
Interactors : A Real-Time Executive
with Multiparty Interactions in C++

Pierre Labreche, membe r
Louis Lamarch e

Objectif: Systemes — Objective : System s
P.O . Box 265, Ville Mont-Royal

Quebec, Canada, H3P 3C 5

Abstract

Interactors is a run-time environment for embedded real-time software, which adds concurrency t o
the C++ object-oriented language . Interactors allows sequential processes to interact synchronousl y
or asynchronously, and provides user-definable multiparty interactions . Several forms of selective wait ,
inspired by Ada, are provided . Scheduling algorithms follow Carnegie-Mellon University's recommen -
dations for implementing hard deadline scheduling, Concepts are illustrated by simple application
examples : Producer/Consumer and Dining Philosophers . This paper concludes by a description of the
current implementation .

1 Background

Object-oriented languages, especially C++, are generating a lot of interest in the embedded software devel-
opment community [Eckel] . The Ada language has been a major influence in the diffusion of concurrency
concepts in the software engineering community . Although Ada integrates tasking as a language feature ,
it is not object-oriented, as it is lacking inheritance, an essential feature of object-oriented languages .

In the simulation area, the concepts of object and process have been successfully merged, The Simul a
language, initially developed for discrete event simulation, is recognized today as being the first object -
oriented language [Meyer] . Simula also offers coroutines, independent threads of control which are als o
sometimes referred to as light-weight processes .

It is argued in [Magnusson] that concurrent processing could be achieved by adding interrupt-base d
preemptive scheduling to languages providing coroutines . Indeed, several coroutine-based executives hav e
been proposed for many languages ,

Language designers are debating whether concurrency mechanism should be part of programmin g
languages, as in the case of Ada, or if these mechanims should be external, to be accessed using basi c
language features only . There is a similar debate about I/O handling in programming languages such a s
C and Pascal .

Implementing concurrency outside of a programming language keeps the language small . The resulting
application software may be portable, but the software will not integrate easily with software develope d
for another process abstraction, thus affecting reusability .

On the other hand, the inclusion of a specific concurrency model in a language imposes this model to al l
applications, with the risk that this model may not be suitable to all . The limitations of the Ada tasking
model have been discussed in many papers, for example [Cornhill] . As a legacy to the limitations of th e
"one size fits all" approach, Ada's tasking model is now generally avoided for critical software applications .
As a consequence, Ada tasking is currently undergoing a re-definition, in the scope of the Ada 9X Project .

20

	

SIGPLAN Notices, Vol . 25, No . 4

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987481.987482&domain=pdf&date_stamp=1990-04-01

Revision proposals of Ada in the domain of tasking are summarized in several Ada Language Issues of
the Ada Language Issues Working Group [ALIWG1] [ALIWG2] 1 ,

As processors are evolving rapidly, application code must be portable . Because the C language i s

available on virtually any kind of processor, from 8-bit microcontrollers to supercomputers, it has bee n
used as the implementation language of many commercially available run-time executives . As the C+ +
language [Stroustrup] is a superset of C, and is typically compiled using a portable front-end translator t o
C (called cfront), the C++ language has also achieved a high degree of availability and portability .

The C++ language has been used to implement complete operating systems, including for mul-
tiprocessors . An excellent discrete-event simulation package, Simulation And Modelling In C+ +
(SAMOC) [Lomow], integrates a simulated-time process abstraction into the C++ language . SAMO C
is implemented as C++ classes, without introducing any changes to the base language . An advantag e
of this add-on approach over defining special-purpose simulation languages is that it gives access to al l
features and support tools of the base programming language, in this case C++.

Other sequential languages were also extended for concurrency . A process abstraction was successfull y
implemented in the Modula-2 language [Burns] . This abstraction provides : preemptive scheduling, the one -
to-one channels synchronization model of Occam, and a comprehensive suite of selective wait constructs ,

Concurrent object-oriented languages use various models for inter-process synchronization and commu -
nication . A good discussion of concepts is available in [OOPSLA'87] .

