
	

SIGPLAN Notices

	

12

	

1974 March

11 0 ..1

	

-i-~ - ,

	

.

	

Fin

	

llllrt

	

l - t 3

	

I11 ees

	

0C 1

Tili f l !I lit t

	

2ai.]

	

IF

	

7f.i,

	

I I.JY due

	

i.. ;rlLte r ' . I

["I e L_I

	

.

	

i^I

	

C

	

i :i 1. J t _:I'

	

C i r_ i' I

	

,

	

I I_J f °I o-

	

1

	

I•

I.1 1 3

	

l!!I-.i1E 1\I

	

H 4
ty

f 1_:y.srt'Phv `i_'

	

Re eo 1 tJi_ i rl

	

o f

	

an
}'

	

g ._

	

3 f f

	

1 L f p

	

I i , IJin % 1 rl'~;

	

0 FI

	

1

	

`- LW1

	

~ P

Purdue

	

Ur 17.

	

r

	

f t ,

	

D p i

	

of

	

C' : : ii .utF.q'

	

1

	

fl i i

Hp-11, 1

AN UNSTRUCTURED VIEW OF STRUCTURED PROGRAMMING

Richard H . Karpinski

Office of Information Systems

University of California, San Francisc o

Several complementary notions dealing with writing computer program s
have been introduced in the last few years . The first of these t o

cause comment was the idea of avoiding the GO-TO instruction . Whil e

considerable debate has ensued, the finest spokeman both for an d

against have agreed that the unrestrained use of the GO-TO should be

discouraged .

After further consideration,

	

It is becoming clear that the GO-TO

question is a minor issue . The major Issue is, of course, how to

write better programs .

	

Let us then examine the various aspects o f
better programs .

Better programs should run quickly and take little space . Sinc e

computing resources have always been limited (not small necessarily ,

but never limitless) these aspects have always been recognized . Man y

questionable programing practices have been justified on these
grounds . Since analysis of a program's use of system resources i s

(increasingly) convenient, and since such analysis does, in practice ,
yield surprisl'ng results, the important consideration becomes the eas e
with which the program can be modified to employ new strategies .

Better programs should be easy to write and debug . Again, thes e

attributes of good programs have been long sought . The problem

oriented languages have attempted to promote better programs b y

assuming some of the clerical tasks and by detecting certain classe s

of errors .

	

The continuing proliferation of such languages suggest s

that an unrecognized problem may exist . Of this, more later .

Better programs should be easy to understand and to modify . Thes e

aspects have been recognized mostly by sophisticated programmin g
managers and by unfortunate programmers who have been asked to chang e
someone's program . Even today, many of us tend to blame the damn use r

for arbitrarily changing specifications, while taking scant heed of

that likehood in creating the program .

We shall be concerned then with how to write programs which are eas y
to write, debug, understand, and modify .

	

The

	

key

	

point

	

i s

understanding . This is the end to which NO-GO-TO advocates aspire .

They argue that more limited control structures such as DO-WHILE an d

IF-THEN-ELSE are easier to understand than GO-TO (which does not

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987419.987422&domain=pdf&date_stamp=1974-03-01

SIGPLAN Notices

	

13

	

1974 March

announce its purpose), Dijkstra points to complexity as the majo r

issue . (See references 2 fa 3 .) He notes that digital computer s

require perfection in many aspects of their programs, but his point i s

that perfection is achievable . The key to perfection is seen to b e

the control of complexity .

This brings us to structured programming

	

formally, a program whic h

uses only control structures from some collection (S) is said to be S -

structured . As such, structured programiing 1s not very interesting .

However, it has been observed that adher nee to certain principles i n

the choice of control mechanisms leads to the development of clean ,

tidy, correct programs . Briefly, the constraint is to use blocks of
code which are either nested (DO-WHILE & IF-THEN-ELSE) or sequentia l
(A-thee B) and have one entrance and one destination, although perhap s
several exits to it . That destination is always the next item in th e

containing block . The point of the constraint Is to ensure that on e

need not understand the code in a lower block to follow the progra m

flow of control . Notice that this does not require elimination of th e
GO-TO but constrains the target to lie In the same block as the GO-TO .

Within the confines of structured programming, it becomes sensible t o

decompose the problem, and hence the program, from the outside in (o r
from the top down) .

	

Wirth(7) and Dijkstra(2) discuss this way o f
approaching the prograr,ming task .

