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Abstract

Interactors is a run-time environment for embedded real-time software, which adds concurrency to
the C++- object-oriented language. Interactors allows sequential processes to interact synchronously
or asynchronously, and provides user-definable multiparty interactions. Several forms of selective wait,
inspired by Ada, are provided. Scheduling algorithms follow Carnegie-Mellon University’s recommen-
dations for implementing hard deadline scheduling. Concepts are illustrated by simple application
examples: Producer/Consumer and Dining Philosophers. This paper concludes by a description of the
current implementation.

1 Background

Object-oriented languages, especially C+4+, are generating a lot of interest in the embedded software devel-
opment community [Eckel]. The Ada language has been a major influence in the diffusion of concurrency
concepts in the software engineering community. Although Ada integrates tasking as a language feature,
it is not object-oriented, as it is lacking inheritance, an essential feature of object-oriented languages.

In the simulation area, the concepts of object and process have been successfully merged. The Simula
language, initially developed for discrete event simulation, is recognized today as being the first object-
oriented language [Meyer|. Simula also offers coroutines, independent threads of control which are also
sometimes referred to as light-weight processes.

It is argued in [Magnusson] that concurrent processing could be achieved by adding interrupt-based
preemptive scheduling to languages providing coroutines. Indeed, several coroutine-based executives have
been proposed for many languages,

Language designers are debating whether concurrency mechanism should be part of programming
languages, as in the case of Ada, or if these mechanims should be external, to be accessed using basic
language features only. There is a similar debate about I/O handling in programming languages such as
C and Pascal.

Implementing concurrency outside of a programming language keeps the language small. The resulting
application software may be portable, but the software will not integrate easily with software developed
for another process abstraction, thus affecting reusability.

On the other hand, the inclusion of a specific concurrency model in a language imposes this model to all
applications, with the risk that this model may not be suitable to all. The limitations of the Ada tasking
model have been discussed in many papers, for example [Cornhill]. As a legacy to the limitations of the
“one size fits all” approach, Ada’s tasking model is now generally avoided for critical software applications.
As a consequence, Ada tasking is currently undergoing a re-definition, in the scope of the Ada 9X Project.
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Revision proposals of Ada in the domain of tasking are summarized in several Ada Language Issues of
the Ada Language Issues Working Group [ALIWG1] [ALIWG?2] *.

As processors are evolving rapidly, application code must be portable. Because the C language is
available on virtually any kind of processor, from 8-bit microcontrollers to supercomputers, it has been
used as the implementation language of many commercially available run-time executives. As the C++
language [Stroustrup] is a superset of C, and is typically compiled using a portable front-end translator to
C (called cfront), the C++ language has also achieved a high degree of availability and portability.

The C++ language has been used to implement complete operating systems, including for mul-
tiprocessors.  An excellent discrete-event simulation package, Simulation And Modelling In C++
(SAMOC) [Lomow], integrates a simulated-time process abstraction into the C++ language. SAMOC
is implemented as C++ classes, without introducing any changes to the base language. An advantage
of this add-on approach over defining special-purpose simulation languages is that it gives access to all
features and support tools of the base programming language, in this case C+-+.

Other sequential languages were also extended for concurrency. A process abstraction was successfully
implemented in the Modula-2 language [Burns]. This abstraction provides: preemptive scheduling, the one-
to-one channels synchronization model of Occam, and a comprehensive suite of selective wait constructs.

Concurrent object-oriented languages use various models for inter-process synchronization and commu-
nication. A good discussion of concepts is available in [OOPSLA’87].

¢ Messaging models cause an independent thread activation in the object receiving the message. For
some models, messaging is the only possible inter-process communications method. Actors, discussed
in [Aghal, are typical of messaging models.

e Messaging models support either blocking (synchronous) or non-blocking send (asynchronous). The
Transputer Occam mode] provides synchronous message passing only.

e Inter-process communication and synchronization may be generalized to more than 2 parties. Accord-
ing to the authors of the design language Raddle87 [Forman|, multiparty interactions are becoming
an important abstraction in the design of distributed systems. Multiparty Interactions, or meetings,
have also been included in a recent book on visual design techniques [Buhr].

e Shared memory models may be applicable, depending upon the physical connectivity of multiproces-
SOTS.