• Messaging models cause an independent thread activation in the object receiving the message . For
some models, messaging is the only possible inter-process communications method . Actors, discussed
in [Agha], are typical of messaging models .

• Messaging models support either blocking (synchronous) or non-blocking send (asynchronous) . The
Transputer Occam model provides synchronous message passing only .

• Inter-process communication and synchronization may be generalized to more than 2 parties . Accord-
ing to the authors of the design language Raddle87 [Forman], multiparty interactions are becoming
an important abstraction in the design of distributed systems . Multiparty Interactions, or meetings ,
have also been included in a recent book on visual design techniques [Buhr] .

• Shared memory models may be applicable, depending upon the physical connectivity of multiproces-
sors .

2 Introduction to Interactors

Interactors is a concurrent C++ environment for real-time applications . Interactors is designed for em -
bedded software applications, such as control and monitoring systems, test equipment, and telecommuni-
cations .

Interactors support single-processor applications . Multiprocessing is not directly supported, but i s
possible using user-defined communications . Advanced features such as memory management, exceptions ,
and security were not considered at this time .

Interactors concurrent objects are defined in a hierarchy of classes . The lowest-level is the thread . A
thread possesses its own stack, and must explicitely be given control . The next level is the process . It
possesses all the attributes of the thread, and has specific attributes used for scheduling purposes . The
highest level is the interrupt service process (ISP), a process which can be connected to a vectored interrupt .

New processes can be created dynamically . There is no task configuration file or static description o f
objects .

' Some of the interesting proposals are : [L108] Preference Control for open select alternatives .]L140) Add mutual contro l
to tasking . [L161] Use of task priorities in accept and select statements . [L162] Increased control over Ada task scheduling .
[L163] Provide comprehensive race controls .

21

Inter-process synchronization and communication, or interactions, were designed for maximum appli-
cation flexibility. Multiparty interactions are user-definable :

• Interactions may be synchronous, i .e . ready only when all interactors are ready.

• Interactions may be asynchronous, i .e . requiring some form of buffering to be used between th e
interactors . For example, transferring data using an asynchronous interaction will allow the sende r
to continue even if there are no receivers waiting .

• Broadcast communications may be designed, allowing a sender's message to be transferred to a
multitude of receivers .

• Data transfers are not the only types of interactions available . Some forms of interaction involve
synchronization only ; other forms involve data transfers and compuitations .

• A shared memory model may be used .

Flexible selective wait constructs are provided, modeled after Ada's own constructs . With selective
waiting, a process can wait until the completion of one of many requests . The application may define it s
own criteria for arbitrating between many ready requests .

3 Interactors Built-in Component s

In this section we describe the objects which are provided by the Interactors environment .

3 .1 Interactors : Threads, Processes, and ISP s

The foundation of all concurrent objects (interactors) is the THREAD . A thread possesses its own stack, i n
order to support context switching . The stack size may be defined independently for each thread object .
A thread may be initialized with interrupts enabled or disabled . Thread objects will not execute until th e
member function Resume() is called. When a thread is resumed, the executing thread's state is saved ,
and the resuned thread's state is restored . Thread behaviors are defined by the virtual function Script () .
Thread-derived classes may have additional data supplied by constructors .

Threads may be used by applications but, in general, the increased capabilities of the PROCESS clas s
will be required . Basic threads cannot be scheduled . Processes are threads, complemented with additional
attributes, used for scheduling :

• Priority — An integral value indicating scheduling priority .

• Time Scheduled — The calendar time at which this task should be made ready for execution .

• Time Slicing Quota — The maximum number of Time Slicing periods for which this task shoul d
execute. Beyond that limit, other tasks of the same priority will be given control in a round-robi n
manner . A zero value disables time slicing .

Process member functions used for defining the script, for setting the priority, and for schedulin g
processes . A process may be scheduled with the following options :

• Immediate — Schedule()

• In a specified delay d — Delay(d)

• At a specified calendar time t — Schedule (t)

22

Most user-defined active objects will be derived form the process class . The MAIN built-in class de-
fines properties of the unique instance object MainThread . A main program is defined by the function
MAIN : : Script O .

