
SIGPLAN Notices 26 1976 N o v e m b e r

A Generalized Approach to Interpretation Machines
Ross W. Goodell
Codex Corporation

15 Riverdale Avenue
Introduction Newton, Massachusetts 02195

There i s a g rowing a w a r e n e s s o f t h e i m p o r t a n c e o f s t r u c t u r e t o p r o -
g r a m m i n g [1 , 2 , 3 , 4] . The s t r u c t u r i n g o f p r o g r a m s , h o w e v e r , i s made d i f f i c u l t
by t h e l a c k o f s t r u c t u r e i n t h e mechan i sms t h a t t h e p r o g r a m s a r e w r i t t e n f o r .
Structured programming by almost anyone's definition requires the formaliza-
tion into discrete processing blocks which pass information primarily through
explicit arguments[S,6]. Yet compiler facilities are almost always developed
in an ad hoc manner which prevents the structuring of compile time functions;
operation systems provide loosely related sets of execution time facilities
which oftenrequire implicit information passing; and computer instruction sets
provide an inflexible set of computational s~ort cuts. External data storage
and transmission structures are also very eclectic.

In this paper, the possibility of integrating such diverse components of
a system into a single architecture will be explored. A generalized structure
is developed and formalized to an extent. The relationships between syntax,
semantics, and context are investigated. Techniques for machine and human re-
resentation of these structures are discussed. The implications of generaliza-
tion on error checking are then touched on. And, finally, the economics of
such a generalized approach are considered.

Information Syntax

In many higher level computer languages there is a functional semantic unit

f(x)

which is used to represent an action and to return a value. The returning of a
value might be represented as

y = f(x).

This representation of information can be generalized. The first generali-
zation, available in many higher level computer languagues, is to allow the argu-
ment to be a vector, as

y = f(Xl, X2).

Further, in some languages (e.g. AED [7] and LISP [8]), vectors or lists
may be named and referred to in functional notation. Thus "f" might represent
a vector. Let us allow the "function" to be explicitly represented as a vector
a l s o ,

'Y = (fl, f2) (xl, x2)"

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987335.987338&domain=pdf&date_stamp=1976-11-01

S I G P L A N N o t i c e s 27 1976 N o v e m b e r

The final generalization, allowing the value or return value to be a vector,
is used in APL [9] and could be represented by

(Yl, Y2) = (f l , f2 ) (x l , x2) .

Th i s p r o v i d e s a v e r y g e n e r a l means o f s t r u c t u r i n g t h e r e d u c t i o n o f i n f o r m a -
t i o n . With t h e s e g e n e r a l i z a t i o n s , a u n i t o f i n f o r m a t i o n , s a y a " n o d e " , can be
r e p r e s e n t e d by a v e c t o r , such as

(r, s, t),

whether it is being viewed as input, output or function. Single element nodes,
such as (f) can be expressed without parentheses. Also null nodes will be needed.

Such g e n e r a l p u r p o s e nodes a f f o r d some i n t e r e s t i n g c a p a b i l i t i e s . F i r s t ,
t h e a rgument may i t s e l f be a f u n c t i o n . For e x a m p l e , i n

(£, m) (n, o, p) (q)

t h e f u n c t i o n (q) would be e v a l u a t e d f i r s t (i t s a rgumen t i s n u l l) t o p r o d u c e a
r e t u r n v a l u e which i s t h e a rgumen t f o r t h e f u n c t i o n (n , o , p) which would i n
t u r n p r o d u c e t h e a rgument f o r t h e f u n c t i o n (£, m). In e f f e c t we h a v e a r i g h t -
t o - l e f t p a r s e be tween nodes 1 and a l e f t - t o - r i g h t p a r s e w i t h i n n o d e s .

Second, the return value or output can later be considered as a function
and further reduced. The execution of a structure may therefore occur over a
series of execution times. For instance in the above example the evaluation
of (n, o, p) (q) might produce the vector (r, s). The evaluation of (£, m)(r, s)
might produce (£, m)(r, s) which would be evaluated in a later execution pass.

