SIGPLAN Notices 12 1974 March

10l 21515, JbEepeiment 0 An Aleori i
R _Em, Ental S - PUFi;‘ Unlwerslty,
el et Wb Doierese, e T9TE.
Updates
L1113 ZWEBEM, 5. H., Software FPhysics @0 F
Pmbiguity in Courting |
Frodus Unis of
Flprit, 1373

AN UNSTRUCTURED VIEW OF STRUCTURED PROGRAMMING

Richard H. Karpinski

Office of Information Systems
University of California, San Francisco

Several complementary notions deallng with writlng computer programs
have been introduced in the last few years. The flrst of these to
cause comment was the idea of avolding the GO-TO instruction. While
conslderable debate has ensued, the finest spokeman both for and
against have agreed that the unrestrained use of the GO-T0 should be
discouraged,

After further conslderation, it Is becoming clear that the GO-TO
question Is a minor issue, The major lssue 1Is, of course, how to
write better programs, Let us then examline the various aspects of
better programs,

Better programs should run aquickly and take little space, Since
computing resources have always been limited (not small necessarily,
but never limlitless) these aspects have always been recognized. Many
questionable programming practices have been Justifled on these
grounds, Since analysls of a program's use of system resources |s
(increasingly) convenlent, and since such analysis does, in practice,
yleld surpristng results, the Important consideration becomes the ease
with which the program can be modifled to employ new strategles.

Better programs should be easy to write and debug. Again, these
attributes of good programs have been long sought, The problem
oriented languages have attempted to promote better programs by
assuming some of the clerlcal tasks and by detecting certaln classes
of errors, The contlnuing proliferation of such languages supgests
that an unrecognized problem may exist., Of thls, more later.

Better programs should be easy to understand and to modify, These
aspects have been recognized mnostly by sophisticated programming
managers and by unfortunate programmers who have been asked to change
someone's program., Even today, many of us tend to blame the damn user
for arbitrarlly changing speciflcatlons, while taking scant heed of
that 1ikehood in creating the program.

We shall be concerned then with how to wrlite programs which are easy
to write, debug, understand, and modify. The kay polnt s
understanding. This 1Is the end to which N0O-GO-TO advocates aspire.
They argue that more limited control structures such as DO-WHILE and
IF«THEN-ELSE are easler to understand than GO0O-TO0 (which does not

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987419.987422&domain=pdf&date_stamp=1974-03-01

STGPLAN Notlces 13 1974 March

announce lts purpose). Dijkstra points to complexity as the major
Issua, (See raferences 2 & 3.) He notes that digital computers
require perfection In many aspects of thelr programs, but hls point [s
that perfection s achlevable, The key to perfectlon is seen to be
the control of complexity.

This brlings us to structured programming. Formally, a program which
uses only control structures from some coliectlon (S) Is sald to be S-
structured, As such, structured programiing ls not very Interesting,
However, [t has been observed that adher nce to certalin principles In
the cholce of control mechanisms leads to the development of c¢lean,
tldy, correct programs, Brlefly, the constralnt Is to use blocks of
code whlch are elthar nested (DO-WHILE & IF<THEN-ELSE) or sequentla)
(A=then-8) anrd have one entrance and one destinatlon, although perhaps
several exlis to It, That daestination Is always the next ftem In the
contalning block., The polnt of the constralnt ls to ensure that one
need not understand the code In a lower block to follow the program
flow of control. Notlece that thls does not redulre ellmination of the
GO-T0 but econstralns the target to lie In the same block as the GO-T0,

Within the confines of structured programming, It hecomes sensible to
decompose the problem, and hence the program, from the outside In (or
from the top down)., Wirth{7) and Dijkstra(2) dliscuss this way of
approaching the programming task. Essentlally, the tree-ltke {or
outline-form, l.e. indented, I[f you prefer) program which results
from top-down decompositlon, Is shown to raduce the complexity of the
program locally. Two parts of such a program may communicate only
through data established at a higher polnt In the tree (a more major
ltem In the outline) than elther user,

Use of the technlques mentloned so far wlll lead one to wrlte programs
which are easy te understand, several problems remain, Chief among
these 1s that of making programs that are easy to modify, 0f course,
any program which can be understood can be modifled. However, In
practlce, care should be taken that 11kely changes will each be
conflned to a small part of the program. To do thls, one must
conslder probable changes while making the Inltial decomposition of
the problem, and hence of the program. Parnas(6) discusses criterla
for making such decompositions, The principle Involved 1s called
Information hldling. The polnt I3 to lsolate malor declslons (which
may, 7rom tlme to tlme, need ravlislon) within thelr own modules, This
permits thely revislon without changling aother modules.