Interrupt Service Processes (ISPs) can be resumed by the processor interrupt mechanism . ISPs are
derived from processes, therefore they can be manipulated by the scheduling algorithms . ISPs are associate d
to an interrupt vector by the call to the SetVector(n) member function . Setting a vector installs an ISP s o
that interrputs at this vector will save the running thread's status on its stack, and then will change contex t
to the ISP. The interrupted process's address is saved a field of the ISP . It is up to the ISP to re-schedul e
or resume the interrupted thread . The InterceptVector(n) member function is different : before givin g
control to the ISP, the interrupt vector's old Interrupt Service Routine (ISR) will be executed . The old
ISR address which was in the Interrupt Vector may be called or restored using other member functions .

3 .2 Interrupt Locks, Semaphores and Regions

Scheduling can be disabled by INTERRUPT_LOCK objects . An interrupt lock is usually unnamed . The
constructor of interrupt locks will disable interrupt-driven scheduling, and its destructor will reestablis h
the condition which existed prior to the lock . Interrupt locks are designed for defining higher-level objects .
Interrupt locks allows a structured access to a processor's interrupt control .

Binary SEMAPHOREs are provided for exclusion control . Semaphores consist of a priority list of waitin g
processes, and a pointer to the process owning the semaphore . The classical Wait() and Signal() opera-
tions are provided. If a wait operation cannot be satisfied because the semaphore is busy, the requestin g
process will be enqueued into the semaphore 's list . Upon signalling to the semaphore, the highest priorit y
waiting process will acquire the semaphore and will be scheduled . If configured so, semaphores implement
priority inheritance (refer to 3 .6 .1) .

REGION objects provide a structured access to semaphores . As for interrupt locks, regions are usuall y
unnamed. A region consists of a pointer to a semaphore, which is initialized when the region is constructed .
The semaphore is waited upon during construction of the region . The semaphore is released when the regio n
is destructed . Regions can be used asis, or application-specific derived classes can also be defined .

3 .3 Interactions and Request s

All inter-process synchronization and communication are based on two foundation classes: requests and
interactions . The basic interactions and requests are virtual classes, i .e . which cannot be used directly b y
application software . Derived classes must provide the specialized features required for application use .

REQUESTs are data structures created by processes for communicating and synchronizing with other pro -
cesses . A request usually carries information to the other processes which participate in some interaction .
Requests can be submitted for unconditional execution by simply calling the Perform() member function .
Requests are executed by processes in a mutually exclusive manner . Request types define a synchronizin g
condition allowing the request to proceed, and a script to be executed when allowed to proceed . Request
instances are tied to an instance of an interaction . Those request types which can be pending because o f
synchronization will also indicate a queue within the interaction, where pending requests will be deposited .

The Perform () function contains all the logic to apply request's synchronization conditions, to enqueue
requests, and to switch context when required .

INTERACTIONs are the meeting place of participating interactors . Interactors rendez-vous are different
from the Ada tasking model . In Ada, tasking synchronization mechanisms are not symmetric : tasks
communicate and synchronize on one end by entry calls and on the other end by call accepts . Moreover ,
a calling task must explicitly reference the desired acceptor task . An acceptor task needs not knowing th e
identification of the caller .

By contrast, Interactors allows symmetrical communications between interactors . This is made possibl e
by restricting all exchanges between processes to use named, passive, INTERACTION objects . When a rendez -

23

vous takes place, the last ready interactor will effectively complete applicable pending requests prepare d
by all participating interactors, including itself.

Interactions typically include queues for requests which cannot immediately be serviced, if synchronou s
interactions are desired .

If asynchronous operations are required, the interactions will rather contain buffers allowing to imme-
diately release the requesting process, providing a wait-free operation .