T h i r d , t h e e l e m e n t s o f a node , such as " n " , "o" and " p " in (n , o , p) a r e
t h e m s e l v e s s p e c i a l c a s e s o f node r e p r e s e n t a t i o n , so i t i s r e a s o n a b l e t o a l l o w
any form o f node as an e l e m e n t , a l l o w i n g i n f o r m a t i o n t o be r e p r e s e n t e d i n t r e e
structures.

F o u r t h , s i n c e a s e q u e n c e o f n o d e s can be r e d u c e d t o a s i n g l e n o d e , i t
f o l l o w s t h a t such s e q u e n c e s , which w i l l be c a l l e d n e s t s , s h o u l d be a l l o w e d as
e l e m e n t s o f more complex n o d e s .

Finally, it is natural to represent a complex node with a single element
node, i.e., a name. For example, if "f" were defined as (r, s)

then

(r , s) (x , y , z)

and

f (x, y , z)

would be e q u i v a l e n t and c o u l d be u s e d i n t e r c h a n g e a b l y . The e x i s t e n c e o f such
d e f i n i t i o n s d e t e r m i n e s t h e c o n t e x t i n which t h i s s t r u c t u r e i s r e d u c e d . T h i s
w i l l be p u r s u e d f u r t h e r in t h e s e c t i o n on s e m a n t i c s .

INOTE: A slight modification to this will be introduced later.

SIGPLAN N o t i c e s Z8 1976 N o v e m b e r

I t s hou l d be n o t e d t h a t t h e s e nodes a r e amenab l e t o g e n e r a l i z e d h a n d l i n g . 2
They can be s a v e d , moved, o r t r a n s f o r m e d w i t h o u t d i s t u r b i n g t h e i r i n t e r n a l
s t r u c t u r e . For i n s t a n c e , t h e y may be queued o r s t a c k e d . The r e p r e s e n t a t i o n

(.~, m) (n, o, p) (q)

used a b o v e , i s a v i s u a l s t a c k . Given t h e p r o p e r r e p r e s e n t a t i o n t h e s e n o d e s can
be h a n d l e d by humans, c o m p u t e r s , m a g n e t i c s t o r a g e , and t r a n s m i s s i o n l i n e s .

Information Semantics

~e syntax outlined above includes no semantic information. The two aspects
of information can therefore be completely separated to allow greater flexibility
in reducing the information. The meaning of a single element node(name) depends
on what definition (if any) has been made for that name. These definitions con-
stitute the context for the information. With semantics separated from syntax,
context can be limited to a set of explicit definitions such as an association
list :in LISP [8].

The c o n t e x t w i t h t h e s t r u c t u r e c o m p r i s e s t h e meaning o r t h e i n f o r m a t i o n .
The meaning o f a s t r u c t u r e may be r e p r e s e n t e d as a 2 - t u p l e

[n e s t , c o n t e x t]

where "nest" is a function and its argument, and "context" is an association
list or tree. "Interpretation" can be defined as the process of reducing a
structure within a context to produce specified actions and a value.

Physical actions (such as tape movement) which result from functions may
have impact on the meaning of subsequent functions. Such side-effects will not
be explored in this paper. There is another class of side effects which appears
to be intrinsic to information handling~ That is the modification of context,
the creation of definitions and their scopes. We could therefore view an inter-
pretation as also producing a 2-tuple

[v a l u e , new c o n t e x t]

Now when a n e s t i s i n t e r p r e t e d , i t s r e t u r n v a l u e nodes would be a n e s t o r
s t r u c t u r e which i s d e t e r m i n e d b y t h e s t r u c t u r e and c o n t e x t o f t h e p a r e n t n e s t .
For i n s t a n c e , i f f u n c t i o n f r e d u c e d t o v a l u e r i n c o n t e x t A and f u n c t i o n g o f
a rgument (m, n) r e d u c e d t o v a l u e (s , t , u) i n c o n t e x t A.

Then the interpretation of

f g (m, n)

in context A, would produce

r (s , t , u) .

2"this entire development is actually an extension of the "common referent
notation" approach in AED [7].