In reading about these principles, | have been lead to notice that
many people assume that the module of modular-programming and the
block of structured-programming both c¢orrespond to a separately
compllable procedure, This, In turn, leads them to assume modules
ranglng from say thlirty 1llnes to upper 1Imits of one page (fifty
Ilnes), a few hundred 1lnes, or even thousands of llnes of code, In
some cases, I would consider, however, that the call-procedure
boundary [s yet another control structure which may be employed for
varlous purposes at varlous points within the overall tree structure
of a structurad program. This view permits sensible use of very small
blocks. As a rule of thumb, | view with suspiclon any blocks larger
than ten llnes, or contalnling more than one |F-THEN-ELSE, loop, or GO-
TO.

Ustng these very small blocks contalning references to named blocks
provad to be an easy way to write programs, In general, | succeeded
In using only data defined In thls block or In a containlng block.

SIGPLAN Notices 14 1974 March

Programs so constructed proved easy to modify, In fact, only two
difficulties were encountered: the clerlcal task of creating a
compllable procedure from such blocks Is tedious and error prone and ,
secondly, | still left off some end statements. To solve these
problems, | have developed a program (STRUCTR) which performs thls
construction (producing a PL/l-style source stream to be compiled,
with PL/l comments replacing the vreferences to nested blocks and
Indentatlon corresponding to nesting depth). An example of the Input
and output of this program Is Included below,

STRUCTR provides an argument machanism which permits one to develop,
for example, an "if" block or a "do-while" block, which need only be

corrected once In case of a missing end.

==51f(test,$then,$else);

1f test

then do /* (test) Is true */;
success, act accordingly =:$then;
end /* (test) was true %/;

else do /* (tast) Is false'/;
fallure, act accordingly =i1$alsa)
end /% (test) was false /)

In this case, "test", "$then", and "$else" are to ba passed In asch
reference to $[f. Whather thls mechantsm wlll prove suffliclent 1s not
yet clear. In any case, tha use of automatic transformation of
indlvidual blocks Into a usable source stream parmlts the malntenance
of both forms of such a program, This appears to provide a
substantlal Improvement In ease of program modlflcatlion, Succeassful
use of top-down, structured, program decomposlitlon guarantass that any
"hidden" block can be replaced wlth Inpuntty., Thls emphasis on
malntenance may seem strange unt!l one notaes that malntenance baeging
with the first change to a previously written llne of code. Thus |
find, for example, new freadom to change a deslpgn decision as soon as
problems with that declslon become apparent.

The constructlion mechanism, STRUCTR, |s basically a 1ine orlented
system for representing structured programs. That !s, It wlll provide
the following facilitlidgs:

1. lterative Refinement {outside-In or top-down programming)

refine :i= Intent '=:' name ';'
The "refine" will appear as a comment followed by the

text of the module called name, appropriately indented.,

This permits the use of very small modules which are
bullt up wlthout any necessary linkage overhead. These
small modules, In turn, permit capturlng the declislons
made in deslgning the program In thelr proper order,
This tends, In approprlate use, to show directly the
approach to writing programs suggested by Dijkstra &
Wirth,

2, Structured Programming

control_refine t:= Intent '=:1$' name';'

STGPLAN Notices 15 1974 March

3¢

by,

5.

Thls farm of a "refine" makes use of a pre-coded control
structure such as a de-swhlle, do-Index, do-case, or if.