3 .4 The Channel Built-In Interactio n

The Interactors environment includes a CHANNEL built-in interaction class . Channels are synchronous ,
unbuffered, portals where information may be exchanged in one way only, from the point of view of a
requestor . Two classes of requests are associated with channels : SENDs and RECEIVEs . Although each
request is unidirectional, a process may alternately send and receive on a given channel .

A send request identifies the channel and source of data, and the number of receivers which need th e
information . Usually, only one receiver will be required . A receive request identifies the channel, and th e
destination of data .

Channels allow broadcast communications to be implemented . A transfer will be ready only when
(1) one sender is ready, and (2) as many receivers as requested by the sender are ready .

The definition of channels contain inline members functions, which are more programmmer-friendl y
than SEND(. . .) .Perform () and RECEIVE(. . .) .Perform () . These functions are naturally name d
Send(. . .) and Receive(. . .)

3.5 Selective Waiting

Selective waiting, for a process, is the ability to initiate a set of possible requests . Only one of these
requests, at most, will be selected . For each select choice, the programmer specifies a statement to b e
executed, should that request be selected .

Selective waiting has been inspired by the rich set of options which are offered by the Ada language .
The selection is not constrained to data transfer types of requests . Any request type may be specified i n
a selective wait construct . For instance, a process may selectively wait on sending on channel A, receivin g
on channel C, and obtaining a resource from a programmer-defined interaction .

Selective waiting is specified by the select . . . endselect pair . Select alternatives are specified b y
when(. . .) clauses .

The following selective wait forms are mutually exclusive :

Unconditional will block the selecting process until a request is served .

Conditional will not block the selecting process except perhaps for mutual exclusion into the interactions .
The interaction's own synchronization conditions will not block the selecting process . This option i s
specified by when (nothing) as the last alternative .

Delayed will block the selecting process for a maximum delay . This option is specified by when. (delay_i s
(. . .)) as the last alternative . The argument of the delay_is construct is a time duration .

Deadlined will block the selecting process until a specified calendar time . This option is specified by
when (time_is (. . .)) as the last alternative. The argument of the time_is construct is a calendar
time .

The above select keywords are implemented as simple C pre-processor macros .

24

3 .6 Scheduling

3.6.1 Algorithms

In real-time systems, the scheduling algorithms must be carefully selected, so that critical tasks be execute d
within their deadline . Carnegie-Mellon University research [Cornhill[has identified important requirement s
for real-time scheduling, which have all been incorporated and validated by at least one Ada vendor . These
recommendations are being implemented into Interactors :

e The scheduler should be preemptive .

® Integration of the same scheduling algorithms for both interactions and for task activation and
suspension .

• When multiple requests are ready for a selecting process, the request which is tied to the highest -
priority interaction will be given priority .

s Priority queues are used as the standard mechanism for both the ready list and for the interactio n
waiting queues .

o Priority inheritance raises the priority of processes while they utilize a shared resource which block s
a higher-priority process .

3 .6.2 Priority of Request s

Each request type has a virtual member function returning its priority . In general, that priority should
be specified as the highest priority of any waiting process which will be scheduled when executing tha t
request . This will be used by selecting processes to arbitrate between open alternatives, in favor of th e
waiting process with highest priority .

3 .6.3 Scheduling lists

Two scheduling lists are used .

® The ReadyList is used to keep processed which are ready for execution, but which are not currentl y
executing . This list is sorted by priority . Whenever the executing process is suspended, it is normall y
the first process on the ready list which is given control by the scheduler .

• The DelayedList is used to keep processes which are scheduled for later activation . This list is sorted
by scheduled time . Periodic interrupts will trigger the time-based scheduler, which will determine i f
any delayed process can be made ready or if the running process has elapsed the duration of its tim e
slice, if enabled .

3 .6 .4 Time

Calendar time is internally represented as a two-fold data structure : one part is the time_t ANSI C type,
which is the current time in seconds since 00 :00 :00 1 January 1970 ; the other part is the 16-bit binar y
fraction of a second . This format (1) is independent of the actual duration of the hardware clock tick ,
(2) lends itself to easy manipulation with integer arithmetic, and (3) is compatibile with ANSI C standar d
time .