S I G P L A N N o t i c e s 29 1976 N o v e m b e r

This output could be f i n a l or could be reduced in a n o t h e r c o n t e x t . The r e t u r n
w~lues produced in i n t e r p r e t i n g a n e s t could be g e n e r a l l y) i ewed as a n o t h e r
nes t which !nay or may not be r e - i n t e r p r e t e d . The p rocess o f i n t e r p r e t i n g o r
reducing i n f o r m a t i o n could t h e r e f o r e be viewed as mapping a 2 - t u p l e (nes t and
c on t e x t) tO ano the r 2~tup le (nes t and c o n t e x t) whi le p roduc ing c e r t a i n un~mapped "
phys i c a l a c t i o n s , s y m b o l i c a l l y

interpretation [nestl, contextl] ÷ [nest2, context2] + actions

where, for the purposes of this paper the actions are assumed to have no effects
on subsequent interpretations.

I n t e r p r e t a t i o n Machines

A mechanism which produces such a mapping might be c a l l e d an i n t e r p r e t a t i o n
machine. Note t h a t ou tpu t from one i n t e r p r e t a t i o n machine may be inpu t to a n o t h e r
i n t e r p r e t a t i o n machine, ad i n f i n i t u m . Also, t he inpu t medium f o r an i n t e r p r e t a -
t i o n machine may be d i f f e r e n t from i t s o u t p u t . Thus a s e r i e s o f machines may
g r e a t l y a l t e r the p h y s i c a l n a t u r e o f the i n f o r m a t i o n .

There are many forms of such "machines" in use. For instance, a human might
read a series of symbols (nest) which he knew (context) represented a FORTRAN
program and punch cards to produce a source deck (nest) and control cards to
run the FORTRAN compiler (context). The cards would then be read by the operating
system and compiler to produce a disk representation which would eventually be put
in computer storage (nest) and executed by a given machine running under a given
operating system (context) 3

An example o f a c o n t e x t be ing a l t e r e d a t e x e c u t i o n t ime i s any i n t e r a c t i v e
system which p rov ides commands to a l t e r some c h a r a c t e r s and p a r a m e t e r s , such as
backspace and l i n e length~ In t h e s e examples , c o n t e x t i s handled in an ad hoc
manner and meaning may even be embedded in t he syn tax be ing used . I t i s p o s s i b l e
however, to s e p a r a t e semant ics from s y n t a x , and to o r g a n i z e c o n t e x t i n f o r m a t i o n
j u s t as any o t h e r d a t a .

Machine R e p r e s e n t a t i o n

Machine r e p r e s e n t a t i o n s o f n e s t s and e x p l i c i t c o n t e x t s can be e a s i l y dev i sed
and implemented, a l though end le s s r e f i n e m e n t i s p o s s i b l e . Many e x p l i c i t c o n t e x t s
have been implemented, n o t a b l y symbol t a b l e s and e x t e r n a l symbol d i r e c t o r i e s .

Nests such as

(6, m) (n, o, p) (q)

3This ske tch i s o f course g r e a t l y s i m p l i f i e d . I p r e f e r to view the meaning i t s e l f
as the phys i ca l a c t i o n s which occur in t r a n s f o r m i n g the i n f o r m a t i o n ne s t and c o n -
t e x t . Thus, t he human t r a n s l a t e s O p t i c a l marks and s t o r e d knowledge to k e y s t r o k e s ;
the keypunch t r a n s l a t e s k e y s t r o k e s t o punch a c t i o n s w i th in the c o n t e x t o f the
swi tches ; the card r e a d e r i s a machine which, g iven the r i g h t c o n t r o l s i g n a l s ,
t r a n s l a t e s card ho les i n t o e l e c t r i c s i g n a l s . And so f o r t h .

"Many t i :ne-sharing e d i t o r s have such c a p a b i l i t i e s , f o r i n s t a n c e the S t a n f o r d
Wylbur system [10].

SIGPLAN Notices 30 1976 November

can be parenthesized to show their heirarchical nature

((Z, m) ({n, o, p) (q))).

In this form, nests have a well defined machine representation in LISP [8]. In
general, all we need is two distinguishable delimitableunits,'where a delimitable
unit is a variable-length field with a recognizable type indication. One type of
unit would represent elements separated by commas. The second type would repre-
sent elements separated by spaces. For instance, the example

[~, m) (n, o, p) q

would consist of:

[type 2

[type ,I Z]
[type 1 m]]

[type 2

[type I n]
[type 1 o]
[type I p]]

[type 2 q].

