t r o d u c e s  an  awkward l o o k - a h e a d .  I t  i s  a l s o  d e s i r a b l e  t o  s a v e  t h e  n e s t i n g  
r e l a t i o n  l e f t  o f  t h e  c o l o n  f o r  l a b e l i n g  h i e r a r c h i e s  9.  

A l t h o u g h  t b -  LISP LAbIBDA c o u l d  be  u s e d  t o  ~ p e c i f y  t h e  a rgumen t  v a r i a b l e s  
i n  a d e f i n i t i o n ,  a s l i g h t l y  d i f f e r e n t  f u n c t i o n ,  s a y  ARGS, would be  more  u s e f u l .  
T h i s  f u n c t i o n  would be  u s e d  t o  e v a l u a t e  and d e f i n e  a r g u m e n t s .  The f i r s t  n o d e s  
n e s t e d  u n d e r  ARGS would be a v e c t o r  o f  t h e  a r g u m e n t  names .  The r e m a i n i n g  n e s t  
would be t h e  p o r t i o n  o f  t h e  d e f i n i t i o n  w i t h i n  t h e  s c o p e  o f  t h e  a r g u m e n t  d e f i n i -  
t i o n s .  For  e x a m p l e ,  a f u n c t i o n ,  FCN, m i g h t  be  d e f i n e d  a s  

FCN: ARGS(name i, name 2, ...) 
definition 

9Nes ted  l a b e l i n g  i s  beyond  t h e  s c o p e  o f  t h i s  p a p e r .  
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In many languages there are special functions I0 which are intended for unevaluated 
arguments. This could be handled by passing the argument nest unevaluated to the 
invoked function and leaving the evaluation to the definition function II It 
should be noted that the arguments themselves would be in the function's execution 
time nest, while the arguments of ARGS would be evaluated at the funtion's defini- 
tion time. 

The individual unevaluated arguments (elements of the first nested vector) 
might be referred to outside of (i.e. before) the normal definition function. 

VALUING 

In many higher level languages there is a RETURN function for attaching a 
value to a Subroutine and returning control to the caller. In the syntax dis- 
cussed here the return valuation must be a vector of values. To aid readability, 
the return valuation could be specified near the top of a procedure by a function 
called RETURNS. The arguments of RETURNS would specify temporary fields to hold 
the return values. The remainder of the definition vector under RETURNS would 
specify the code to be executed within the scope of those field definitions. 
Execution out of the bottom or execution of a RETURN (no "S") function would 
cause the actual return of control. 

The following is an example of a complete definition, using a label, the 
ARGS function and the RETURNS function 12. 

ADDI: ARGS NUMBER 

RETURNS TOTAL 

ASSIGN (TOTAL, SUM (NUMBER, 1) ) 

ATTRIBUTING 

In most languages, expected attributes may apply to certain kinds of functions. 
In LISP a user may arbitrarily associate an attribute with the definition of an 
atom via the property list. In a generalized or extensible information language 
it would be useful to allow a special context to be associated with each function 
definition which would list that function's "attributes". This context would be 
concatenated with the execution context whenever the function was invoked. 

10For example the MAP... functions in LISP [8]. 

llThis is the modification to the right-to-left parse mentioned in Footnote 1 
The inter-node parse would be two phase: left-to-right initialization, 
followed by right-to-left reduction. 

12A definition with nothing nested below the argument of RETURNS would correspond 
to a LISP DEFINE. The nest below the RETURNS argument introduces a PROG type 
of feature [8]. 
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ASS I GN$11!NT 

As was assumed in the last example (under VALUING), the assignment function, 
may be a normal prefix function. An infix assignment operator, however, greatly 
aids human readability. Any symbol, such as "=" or "÷" or ":=" might be used 
as an infix assignment operator. Infix operators could be easily converted to 
the normal prefix notation during the initial parse. 

The semantics of assignment should correspond to familiar usage. Assign- 
ment is traditionally the redefinition of the value of a function while pre- 
serving its form and attributes. In most languages, the function being assigned 
must be a scalar or array variable. In PL/I, there are built-in pseudo variables 
which appear as functions being assigned [14]. In AED, user defined functions 
may appear to be "assigned" by a mechanism which translates the assigned value 
into an extra argument for the function being "assigned" [7]. 

One way ofachieving a familiar but versatile assignment function is to 
associate a value attribute with each function. Variables would be functions 
which simply return their value attributes. Arrays would select from value 
vectors according to the calling arguments. User defined functions (i.e. "data 
types) could use the value attribute just as any other variable in their context. 

ARITHMETIC OPERATORS 

The conventional infix operators for arithmetic would be important for 
human readability. 

POSSIBLE OTHER SYNTACTIC LEVEL FUNCTIONS 

Functions implemented at the syntactic level should be as restricted as 
possible to ease human learning as well as implementation. The system outlined 
here could easily accomodate most capabilities as explicit functions and be 
reasonably readable. Extension at the syntactic level should be limited to 
capabilities whjrh would greatly affect readability and which would be very 
basic to the system. 