	

Essentially,

	

the tree-like (o r
outline-form,

	

i .e .

	

indented,

	

if you prefer) program which result s

from top-down decomposition ; is shown to reduce the complexity of the
program locally . Two parts of such a program may communicate onl y

through data established at a higher point in the tree (a more majo r

item in the outline) than either user .

Use of the techniques mentioned so far will lead one to write program s
which are easy to understand . several problems remain . Chief among

these is that or making programs that are easy to modify . Of course ,
any program which can be understood can be modified .

	

However, I n

practice, care should be taken that likely changes will each be

confined to a small part of the program . To do this, one mus t

consider probable changes while making the initial decomposition o f
the problem, and hence of the program . Parnas(13) discusses criteri a
for making such decompositions . The principle involved 1s calle d

information hiding . The point is to isolate major decisions (whic h

may, from time to time, need revision) within their own modules . Thi s

permits their revision without changing other modules .

In reading about these principles, I have been lead to notice tha t
many people assume that the module of modular°programming and th e

block of structured-programming both correspond to a separatel y

compliable procedure . This, in turn, leads them to assume module s
ranging from say thirty lines to upper limits of one page (fift y

lines), a few hundred lines, or even thousands of lines of code,

	

i n

some cases . I would consider, however, that the call-procedur e
boundary is yet another control structure which may be employed fo r

various purposes at various points within the overall tree structur e

of a structured programs This view permits sensible use of very smal l

blocks .

	

As a rule of thumb, I view with suspicion any blocks large r

than ten lines, or containing more than one IF-THEN-ELSE, loop, or M s

TO .

Using these very small blocks containing references to named block s

proved to be an easy way to write programs . In general, I succeede d

in using only data defined in this block or in a containing block .

SIGPLAN Notices

	

14

	

1974 March

Programs so constructed proved easy to modify .

	

In fact, only two
difficulties were

	

encountered :

	

the clerical task of creating a
compiiable procedure from such blocks Is tedious and error prone and ,
secondly, I still left off some end statements . To solve thes e
problems, I have developed a program (STRUCTR) which performs thi s
construction (producing a PL/i-style source stream to be compiled ,
with PL/I comments replacing the references to nested blocks an d
indentation corresponding to nesting depth) . An example of the inpu t
and output of this program is included below .

STRUCTR provides an argument mechanism which permits one to develop ,
for example, an "if" block or a " do-while" block, which need only b e
corrected once In case of a missing end .

ss$if(test,$then,$else) ;
if tes t
then do /* (test) is true */ ;
success, act accordingly = :$then ;

end /* (test) was true */ ;

else do /* (test) is fatal*/ ;

failure, act accordingly n :$eisa ;

end /* (test) was fillet) */ ;

In this case, " test " , " $then " , and " $else " are to ba passed in eac h
reference to $if . Whether this mechanism will prove sufficient 1s no t
yet clear . In any, case, the use of automatic transformation o f
individual blocks into a usable source stream permits the maintenanc e
of both forms of such a program .

	

This Appears to provide a
substantial improvement in ease of program modification .

	

Successfu l
use of top-down, structured, program decomposition guarantees that an y
"hidden" block can be replaced with inpunity .

	

This emphasis on
maintenance may seem strange until one notes that maintenance begins
with the first change to a previously written line of code . Thus I
find, for example, new freedom to change a design decision as soon as
problems with that decision become apparent .

The construction mechanism, STRUCTR, is basically a line oriented
system for representing structured programs . That Is, it will provid e
the following facilities :

1. Iterative Refinement (outside-in or top-down programming)

refine

	

intent '= :' name ' ;

The " refine " will appear as a comment followed by th e
text of the module called clamp, appropriately indented .

This permits the use of very small modules which are
built up without any necessary linkage overhead .

	

These
small modules,

	

in turn, permit capturing the decision s
made in designing the program in their proper order .
This tends, in appropriate use, to show directly th e
approach to writing programs suggested by DiJkstra R:
Wirth .

2. Structured Programmin g

control refine : : s intent ' s :$' name' ;'

SIGPLAN Notices

		

15

	

1974 March

This form of a " refine " makes use of a pre-coded contro l

structure such as a dodwhi.le, do-Index, do-case, or 1f 0

Each control structure may be used only when the bas e

language in use supports that structure . However, not e

that a great deal of a program can thus be written in a

lkng ftg Independent fashion . Exclusive use of some suc h

set of system modules For control functions constitutes a

clear example of structured programming0

	

(It would b e

possible to enforce that restriction, but perhaps at the

cost of reserved words .) .