Human Representation

Representing these information structures in a humanly readable form is
a more interesting problem. As LISP has shown, complex parenthesizing can
become quite tedious and confusing. Many improvements to the LISP syntax have
been devised, such as the A-Language of Henneman [II]. This paper will approach
human readability without reviewing LISP modification schemes, primarily because
the notions generally come from the more common higher-level languages, such as
FORTRAN, Algol, and PL/I. 6 Some semantics will be injected into this syntax but
only where this is judged important to human usability, and the semantics are
always separablc hy an initial parse.

NESTING

We have already seen one simplification from LISP parenthesizing by intro-
ducing two field delimiter types (comma for sequential separation and no de-
limiter for nested or heirarchical separation) while viewing parentheses as
bracketing symbols only and not field type indicators. Thus, what would be

CA CB (C CD E))))

6 The human representation of this syntax is being explored in an experimental
language, tentatively named HOLOGO.

S I G P L A N N o t i c e s 31 1976 N o v e m b e r

in LISP a t the EVAL l e v e l , could be

A B C (D E)

in the syntax proposed above.

SEPARATING

As was indicated above, nodes would be either nested, i.e. have no
separators between them, or they would be separated. For instance, an argument
vector is nested tO its function while the elements of the argument vector are
separated from each other. Explicit control of parallel processing might be
desirable. One very readable way of approaching this is to allow two separators:
the semicolon to separate serial elements and the comma to separate parallel
elements. For instance,

DO (20;

READ CA, B);

WRITE SUM (A, B))

would indicate that READ and SUM can evaluate their arguments in parallel but
DO must evaluate its arguments in series. 7 This approach introduces semantics
into syntax. The separation of semantics could be accomplished for machine
representation by the transformation

(a, b) ÷ fork (a; b; ...).

Alternatively "," and ";" might be used as terminators rather than separators
([12] , p . 1 4) .

BRACKETING

An obvious s tep toward r e a d a b i l i t y i s t o use BEGIN and END as b r a c k e t i n g
symbols l i k e " (" and ") " . Various forms o f l a p e l e d and u n l a b e l e d b r a c k e t s have
been de v i s ed . 8 One form o f b r a c k e t i n g t h a t might be p r o f i t a b l y used as an ex-
t e n s i b i l i t y f u n c t i o n would be b r a c k e t i n g by s e p a r a t o r s . The s e p a r a t o r s THEN
and ALSO would be Used s i m i l a r l y to semicolon and comma r e s p e c t i v e l y , but would
imply a b r a c k e t i n g a l s o . For example,

WRITE (A; B; C)

could be expressed as

WRITE A THEN B THEN C

7I t would be a descendant f u n c t i o n o f DO which would a c t u a l l y e v a l u a t e the
arguments and use t h i s i n f o r m a t i o n i f t he program were be ing computed.

SSec fo r i n s t a n c e Wegner [13, p .40]

S I G P L A N N o t i c e s 3Z 1976 November

and

WRITE (A, B, C)

c o u l d be e x p r e s s e d as

WRITE A ALSO B ALSO C.

Note t h a t IF A THEN B i s s i m p l y t h e f u n c t i o n : IF (A; B). O t h e r s p e c i a l p u r p o s e
s e p a r a t o r s c o u l d b e u s e r d e f i n e d t o a i d r e a d a b i l i t y o f i n d i v i d u a l f u n c t i o n s .

LABELING

Labeling is a specialized form of definition and could be left to definition
functions. Most languages, however, allow the convenience of a syntactic defini-
tion Ci.e., labels) for functions which have no explicit arguments (i.e., are
used as addresses). A label syntax like that used in PL/I could be used, letting
the label be separated from the node being named by a semicolon.

PARAMETERIZING

The definition processes require some definition-time functions to specify
binding and return values for a function.

One possible approach to binding is specifying the arguments of a function
along with the label. Using an image of the execution structure-left of the
colon as in

F (a r g l , a r g 2 , a r g 3) : d e f i n i t i o n

i n t r o d u c e s an awkward l o o k - a h e a d . I t i s a l s o d e s i r a b l e t o s a v e t h e n e s t i n g
r e l a t i o n l e f t o f t h e c o l o n f o r l a b e l i n g h i e r a r c h i e s 9.