Each control struciture may be used only when the base
tanguage Tn use supporis that structure. However, note
that a great deal of a program can thus be wrltten In a
language Independent fashlon., Exclusive use of some such
set of system modulas for control functlons constltutes a
clear example of structured programming. (It would be
possible. to enforca that restrictlon, but perhaps at the
cost of reserved words.),

In general, a control structure will requlire one or more
arguments to speclfy the details or to name the modules
to be Included wlthin that structure,

Unexpected Argurnents to Contalned Modules

' i

argument t:= name ':=' value ';'

The argument will be avallable to all descendents of thls
module., That 1s, an appearance of pame as an fdentifler
wlithin a contalned module (one referred to In a "refine")
will be replaced by value, One exceptlon Is that an
"Intene” will not be altered In this way.

Informatlon Hidlng

hidden_refine s1=3 intent ‘'ug' npame ¥

Such a module and (ts offspring are sald to be hidden.
Ideally, the Interlor of such modulas would not be 1lsted
or would be obscured, however, among the compllers at
hand, only PL/! & assembler support such Tliteral hiding.
Fach such module |5 expected to be sssocliated with a
documentatlon and declaratlons module to be Inecluded (via
"shared_refine") ar some approprliate point In the
program, anteceeding all uses of the hidden module,

Iinformation Sharling

shared_refiness= Intent '=t' name ';§'

This form of a "reflne" makes the named module and lts
offspring available for use by the other descendents of
thls module (the one concalning the "shared_refine").
The usual Indentation to show rafinement |s suppressed to
Indlcate that status, l.e. to Indleate the loglcal
position of ths wmodule within the tree structure of the
program.

SIGPLAN Notices 16 1974 Mazxch

/% SAMPLE PROGRAM 10 STLLL we Ao UATA LiFICIENTLY » sHMAIN %/ 001
CRAM¢ PROCEDURE OPTIONSTMAL) 899
/% INCLUDE THE BODY=:CRAM 003
/% ESTABLISH Lini L ANE_STORE ¥/ 004
/% ESTABLISH SiA T oup e/ DY
JRLIEE ETCH 006
/%10 CHAR i/ 007
NG Lo/ 004
oy H0%
AE LM aeBA S17Ey %/ B¢
. SR T TRV 011
EULLE COND TGN, 0L
CoUnAR! 250, VAL 0l
DCL MULL Butivtin 1L
oL
LNEL ‘*‘I.‘ou.{ DESC %/ 0le
Yy R0 MARE PT O THE CURRENT LINE %/ 017
s :dgdfﬁiC{ENT ROOM, */ 0Lt
it Fi SPGRALLED,) %/ NS
STORE LINE 70 STORE AFTER THE LAST LINE AND MAKE LURRENT */ B2t
021
RETRYEVE 7 LINE JLAKE T THE CURRENT LINE & SET “LINE" 70 IT %/ (2
CPHE DOES NOT EXIST, "LINE" WILL BE SET TO %/ 021
STRIdS, AND “EMPTIEDO™ Wite BE SIGNALLED,) */ 02t
7OARD MAKE CURRENT THE LINE AFTER CURRENT %/ o2t
HOEXIST, OTHERWISE SIGNAL EMPTIED) */ 0.2¢
TOOGIT ARG MAKE CURRERT THE LINE BEPFORE CURRENT %/ 02
(iF BOTE EXIST, OTHIRWISE SIGNAL EMPTIED) ¥/ 02t
ET YOTC GET THE CURRENT LINE AGAIN, IF ANY %/ 02
GET_LAST 70 GET AND WAXE CURRENT THE LAST LINE, IF ANY */ 034
5YOT0OGET ARD MAKE CURRENT THE FIRST LINE, |F ANY */ 03!