In general, a control structure will require one or mor e

arguments to specify the details or to name the module s

to be included within that structure .

3 . Unexpected Arguments to Contained Module s

argument

	

name

	

val u

The argument will be available to all descendents of thi s
module . That is, an appearance of Dame as an identifie r

within a contained module (one referred to in a "refin e ")

will be replaced by yalmeo One exception is that a n

"intent" will not be altered in this way .

Information Elidin g

hldden_refine ss~ Intent ' ,, s' name o
; * i

Such a module and Its offspring are said to be hidden .

ideally, the interior of such modules would not be liste d

or would be obscured, however, among the compilers a t

hand, only PL/l & assembler support such literal

	

hiding .

Each such module is expected to be associated with a
documentation and declarations module to be included (vi a

" shareda_refine") at some appropriate point in the

program, anteceeding all uses of the hidden module .

50

	

Information Sharin g

sharetrefiness -, intent ' is s' name

This form of a " refine " makes the named module and it s

offspring available for use by the other descendents o f
this module (the one containing the "shared_refirre '") 0

The usual indentation to show refinement is suppressed t o

Indicate that status, I .e0 to indicate the logica l

position of the module within the tree structure of th e

program .

SIGPLAN Notices

	

16

/* SAMPLE PROGRAM TO STREE .0R.. JAR,E DATA [: EIRIENTLY R, s$MAIN */

CRAMsPROCEDURE OPTIORS(MAiR)

/* INCLUDE THE RODY-R;OR/RR

/* ESTABLISH LIRE EfOERRE EARLRTR

	

L j'5 STORE * /
/* ESTARL!SH SHARER

	

.SET - UP '`/
/*L

	

s :oRtL

	

,!%..

TO CHANRE REE ER

	

*/

/*

	

R .!muA.,_.rRR .i.iNr

	

4J

/*

	

2.5o

	

,,' /
/*

	

*/

DCL EMPTIER CO(IhiR!O R

PG,. :EEER COO i TIOR

DCL LIRE CHARRRR, RAR ;

DCL NOLL RR

/* DESCRIBE THE EAElEiTR

	

IRI-E_STOREOESO

/% "C: RTRRE 'R .iRE E RRRY RRO MAKE IT THE CURRENT LINE */

RR:1R TEERE iS !RRURRiCEENT ROOM, */

/*

	

'ELEEO'' RiEL EE SIGNALLED .)

	

*/

/*

	

RTOkEjiNE RR STORE AFTER THE LAST LINE AND MAKE -1011REAT * /

/*TO RETCEVEL INE MAKE ii THE CURRENT LINE -eii SET " LINE" TO IT *I

/*

	

(iN CASE RRE LIRE DOES NOT EXIST, "LINE" WILL BE SET TO */

/*

	

THE NULE STRIAR, AND "EMPTIED" WILL E SIGNALLED .) */
CE: f NEXT TR RET AND MAKE CURRENT THE LINE AFTER CURRENT * /

/*

	

(E RRTH EXIST, OTHERWISE SIGNAL EMPTIED)
GET_RREE TR RET 6RR MAKE =RENT THE LINE BEFORE CURRENT */

/*

		

(ir R';,- EXIST, OTHERWISE SIGNAL EMPTIED) */

GELTIJ -1 . TO GET THE CURRENT LINE AGAIN, IF ANY */

/*

	

GETJAST C GET AND MAKE CURRENT THE LAST LINE, I F ANY * /

/*

	

GET_RIRRT RO CET RR() MAKE CURRENT THE FIRST LINE, IF ANY-* /

/* DECLARE REQUIRED DATA STRUCTURES

	

LI NE DATA */
DCL EJNE_AREA AREA(LINE_ASIZ) ;

Doi. 1

	

w-Al.)(L NE,_cuRR) ,
2LINE REV 0EE :iREiRONE]TOO iNIT(RINEjAST) .,
2 LINE_NEXT OFFSET(LINE_AW) INIT(NULL) ,

2 LINE_LEN FIXER RINOR) #
2 LINE ,_VAL CHAR '(RERGTh(L!NE) REFER (LINE LEN)) INIT(L(NE) ;
DCL (LINR CORR EIRELART, RINE_EINST) OFFSET(LINEAREA) INIX(NULA ;

/* CYCLE FILLING LINE & RTORIRR IT

	

STORLE LINES */

/* PASS THE IRRUT EIL. E
DCL sysim riLE voORR ;

OPEN F ;LE(SRSiR) ;RUT REQL

ON ENDEILERYSiR RR TO SFILEENRED ,;.