A l t h o u g h t b - LISP LAbIBDA c o u l d be u s e d t o ~ p e c i f y t h e a rgumen t v a r i a b l e s
i n a d e f i n i t i o n , a s l i g h t l y d i f f e r e n t f u n c t i o n , s a y ARGS, would be more u s e f u l .
T h i s f u n c t i o n would be u s e d t o e v a l u a t e and d e f i n e a r g u m e n t s . The f i r s t n o d e s
n e s t e d u n d e r ARGS would be a v e c t o r o f t h e a r g u m e n t names . The r e m a i n i n g n e s t
would be t h e p o r t i o n o f t h e d e f i n i t i o n w i t h i n t h e s c o p e o f t h e a r g u m e n t d e f i n i -
t i o n s . For e x a m p l e , a f u n c t i o n , FCN, m i g h t be d e f i n e d a s

FCN: ARGS(name i, name 2, ...)
definition

9Nes ted l a b e l i n g i s beyond t h e s c o p e o f t h i s p a p e r .

SIGPLAN Notices 33 1976 November

In many languages there are special functions I0 which are intended for unevaluated
arguments. This could be handled by passing the argument nest unevaluated to the
invoked function and leaving the evaluation to the definition function II It
should be noted that the arguments themselves would be in the function's execution
time nest, while the arguments of ARGS would be evaluated at the funtion's defini-
tion time.

The individual unevaluated arguments (elements of the first nested vector)
might be referred to outside of (i.e. before) the normal definition function.

VALUING

In many higher level languages there is a RETURN function for attaching a
value to a Subroutine and returning control to the caller. In the syntax dis-
cussed here the return valuation must be a vector of values. To aid readability,
the return valuation could be specified near the top of a procedure by a function
called RETURNS. The arguments of RETURNS would specify temporary fields to hold
the return values. The remainder of the definition vector under RETURNS would
specify the code to be executed within the scope of those field definitions.
Execution out of the bottom or execution of a RETURN (no "S") function would
cause the actual return of control.

The following is an example of a complete definition, using a label, the
ARGS function and the RETURNS function 12.

ADDI: ARGS NUMBER

RETURNS TOTAL

ASSIGN (TOTAL, SUM (NUMBER, 1))

ATTRIBUTING

In most languages, expected attributes may apply to certain kinds of functions.
In LISP a user may arbitrarily associate an attribute with the definition of an
atom via the property list. In a generalized or extensible information language
it would be useful to allow a special context to be associated with each function
definition which would list that function's "attributes". This context would be
concatenated with the execution context whenever the function was invoked.

10For example the MAP... functions in LISP [8].

llThis is the modification to the right-to-left parse mentioned in Footnote 1
The inter-node parse would be two phase: left-to-right initialization,
followed by right-to-left reduction.

12A definition with nothing nested below the argument of RETURNS would correspond
to a LISP DEFINE. The nest below the RETURNS argument introduces a PROG type
of feature [8].

SIGPLAN Notices 34 1976 November

ASS I GN$11!NT

As was assumed in the last example (under VALUING), the assignment function,
may be a normal prefix function. An infix assignment operator, however, greatly
aids human readability. Any symbol, such as "=" or "÷" or ":=" might be used
as an infix assignment operator. Infix operators could be easily converted to
the normal prefix notation during the initial parse.

The semantics of assignment should correspond to familiar usage. Assign-
ment is traditionally the redefinition of the value of a function while pre-
serving its form and attributes. In most languages, the function being assigned
must be a scalar or array variable. In PL/I, there are built-in pseudo variables
which appear as functions being assigned [14]. In AED, user defined functions
may appear to be "assigned" by a mechanism which translates the assigned value
into an extra argument for the function being "assigned" [7].

One way ofachieving a familiar but versatile assignment function is to
associate a value attribute with each function. Variables would be functions
which simply return their value attributes. Arrays would select from value
vectors according to the calling arguments. User defined functions (i.e. "data
types) could use the value attribute just as any other variable in their context.

ARITHMETIC OPERATORS

The conventional infix operators for arithmetic would be important for
human readability.