0%
/¥ DECLARE REQUIRED DATA STRUCTURES =:LINE_DATA ¥/ @sﬂ
DCL LINE AKEA ARSA(LINE ASIZ); 05
OCL 1 LiHE_INST 8ASED(LINE, cu&n); %
2LUINE PREV OF&SLv UVHE_AREAY INTT(LINE_LAST), 034
2 LINE REXT OFFSET{LINE J ARERY THET(RULL), 0%
2tﬂua¢zmtiﬂw,x“u‘ 7, 031

2 LINE_ VAL CHARUENGTH{LINE) REFER (LINE_LENY) INIT(LINE); 03¢
DCL {LINE CURR, Liob_LaSY, LiNE_FIRST) OFFSET(LINE_AREA) INLT(NULL); oyt
ol
/% CYCLE FILLING LINE & STORIMG 1T =:STORE_LINES %/ oy
/¥ PASS THE JREUT Fi.0 «i$PASS_FLLE =/ okt
DCL SYSiH FiL# RECORG, Jt
OPEN FILE(SYSin) ;w*ua *%QL; Ol

ON ENDFIL BLOGT YO OSFILE_ENDED on’

/7% CYCLE TGy P ';LLuebb\CLE %/ Okt
DO VLY (is Dt
IR P STED=: SPASS_READ %/ 05;
bt fJ(lfN;l‘), 35
THEY RECGIU=¢STORE_LINE ®/ 051
GUAL COADETION(FILLED) 05!
NS 08"
05¢
NS CURR; 06:
PHE_NEXT = LINE_CURR ¢ 06!
e TR IR 06!
IS CN A DI RSy 07!
SFLLE SRS, 07!
Ll ns 071

/% DESCRIBE 1%
/z':.-}"rj_ LTOR

prd

-
<y

N

(IN CASE vHL
THE MULL
GET MEXT T

e A

o oat .
R
s

o

3

JOS
o
o
Ty
[
Lot
=
zo
T
R
T

snost
-“v

o
Ty
—
el
-
v
~

SIGPLAN Notices 17 1974 March

/% CYCLE RETRIEVING LINES & PRINTING THEM =:PRINT_LINES ¥/
/% GET THE LINE_FIRST LINE =:GE/_FIRST %/
LINE_CURR=LINE_FIRST;
/% FILL IN THE LINE =:GET_CURRENT %/
IF LINE_CURR =NULL
THEN DO;
LINE = '';
SIGNAL COND)TION(EMPTIED)
END;
ELSE LINE=LINE_VAL;
/% LOOP PRINTING LINE AND GETTING NEXT =:$D0_WHILE ¥/
DO WHILE(LENGTH{LINE)>0);
/% DO WHAT 1S REQUESTED=:PRINT_LINE "/
ODCL PRINT FILE RECORD QUTPUT;
WRITE FILE(PRINT) FROM (LINE);
/% GET THE NEXT LINE =3GET_NEXT */
IF LINE_CURR ~=NULL
THEN LINE_CURR=LINE_NEXT;
/¥ FILL IN THE LINE =:GET_CURRENT ¥/
[F LINF_CURR =NULL
THEN DO;
LINE = '';
SIGNAL COMDITION(EMPTIED);
END;
ELSE LINE=LINE_VAL};
END /% WHILE(LENGTH(LINE)>Q) */;
END /% PROCEDURE CRAM */;

=HprOg)
sample program to store variabie data efficlently =i1$maln(cram);

BEGram;
establish line storage facillty =:lline_store;$
cycle filling line & storing 1t =:istore_lines;

eycle retrieving Yines & prlinting them =3print_lines;

==gtore_llines;
pass the input file =:$pass_flle(sysin,Into(lina),store_line);

==print_1lnes;
get the line_first llne =i1get_first;
loop printing line and getting next =:$do_while(length(1ine)>0,print_line);

=zgrint_line;

del print file record output;
write flle(print) from (line);
get the next line =:iget_next;

==]{ne_store;

establish shared data =:llne_set_up;

describe the faclility =:line_store_desc;
declare required data structures =:1lne_data;"

==} Ine_set_up;
/*11ne storage facility */

/% to change names or slzes: w/
/% line:=new_name_for_line; %/
/% llne_sizet=new_lline_slze; %/

/% line_aslzi=new_lIne area_slze; */

079
080
081
082
083
085
087
089
091
043
048
099
101
162
104
146
1Q7
199
111
112
11
116
118
120
122
130
135

SIGPLAN Notices 18 1974 March
decl emptled conditlon;
del filled condition;
del line char{1ine_slze) var;
del null bulltling
line_slze:=2250;
line_asizi=710000;

53

\\\\\\\7\'\\ \\’\\\ 1
L .