/* CYCLE ThRRURL iHE EILER ;CYCE E

Do wRfRR' (
/-, D{

„'HITH
RFUESTEDRPASS_REA D

RRAD RIL(RRiN

	

irRo(RIU)
PROCEES H :R RECORR .'R'STORELINE */

OR ARER SIGRAL CORRITION(EILLED) ,

A -w!R

NuL L
-imrE:

	

RRT

	

L :E _S;URR,,

:RR S T >L(RE_NET

	

tINI_CURR .

[JR, iR RR” .
$FILE . ERRER :

cLosR RiLR(R,

1974 March

CO Q
003
OM
005
00 C
.oil

.007E

01 (
0I J

01

01 !
01 (

-Ore
01 1
01
02 (
02 1

02A
.02 L
Oa r

02 1

0)1

0

OM
O.!

03

OM
Ok t
04';
0Y:

Oki

314 !

Of I
0`1 S
05 ;

0 5
05 !

05
05 1
06 :
_06]
06 !
On
07 !
07(

	

SIGPLAN Notices

	

17

	

1974 March

/* CYCLE RETRIEVING LINES & PRINTING THEM :PRINT„LINES */
/* GET THE LINE_,FIRST LINE ,t :GELFIRST */

LINE CURR rILINE_YIROT ;

/* FILL IN THE LINE ~ :GET_CURRENT */

IF LINE CURR =NUL L

THEN DO ;

	

LINE

	

" ;

SIGNAL CONDITION(EMPTIED) ;
END ;

ELSE LINEILINE, VAL ;

/* LOOP PRINTING LINE AND GETTING NEXT lu : $$DOWHILE */

DO WHI LE(LENGTH(LiNE)>O) ;

/* DO WHAT IS REQUESTED= :PRiNT_LINE * /
DCL PRINT FILE RECORD OUTPUT ;

WRITE FILE(PRINT) FROM (LINE) ;

/* GET THE NEXT LINE e :GETWEX T

I F LINE_CURR `'NULL

THEN LINE__CURR t LINE_NEXT ;

/* FILL I N THE LINE = tGETLCURREN T
IF LINE: CURR =NUL L

THEN DO ;

LINE = " ;
SiGNAL CONDITION(EMPTIED) ;

END;

ELSE LINELINE_VAL ;

END /* bill I LE(LENGTH(L I NE)>O) */ ;

END /* PROCEDURE CRAM */ ;

~prog ;

sample program to store variable data ef°iclently , :$maln(cram) ;

mcram ;

establish line storage facility v, :11ne_store ; $

cycle filling line & storing it ~ :storeVlines ;

cycle retrieving lines 81 printing them « :print 11nes ;

Gstore._ lines ;

pass the input file

	

$pass_file(sysln,lnto(line),storejI ne) ;

~~print_l lnes ;

get the line_first line = :get_first ;

loop printing line and getting next e :$do while(length(line)>O,print_1ine) ;

v=pr int o_ 1 i ne ;

del print file record output ;

write file(print) from (line) ;

get the next line = :get_.next ;

w ~line~store ;
establish shared data = :iine_set_up ;

describe the facility :line_store_desc ;

declare required data structures W :llneJata ; *

tr.=l1nejset.up ;
/*line storage facility '' /
/* to change names or sixes :

	

*/

/*

	

i Ire : new__name for_, 1 ine; yr/

1 Ine" sixe :~new_1 inee._sIxe ;

	

yr/
/*

	

llne~aslx :=new_line_nrea_sixe ; y~/

07 9

0$ 0

08 1

08 2

08 3

08 5
04 7
08 9

09 1

09 3

09 8
09 9

101

102

104
106
107

109

11 1

11. 2
11 t

11 6

11 8
120

12 2

13 0

135

SIGPLAN Notices

	

18

	

1974 March

dcl emptied condition ;
dcl filled condition ;
dcl line char(line_size) var. ;
dcl null bulltin ;
i ine_slze :=?2.50;
line_aslz :=?10000;