Durations are kept in the same format, seconds and fraction, with the semantic of being relative .
Durations are easily be added to calendar time . In order to allow implementations without floating poin t
arithmetic, a maco was defined (TIME_F (. . .)) which accepts a duration in seconds and converts it into a
class constructor with integer arguments only .

25

#include <channel,hpp >

CHANNEL CHAN ;

class PROC : public PROCESS

{

public :

PROC(){Schedule() ; }

void Script()

{

void MAIN : Script 0
{

PROC() ;

for (int data=1 ; data != 10 ;)
{

CHAN .Send(data) ;

CHAN .Receive(data) ;

}

int data ;

	

}
while(1)

{

CHAN .Receive(data) ;

CHAN .Send(++data) ;

}

Figure 1 : Consumer/Producer processes on a single channel .

4 Example s

The following are examples of classical problems coded in the Interactors environment .

4 .1 Two Producer/Consumers, One Channe l

In this example, two processes, exchange data back and forth . The first process will initially send, whil e
the other will initially receive . A single channel is necessary for this type of interaction, because the role s
of sender and receiver are synchronized . The complete example's source code is shown in figure 1

A static channel object, CHAN, is declared . A PROC process class is defined . The constructor of the PROC

class schedules the process for immediate execution . The process's script is a never-ending loop: an integer
value is read from the channel, is incremented, and sent back to the channel .

The main process creates an un-named PROC process. The main process sends to the channel, initiall y
the value one, receives a new value from the channel, and will loop until the value 10 is received .

4 .2 One Producer, Two Consumers, Two Channel s

In this example, the main process sends data to either of two channels, each channel being used by a
consumer . The consumer processes are not always receiving . Although two channel are used in this
example, similar results could be achieved using a single channel . The complete example's source code i s
shown in figure 2

Two static channel objects, CHAN1 and CHAN2, are declared . A PROC process class is defined, containin g
a private pointer to the channel to be used by the consumer process . The constructor of the PROC class wil l
receive as an argument a pointer to a channel . The channel address is saved by the constructor, and the
process is also scheduled for immediate execution . The consumer process's script is a never-ending loop :
an integer value is read from the channel, and the consumer waits for 0 .5 seconds .

The main process creates two un-named PROC processes, one for each channel . The main process wil l
selectively send data to channel CHAN1, to CHAN2, selecting for at most 0 .2 seconds. The main process wil l
loop 10 times .

26

#include <channel .hpp>

#include <select .hpp>

#include <stream .hpp>

CHANNEL CHAN1, CHAN2 ;

void MAIN : :Script ()

{

PROC (81CHAN1) ;

PROC (&CHAN2) ;

for (int data=0 ; data <10 ; data++)

{

class PROC : public PROCES S

{

CHANNEL *than ;

public :

PROC(CHANNEL *c)

{chan = c ; Schedule() ; }

void Script()

{

selec t

when(CHAN1 .Send(data))

{cout << "CHAN1 " ; cout .flush() ; }

when(CHAN2,Send(data))

{cout << "CHAN2 " ; cout .f lush() ; }

when(delay_is(0 .2))

{cout << "Timed out " ; cout .flushO ; }
endselect

}

}

int data ;

while(1)

{

chan->Receive(data) ;

delay(O .5) ;

}

Figure 2 : Single Producer, two channels, a Consumer on each channe l

4 .3 Dining Philosophers

The problem of dining philosophers is a classical synchronization problem cited in numerous article s
and textbooks, for instance [Ringwood] and [Milenkovic] . This introduction to the problem is extracte d
from [Ringwood] :

"Though the problem of the dining philosophers [Dijkstra] appears to have greater entertain-
ment value than practical importance, it has had huge theoretical influence . The problem allows
the classic pitfalls of concurrent programming to be demonstrated in a graphical situation . It is
a benchmark of the expressive power of new primitives of concurrent programming and stand s
as a challenge to proposers of these languages . "

There are five philosophers living in a monastery . The philosophers endlessly think and eat rice whic h
is continually replenished by servants (not part of the problem) . The dining room has a round table wit h
five places, five bowls, and five chopsticks . A philosopher needs two chopsticks to eat . The problem i s
to provide synchronization between the philosophers providing mutual exclusion, avoiding deadlock an d
lockout, The complete example's source code is shown in figures 3 and 4 .