POSSIBLE OTHER SYNTACTIC LEVEL FUNCTIONS

Functions implemented at the syntactic level should be as restricted as
possible to ease human learning as well as implementation. The system outlined
here could easily accomodate most capabilities as explicit functions and be
reasonably readable. Extension at the syntactic level should be limited to
capabilities whjrh would greatly affect readability and which would be very
basic to the system.

Delaying execution is one possibility. In a system of interpretation
machines there is a series of execution times: Macro time, compute time,
assemble time, link time, JCL time, initialization time, etc. Having a capability
of explicitly specifying the context under which a function is to be reduced might
become very important. A function, such as "DELAY n nest" might be used to delay
the reduction of "nest" for n passes. This concept has not yet been well explored,
but relative or absolute specification of activation context might become impor-
tant enough for syntactic expression. One possible representation would be an
optional infix operator such as "@" which could be used to attach the specifica-
tion to a function, for instance 13

13COMI'IIATION would, of course, be a function defined in the interpreting context
to delay reduction until the compilation pass.

SIGPLAN N o t i c e s 3 5 1976 N o v e m b e r

BUILDTABLE @ COMPILATION (2,256)

Another candidate for syntactic implementation in a few situations
migh£ be the specification of a function's units. So far, the development in
this paper has assumed that all functions are dealing in the same units. Most
effects of functions have been moved to explicit argument passing or explicit
Context modification. The units used, however, have been left to implicit
agreement between functions. An infix operator such as a "#" might be used
to allow explicit unit specification, for examplel~:

DISTANCE # INCHES = 35 # MPH * 3 # SEC

Error Checking and Redundancy

The approach sugges ted here i n c r e a s e s g e n e r a l i t y a t t he expense o f
redundancy. Lack o f redundancy f a c i l i t a t e s implemen ta t ion , l e a r n i n g and
use but e l i m i n a t e s e r r o r d e t e c t i o n i n f o r m a t i o n . Dropping a comma, f o r
i n s t a n c e , would always lead to a n o t h e r v a l i d c o n s t r u c t . Even excess a rgu-
ments could be passed a long to the nex t h i g h e r l e v e l wi thou t t a k i n g n o t e .
Such f l e x i b i l i t y i s e s s e n t i a l to the g e n e r a l i t y o f the system. In a c t u a l
use , however, some redundancy would be r e q u i r e d to he lp d e t e c t e r r o r s .

Formalized redundancy has been developed in such disciplines as communi-
cations and accounting. It would also be possible in interpretation machines.
A user might include with a new function definition an example of an input vector
and the expected output. The function could then be "parity checked" whenever
amodification was made to the system which might affect it. The user could
certainly specify limits such as number of arguments when they were known. In
short, redundancy can be implemented in explicit extension functions as effec-
tively as when it is imbedded in the basic language. The difference is that
with limitations imbedded in the nuclear language, it is difficult to generalize
and explore what might be possible in programming tools.

Economics

The development of a formal interpretation machine system would be top
down to the point of apparently defying the economics of computation. A table
lookup, for instance, would be required for each pass of each function in each
context 15

14Again the units would be functions defined in the interpreting context.

15This is actually no more than is done in current systems being interpreted
by micro-coded machines.

S I G P L A N N o t i c e s 36 1976 November

On the other hand, the possibilities for higher-level economies are
greatly improved. Eliminating redundancy saves memory and transmission time.
Optimization logic would apply equally to all uses. Changes could be imple-
mented as easily as original code. There is also the all-eggs-in-one-basket
effect, since the localization of active logic to a fairly simple mechanism
would allow better control of resource usage so that a system could be tuned
to the economics of the resources being used. For instance, multiple processors
and hierarchical memories (e.g. cache, high speed, low speed, disk) could be
used quite effectively. Even hierarchical bus (channel) structures could be
supported to sprea& usage of that critical resource. It would appear at least
possible that a more formally integrated interpretation machine architecture
would be cheaper when all the costs were considered.

Summary

A general purpose syntax for information handling has been developed by
generalizing the relation y = f(x) to (Yl, Y2) = (fl, f2, -.-) (Xl, x2).
This generalization introduces a flexible unit of information, the node, which
may be null, a scalar, a vector, or a tree in structure and which may be inter-
preted to produce another structure and side-effects.