=line_store,_desc ;
/*to store " line " away and make it the current line */
/*

	

(in case there is insufficient room, */
/*

	

" filled" will be signalled,)

	

*/
/*

	

store_line to store after the last line and make current */

/*to retrieve a line make it the current line & set " line " to it */
/*

	

(in case the line does not exist, "line " will be set to * /
/*

	

the null string, and " emptied" will be signalled .) " /
/*

	

get_next to get and make current the line after current */
/*

	

(if both exist, otherwise signal emptied) */
/*

	

get ,_ prev to get and make current the line before current * /
(If both exist, otherwise signal emptied) '` /

get_current to get the current line again, if any */
get_last to get and make current the last line, if any %r /
get_first to get and make current the first line, if any */

==line_data ;
dcl line area area(iline_asiz) ;
dcl 1 line_inst hased(llne,_curr) ,
2 line,_prev offset(line_area) init(line_last) ,
2 line_next offset(line_area) init(null) ,
2 llne_len fixed bin(15) ,
2 line_val char(1ength(line) refer (iine,_len)) init(line) ;
dcl (1ineurr, line last, line first) offset(line_erea) init(nul1) ;

==store4 11ne ;
on area signal condition(filled) ;
allocate line_inst ;
if line_first = nul l
then line__fl rst = line_curr ;
else l ine__last °>l ine_next =

	

line_curr ;
line_last=llne_curr ;

==get next ;
if line_curr `'=nul l
then 1 ine_curr=l ine_,next ;
fill in the line = :get__current ;

==get_prev ;
if line_curr

	

nul l
then l lne_curr = 1 ine___prev;
fill in the line

	

get,Vcurrent ;

==get__current ;
if line_curr =nul l
then do ;
line = "
signal conditIon(emptied) ;
end ;
else line=llne__val ;

SICPLAN Notices

	

19

	

1974 Marc h

= age t~. l as t ;
l ine,curr ,=, l 1ne__last ;

fill in the line = :get_current ;

~ v getwfirst ;
line _curr=l ine_fi rst ;

fill in the line = :get current ;

=$pas s__f i l e ($file, how, $then) ;

dcl $file file record ;

open file($flle) input segl ;
on endfile($file) go to $file ended ;

cycle through the file= :$cycle($pass_read(how,$then)) ;

$f i 1 e_ended :

close file($flle) ;

d4pass_read(how,process) ;

read file($flle) how ;

process this record= :process ;

==$cycle($do) ;

do while(lb) ;

do what is requested= :$do;

end /-; while(lb) ;,/ ;

==$do while(test,$do) ;

do while(test) ;

do what is requeste d = :$do ;

end /* while(test) */ ;

4maln(name) ;

names procedure options(maln) ;

include the bodysname ;

end /* procedure name }',/ ;

REFERENCES :

"Chief Programmer Teams "
IBM Systems Journal, Vol . 11, No . 1, 197 2

"Notes on Structured Programming" (1969)

Technische Hogeschool, Eindhoven, Netherland s

"The Humble Programmer " , Turing Lectur e

Communications of the ACM, October, 197 2

4 . Leavenworth, B . M . (ed) " Control Structures in Programming Languages "
SlgPian Notices, Vol . 7, No . 11, November 197 2

1.

	

Baker, F . T .

2.

	

Oi j kstra, E . W .

3 .

SIGPLAN Notices

	

20

	

1974 March

5 . Mills, Harlan

	

"Mathematical Foundations For Structure d

Programming "
IBM FSD, Gaithersburg, Maryland 2076 0

6 . Parnas, D . L .

	

" On The Criteria To Be Used in Decomposin g

Systems Into Modules "
Communications Of The ACM, December 197 2

7. Wirth, N .

	

" Program Development By Stepwise Refinement "
Communications Of The ACM, April, 197 1

A more extensive bibliography is available .
Write to .

Richard Karpinsk i

76-U Information System s
University of Californi a
San Francisco, Calif . 9412 2

To the Editor :

ERRATUM t o

"A Programming Language for Mini-Computer Systems , " by Frank L . Friedman
and Victor B . Schneider, SIGPLAN Notices (9, 1) :

On page 18 (in the section entitled Grou Variables), the line

<group declaration> : .

should have been followed by the lin e

group <group name> [<component list>] <group variable list >

This line was inadvertently ommitted from the text .

Frank Friedman