The approach starts with designing a CHOPSTICKS interaction class which will synchronize all th e
philosophers, and keep a record of allocated chopsticks . There will be a single instance of this interaction .
The chopsticks interaction has two data components : (1) the current status of each of the five chopsticks ,
inUse [5], and (2) five lists of pending philosopher's requests, waitList [5] . Lists are used rather than
a single pointer, allowing to borrow the built-in mechanisms of interactions . The constructor of th e
interaction will mark all chopsticks as not in use . Two access functions, Get () and Put () will be defined
later . An instance object, CHOPSTICKS, is created statically . By convention, chopsticks are assigned t o
philosophers as follows : the left chopstick has the same number as the philosopher's seat ; the right chopstick
is the philosopher's number plus one, modulo five .

Request classes are needed for getting and returning chopsticks . Each of those requests will contain a
single data item, the requesting philosopher's identification, a number between zero and four .

}

} ;

27

The get request class, GET_CHOPSTICKS, when constructed, will save the philosopher's identification .
Virtual member functions are defined :

• Interaction() returns a pointer to the CHOPSTICKS interaction ;

• InteractionList() will return a pointer to the request waiting list associated with the requestin g
philosopher's identification .

• Ready() returns a boolean indicating if the request may be performed . It is computed by verifyin g
that both the left and right chopsticks of the requesting philosopher are not in use .

• Script () is associated with executing the request . It simply assigns the chopsticks as in use, therefor e
preventing other philosophers from using the left and right chopsticks .

The return request class, RETURN_CHOPSTICKS, when constructed, will save the philosopher 's identifica-
tion. Virtual member functions are defined :

• Interaction() returns a pointer to the CHOPSTICKS interaction ;

• Ready() is always true : chopsticks may be returned any time .

• Script () is associated with executing the request . It marks the chopsticks as not in use, therefor e
allowing other philosophers to use the left and right chopsticks . Then, the returning philosopher ,
being very courteous, will see if any of its neighbors need help . Any pending requests to its left o r
to its right will be processed, in this order .

The chopsticks interaction, as written, could be used without modification to allocate chopsticks t o
more than five philosophers, as long as only five seats are assigned .

Two programmer-friendly functions are defined on chopsticks : Get () and Put () . These functions wil l
only call the generic interaction's Perform () member function .

We can now look at the philosopher class, PHILOSOPHER, defining the properties of philosopher processes .
The class has a static data member, n, used for assigning unique identifiers to each new philosopher . Each
philosopher has an idenfifier, and a counter of the number of times he ate . The philosopher's constructo r
simply assigns the next sequential number to the philosopher's identifier, clears the counter, and schedule s
the philosopher for immediate execution . The philosophers will endlessly think for three seconds, acquire
chopsticks, eat for two seconds, and return the chopsticks .

The main program creates five philosophers, waits for some duration, and then displays how many time s
each philosopher ate . When runing this program, we see that resource allocation is fair, as philosopher s
eat approximately the same number of times .

28

5 Current Implementation

5 .1 Development Environment

The Interactors development environment is currently IBM/PC based . Targets are the Intel 8086 processor s
or family, although other processors are possible in the future .

The run-time system is ROM-able, and targetable to bare microprocessor boards . The run-time sys-
tem is also targeted to DOS Personal Computers . The Interactors environment is to be linked with the
application code .

Interactors allows developing and testing embedded application software on the host PC . This ability
to compile and test, in the PC environment, the actual code which will eventually be programmed into a
target ROM, using source-level debugger, reduces the need for in-circuit emulation .