llne_store_desc;

‘to store "line" away and make !t the current llne ¥/

(in case there 1s Insufficient room, */

"filled" will be signalied,) *

store_line to store after the last llne and make current %/

o
b

-\i_
ool

5

v
v

'

o]

retrieve a line make it the currvent line & set "line" to It */
(in case the llne does not exlst, "llne" will be set to %/
the null string, and "emptled" wlll be signalled.) ¥/
get_next to get and make current the llne after current */
(1f both exlst, otherwlse signal emptied) %/
get_prev to get and make current the line before current */
(1f both exist, otherwlse signal emptied) ¥/
get_current to get the current line agaln, If any %/
* get_last to get and make current the last llne, If any */
get_first to get and make current the flrst line, If any %/

R e T o PO
o R R T

o
-

==|{ne_data;

del line_area area(line_aslz);

del 1 line_inst based(llne_curr),

2 line_prev offset(line_area) Init(line_last),
2 line_next offset{line_area) init(nuil},

2 line_len flxed bin(1l%),
2 Vlne_val char{length(line) refer (llne_ten)) Intt(line);
del (Vine_curr, line_last, llne filrst) offset(line_area) Init{null);

zmgstore_Ilne;

on area slgnal condition(fllled);
allocate line_Inst;

if line_first = null

then line_flrst = line_curr;

else line last ->line_next = line_curr;
11ne_last=llne_curr;

==get_next;

If line_curr “=null

then line_curr=line_next;

fill in the line =:get_current;

—

==get_prev;

if line_curr 7= null

then lline_curr = line_prev;

fill In the llne =: get_current;

==get_current;

If line_curr =null

then do;

line = '';

signal condition(emptied);
end;

else line=1lne val;

SIGPLAN Notices

=spet_last;
l1ine_curr=line_last;

flil

in the line =:get_current;

==pget_flrst;
line_curr=llne_flrst;

finl

==$pass_file($flle,how,Sthen);

In the llne =:get_current;

dcl $file flle record;

open file($file) Input seql;
on endfile($flle) go to $flle_ended;

cycle through the flle=:Scycle($pass_read(how,$then));
$file_ended:

close flle($flle);

==$pass_read(how,process);
read file($file) how;
process thls record=iprocess;

==$cycle($do);

do while(lb);

do what is requested=:$do;
end /% while(lb) %/;

==$do_while(test,$do);

do whille(test);

do what is requested=:%do;
end /% while{test) */;
s=$maln(name);

nametprocedure optlons(main);
Include the body=iname;

end /* procedure name */;

REFERENCES:

lﬁ

Baker, F. T.

Dijkstra, E. W,

Leavenworth, B. M, (ed)

19 1974 March

"Chief Programner Teams"
IBM Systems Journal, Vol, 11, No. 1, 1872

"Notes on Structured Programning" (1969)
Technische Hogeschool, Eindhoven, Netherlands
"The Humble Programmer”, Turing Lecture

Communicatlions of the ACM, October, 1972

"Control Structures In Programming Languages"
SigPlan Notices, VYol. 7, No. 11, November 1972

SIGPLAN Notices 20 1974 March

5. Mills, Harlan "Mathematlcal Foundatlons For Structured

Programming"
I8M FSD, Galthersburg, Maryland 20760

6. Parnas, D. L. "On The Criterla To Be Used In Daecomposing

Systems Into Modules"

Communlcations 0f The ACM, December 1972

7. Wirth, N, "Program Development By Stepwlse Reflinement"

Communlcations Of The ACM, Aprll, 1971

A more extenslive biblitography is available,
Wrlte tos

Richard Karplinski

76-U Informatlon Systems

Univarsity of Californla
San Francisco, Callf. 94122

To the Editor:

ERRATUM to

"A Programming Language for Mini-Computer Systems,'' by Frank L.

and Victor B. Schneider, SIGPLAN Notices (9, 1)

On page 18 (in the section entitled Group Variables), the line

<group declaration> :: =

should have been followed by the line

Friedman

group <group name> [<component list>] <group variable list>

This line was inadvertently ommitted from the text.

Frank Friedman