A formal approach to interpreting information has been suggested, viewing
interpretation as the reduction of a nest of nodes within an alterable context;
i.e., interpretation is viewed as a 2-tuple mapping: interpretation [nest I,
contextl] [nest 2, context2] + action. This approach allows the generalized
interpretation of many different forms of information in many different contexts.
It also allows the interpretation process to be nested. A mechanism which per-
forms such a mapping was termed an "interpretation machine" andexamples of
currently existing, ad hoc interpretation machines were given.

Machine representation of information and context for interpretation
machines were explored lightly. The more difficult problem of human representa-
tion was explored at greater length, outlining some suggestions for readability.

1~e suggesto~ generalizations necessarily involve an elimination of acciden-
tal redundancy which could have been useful in detecting errors. Experience in
other fields, however, such as communication and accounting, indicates that for-
mal redundancy can be introduced and used as effectively.

The formalized implementation of an interpretation machine capability
would involve an unconventional approach to the economics of computation.
Despite apparent inefficiencies a system based on such a model could turn
out to be more economical than ad hoc systems.

SIGPLAN N o t i c e s 37

REFERENCES

1976 November

I. Gries, David. "On Structured Programming - A Reply to Smoliar". Comm.ACM,
17,11 (Nov. 1974), 655-657.

2. Abrahams, Paul. ' "Structured Programming, Considered Harmful'.
Notices 10,4 (April, 1975)13124.

SIGPLAN

3. Wegner, Eberhard. "Control Constructs for Programming Languages". SIGPLAN
Notices 10,2 (Feb. 1975), 34-41.

4. Robinson, L. "Design and Implementation of a Multi-level System Using
Software Modules". Carneigie-Mellon University Report, 1973.

5. Liskov, B. H. "A Design Methodology for Reliable Software Systems".
Proceedings FJCC, 1972, 191-199.

6. Parnas, D. L. "On the Criteria To Be Used in Decomposing Systems into
Modules". Comm.ACM 15,12 (Dec. 1972), 1053-1058.

7. I n t r o d u c t i o n to AED Programming, 1973, SofTech I n c . , Waltham, Mass.

8. McCarthy, John, et al. LISP l.S Programmer's Manual, The M.I.T. Press,
M.I.T., Cambridge, Mass.

9. Elson, Mark. Concepts of Programming Languages, Science Research Associates,
Inc., 1973.

I0.

ii.

Wylbur Manual, 1973, Systematic Data Processing Services, Inc., Waltham, Mass.

Henneman, William. "An Auxiliary Language for More Natural Expression--
the A-Language". The Programming Language LISP: Its Operation and
Applications, Berkeley, Edmond C. and Daniel G. Bobrow eds., 1974, 239-248.

12. Gannon, J.D. and Horning, J.J. "The Impact of Language Design on the
Production of Reliable Software". SIGPLAN Notices 10,6 (June, 197S), 10-22.

13. Wegner, Eberhard. "Control Constructs for Programming Languages". SIGPLAN
Notices 10,Z (Feb. 1975), 34-41.

14. IBM System/360 Operating System PL/I (F) Language Reference Manual (Dec. 1972),
IBM Order No. GC28-8201-4.

IS.

16.

Dijkstra, Edsger G. "Guarded Commands, Non-determinancy and a Calculus for
the Derivation of Programs". SIGPLAN Notices 10,6 (June, 1975), 2-13.

Reifer, Donald J. "Automatic Aids for Reliable Software". SIGPLAN Notices
10,6 (June 1975), 131-142.

17. Winograd, Terry. "Breaking the Complexity Barrier Again". SIGPLAN Notices
I0,I (Jail. 1975), 13-22.

18.

19.

Parnas, David L. , e t a l . "On t he Need f o r Fewer R e s t r i c t i o n s in Changing
Compute-time Environments" . SIGPLAN Not ices 10,5 (May 1975) 29-36.

l ': ,rnas, D.I.. nnd Siew[orek , D.I'. "Use o f the Concept o f Transpa rency in the
l)csign o f I l i c r a r c h i c a l l y S t r u c t u r e d Sys tems . " Comm.ACM 18,7 (Ju ly 1975) 401-408.