Zortech's DOS hosted C++ 2 .0 compiler [Zortech] is currently used, along with Microsoft's Codeview
debugger . Zortech's compiler has proven to be a good choice. Although a few compiler bugs have bee n
observed, the code generator and optimizer produce excellent code .

5 .2 PC Self-Targeted Applications

Simple PC-based applications have been implemented, including the Lift Problem of [Forman] .
Reusable classes for handling the computer's mouse, sound, graphics, and asynchronous RS-232 seria l

communications have been created and used . Asynchronous serial communications have been tied to C+ +
streams .

5 .3 Embedded Targets

A custom C++ locator was developed for translating DOS loadable . EXE files to the absolute code format s
required for programming ROMs or transferring to in-circuit emulators . This locator performs all require d
ROM to RAM initializations which are required for Zortech's C++ compiler . The C++ locator currentl y
translates to Intel Hex and Hewlett-Packard 64000 Formats .

Small demonstration software was uploaded to an Intel ETOX memory evaluation board [Intel], whic h
is driven by an 80C186 processor . The 80186 processor 's intialization code and a serial port driver wer e
developed . The asynchronous serial communications driver was also tied to C++ streams .

6 Conclusion

The development of Interactors indicate that object-oriented languages such as C++ lend themselves t o
natural extensions even in core areas such as concurrency . The extensions did not require changing an y
part of the language, or to use a non-standard pre-processor or compiler .

Interactors's programming model should help to narrow the gap between system design and softwar e
implementation .

29

References

Agha G ., Foundational Issues in Concurrent Computing, Sigplan Notices, vol 24 no 4, April
89, Proceedings of the ACM SIGPLAN workshop on object-based concurrent programming ,
San Diego, Sept 26-27, 1988 .

Ada Language Issues Working Group (ALIWG), Minutes of 1 March 1989, Ada Letters ,
vol IX no 4, May-June 1989, ACM Press .

Ada Language Issues Working Group (ALIWG), Minutes of 9 August 1989, Ada Letters ,
vol IX no 7, Nov-Dec 1989, ACM Press .

Buhr R .J.A., Practical Visual Techniques in System Design, with Applications to Ada, Pren-
tice Hall, December 1989 Prepublication Manuscript .

Burns A., Davies G .L ., Wellings A .J ., A Modulo-2 Implementation of Real-Time Proces s

Abstraction, SIGPLAN Notices, Vol . 23, No 10 .

Cornhill D ., Lui Sha, et . at, Limitations of Ada for Real-Time Scheduling, Department
of Computer Science, Carnegie-Mellon University, Proceedings of the first internationa l
workshop on real-time Ada issues, Moretonhampstead, Devon, U .K ., 1987 .

Dijkstra E .W ., Hierarchical ordering of sequential processes, Acta Inf. 1 (1971), 115-138 .

Eckel B ., C++ for Embedded Systems, Embedded Systems Programming, Volume 3, Num-
ber 1, January 1990 .

Intel Corporation, 26F256 Flash Memory/80C186 Evaluation Pack, Monitor Software Man-

ual Rel 1.0, May 3, 1988 .

Forman I . R., Design by Decomposition of Multiparty Interactions in Raddle87, Proceedings
of the Fifth International Workshop on Software Specification and Design, May 19-20, 1989 ,
Pittsburgh, PA, USA .

Lomow G ., Ungar B ., Birtwistle G ., User Reference Manual for SAMOC, University of
Calgary, Canada, 1987 .

Magnusson B., Process Oriented Programming, Proceedings of the ACM Sigplan Worksho p
on Object Based Concurrent Programming, in Sigplan Notices, vol 24 no 4, April 89 .

Meyer B ., Object-Oriented Software Construction, Prentice Hall,1988 .

Milenkovic, Operating Systems, McGraw Hill, 198 7

OOPSLA '87 Panel Discussion: Object-Oriented Concurrency, OOPSLA'87 Addendum t o
the Proceedings, October 1987, ACM Press .