Delaying execution is one possibility. In a system of interpretation 
machines there is a series of execution times: Macro time, compute time, 
assemble time, link time, JCL time, initialization time, etc. Having a capability 
of explicitly specifying the context under which a function is to be reduced might 
become very important. A function, such as "DELAY n nest" might be used to delay 
the reduction of "nest" for n passes. This concept has not yet been well explored, 
but relative or absolute specification of activation context might become impor- 
tant enough for syntactic expression. One possible representation would be an 
optional infix operator such as "@" which could be used to attach the specifica- 
tion to a function, for instance 13 

13COMI'IIATION would, of course, be a function defined in the interpreting context 
to delay reduction until the compilation pass. 
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BUILDTABLE @ COMPILATION (2,256) 

Another candidate for syntactic implementation in a few situations 
migh£ be the specification of a function's units. So far, the development in 
this paper has assumed that all functions are dealing in the same units. Most 
effects of functions have been moved to explicit argument passing or explicit 
Context modification. The units used, however, have been left to implicit 
agreement between functions. An infix operator such as a "#" might be used 
to allow explicit unit specification, for examplel~: 

DISTANCE # INCHES = 35 # MPH * 3 # SEC 

Error Checking and Redundancy 

The approach sugges ted  here  i n c r e a s e s  g e n e r a l i t y  a t  t he  expense o f  
redundancy.  Lack o f  redundancy f a c i l i t a t e s  implemen ta t ion ,  l e a r n i n g  and 
use but e l i m i n a t e s  e r r o r  d e t e c t i o n  i n f o r m a t i o n .  Dropping a comma, f o r  
i n s t a n c e ,  would always lead  to  a n o t h e r  v a l i d  c o n s t r u c t .  Even excess  a rgu-  
ments could be passed a long to  the  nex t  h i g h e r  l e v e l  wi thou t  t a k i n g  n o t e .  
Such f l e x i b i l i t y  i s  e s s e n t i a l  to  the  g e n e r a l i t y  o f  the  system.  In a c t u a l  
use ,  however,  some redundancy would be r e q u i r e d  to  he lp  d e t e c t  e r r o r s .  

Formalized redundancy has been developed in such disciplines as communi- 
cations and accounting. It would also be possible in interpretation machines. 
A user might include with a new function definition an example of an input vector 
and the expected output. The function could then be "parity checked" whenever 
amodification was made to the system which might affect it. The user could 
certainly specify limits such as number of arguments when they were known. In 
short, redundancy can be implemented in explicit extension functions as effec- 
tively as when it is imbedded in the basic language. The difference is that 
with limitations imbedded in the nuclear language, it is difficult to generalize 
and explore what might be possible in programming tools. 

Economics 

The development of a formal interpretation machine system would be top 
down to the point of apparently defying the economics of computation. A table 
lookup, for instance, would be required for each pass of each function in each 
context 15 

14Again the units would be functions defined in the interpreting context. 

15This is actually no more than is done in current systems being interpreted 
by micro-coded machines. 
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On the other hand, the possibilities for higher-level economies are 
greatly improved. Eliminating redundancy saves memory and transmission time. 
Optimization logic would apply equally to all uses. Changes could be imple- 
mented as easily as original code. There is also the all-eggs-in-one-basket 
effect, since the localization of active logic to a fairly simple mechanism 
would allow better control of resource usage so that a system could be tuned 
to the economics of the resources being used. For instance, multiple processors 
and hierarchical memories (e.g. cache, high speed, low speed, disk) could be 
used quite effectively. Even hierarchical bus (channel) structures could be 
supported to sprea& usage of that critical resource. It would appear at least 
possible that a more formally integrated interpretation machine architecture 
would be cheaper when all the costs were considered. 

Summary 

A general purpose syntax for information handling has been developed by 
generalizing the relation y = f(x) to (Yl, Y2 .... ) = (fl, f2, -.-) (Xl, x2 .... ). 
This generalization introduces a flexible unit of information, the node, which 
may be null, a scalar, a vector, or a tree in structure and which may be inter- 
preted to produce another structure and side-effects. 

A formal approach to interpreting information has been suggested, viewing 
interpretation as the reduction of a nest of nodes within an alterable context; 
i.e., interpretation is viewed as a 2-tuple mapping: interpretation [nest I, 
contextl] [nest 2, context2] + action. This approach allows the generalized 
interpretation of many different forms of information in many different contexts. 
It also allows the interpretation process to be nested. A mechanism which per- 
forms such a mapping was termed an "interpretation machine" andexamples of 
currently existing, ad hoc interpretation machines were given. 

Machine representation of information and context for interpretation 
machines were explored lightly. The more difficult problem of human representa- 
tion was explored at greater length, outlining some suggestions for readability. 

1~e suggesto~ generalizations necessarily involve an elimination of acciden- 
tal redundancy which could have been useful in detecting errors. Experience in 
other fields, however, such as communication and accounting, indicates that for- 
mal redundancy can be introduced and used as effectively. 

The formalized implementation of an interpretation machine capability 
would involve an unconventional approach to the economics of computation. 
Despite apparent inefficiencies a system based on such a model could turn 
out to be more economical than ad hoc systems. 
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