Ringwood G . A ., Parlog86 and the dining logicians, Communications of the ACM, vol 3 1
no 1, January 1988 .

Stroustrup B ., The C++ Programming Language, Addison-Wesley Publishing Company ,
Reading, Massachussets, 1986 .

[Zortech]

	

Zortech Limited, - Zortech C++ Compiler, Second Printing, 1988, Zortech Limited .

[Agha]

[ALIWG1]

[ALIWG2]

[Buhr]

[Burns]

[Cornhill]

[Dijkstra]

[Eckel]

[Intel]

[Forman]

[Lomow]

[Magnusson]

[Meyer]

[Milenkovic]

[OOPSLA'87]

[Ringwood]

[Stroustrup]

30

}

#include <stream .hpp>

#include <interact .hpp>

class CHOPSTICKS : public INTERACTIO N
{

public :

REQUEST_LIST

	

waitList[5] ; // Philosophers' Requests have own lis t

boolean

	

inUse[5] ;

	

// Remember Chopsticks in use

CHOPSTICKS_INTERACTION () {for (int n=0 ; n<5 ; n++) inUse[n]=FALSE ; }

void Get

	

(int) ;

void Return(int) ;
} ;

CHOPSTICKS Chopsticks ; // Unique Instanc e

/// /
class GET_CHOPSTICKS : public REQUEST
{

int id ;

public :
GET_CHOPSTICKS(int ID)

	

{id = ID ; }

INTERACTION

	

*Interaction()

	

{return &Chopsticks ; }

REQUEST_LIST

	

*InteractionList() {return &Chopsticks .waitList[id] ; }

boolean

	

Ready()

	

{return !Chopsticks .inUse[id] &&

!Chopsticks .inUse[(id+1)%5]

	

; }

void

	

Script()

{Chopsticks .inUse[id] = Chopsticks .inUse [(id+1)%5] = TRUE ; }
} ;

/// /
class RETURN_CHOPSTICKS : public REQUEST
{

int id ;

public :

RETURN_CHOPSTICKS(int ID)

	

{id = ID ; }

INTERACTION *Interaction()

	

{return &Chopsticks ; }

boolean

	

Ready()

	

{return TRUE ;} ;

void

	

Script() ;
} ;

void RETURN_CHOPSTICKS : :Script O
{

Chopsticks .inUse[id] = Chopsticks .inUse [(id+1)%5] = FALSE ;

Chopsticks .waitList[(id+1)%5] .ProcessRequests() ;

Chopsticks .waitList[(id+4)°%5] .ProcessRequestsO ;

Figure 3 : Dining Philosopher s

31

void CHOPSTICKS : :Get

	

(int n) {

	

GET_CHOPSTICKS(n) .Perform() ; }
void CHOPSTICKS : :Return(int n) {RETURN_CHOPSTICKS(n) .Perform() ; }

/// /
class PHILOSOPHER : public PROCESS
{

// Philosopher's Id
// Count How many times the philosopher ate .

{id=n++ ; c=0 ; Schedule() ; }

{

	

Delay(TIME_F(3)) ; }
{c++ ; Delay(TIME_F(2)) ; }

} ;

int PHILOSOPHER : :n = 0 ;

void PHILOSOPHER : :Script()
{

for (; ;)
{

Think() ;
Chopsticks .Get(id) ;

Eat() ;
Chopsticks .Return(id) ;

}
}

/// /
void MAIN : :Script()
{

PHILOSOPHER p[5] ; // Create 5 Philosophers

Delay(TIME_F(30 .0)) ; // Let run for some duration . . .

	

30 seconds

for

	

(int n=0 ;

	

n<5 ; n++)

cout << "Philosopher "

//
<< n

Report result s

<< " ate " << p[n] .c << " times .\n" ;
}

Figure 4: Dining Philosophers (cont .)

static int n ;

	

// Philosopher Counte r

public :

int id ;

int c ;

PHILOSOPHER()

void Think()

void Eat()
void Script() ;

3 2