2 Introduction to Interactors

Interactors is a concurrent C++ environment for real-time applications. Interactors is designed for em-
bedded software applications, such as control and monitoring systems, test equipment, and telecommuni-
cations.

Interactors support single-processor applications. Multiprocessing is not directly supported, but is
possible using user-defined communications. Advanced features such as memory management, exceptions,
and security were not considered at this time,

Interactors concurrent objects are defined in a hierarchy of classes. The lowest-level is the thread. A
thread possesses its own stack, and must explicitely be given control. The next level is the process. It
possesses all the attributes of the thread, and has specific attributes used for scheduling purposes. The
highest level is the interrupt service process (ISP), a process which can be connected to a vectored interrupt.

New processes can be created dynamically. There is no task configuration file or static description of
objects.

'Some of the interesting proposals are: [L108] Preference Control for open select alternatives. {L140] Add mutual control
to tasking. [L161] Use of task priorities in accept and select statements, [L162] Increased control over Ada task scheduling.
[L163] Provide comprehensive race controls.
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Inter-process synchronization and communication, or interactions, were designed for maximum appli-
cation flexibility. Multiparty interactions are user-definable:

e Interactions may be synchronous, i.e. ready only when all interactors are ready.

e Interactions may be asynchronous, i.e. requiring some form of buffering to be used between the
interactors. For example, transferring data using an asynchronous interaction will allow the sender
to continue even if there are no receivers waiting.

e Broadcast communications may be designed, allowing a sender’s message to be transferred to a
multitude of receivers.

¢ Data transfers are not the only types of interactions available. Some forms of interaction involve
synchronization only; other forms involve data transfers and compuitations.

A shared memory model may be used.

Flexible selective wait constructs are provided, modeled after Ada’s own constructs. With selective
waiting, a process can wait until the completion of one of many requests. The application may define its
own criteria for arbitrating between many ready requests.

3 Interactors Built-in Components

In this section we describe the objects which are provided by the Interactors environment.

3.1 Interactors: Threads, Processes, and ISPs

The foundation of all concurrent objects (interactors) is the THREAD. A thread possesses its own stack, in
order to support context switching. The stack size may be defined independently for each thread object.
A thread may be initialized with interrupts enabled or disabled. Thread objects will not execute until the
member function Resume() is called. When a thread is resumed, the executing thread’s state is saved,
and the resuned thread’s state is restored. Thread behaviors are defined by the virtual function Script ().
Thread-derived classes may have additional data supplied by constructors.

Threads may be used by applications but, in general, the increased capabilities of the PROCESS class
will be required. Basic threads cannot be scheduled. Processes are threads, complemented with additional
attributes, used for scheduling:

e Priority — An integral value indicating scheduling priority.
e Time Scheduled — The calendar time at which this task should be made ready for execution.

¢ Time Slicing Quota —~ The maximum number of Time Slicing periods for which this task should
execute. Beyond that limit, other tasks of the same priority will be given control in a round-robin
manner. A zero value disables time slicing.

Process member functions used for defining the script, for setting the priority, and for scheduling
processes. A process may be scheduled with the following options:

e Immediate ~ Schedule()
o In a specified delay d — Delay(d)

e At a specified calendar time t — Schedule (t)
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Most user-defined active objects will be derived form the process class. The MAIN built-in class de-
fines properties of the unique instance object MainThread. A main program is defined by the function
MAIN: :Script().

Interrupt Service Processes (ISPs) can be resumed by the processor interrupt mechanism. ISPs are
derived from processes, therefore they can be manipulated by the scheduling algorithms. ISPs are associated
to an interrupt vector by the call to the SetVector(n) member function. Setting a vector installs an ISP so
that interrputs at this vector will save the running thread’s status on its stack, and then will change context
to the ISP. The interrupted process’s address is saved a field of the ISP, It is up to the ISP to re-schedule
or resume the interrupted thread. The InterceptVector(n) member function is different: before giving
control to the ISP, the interrupt vector’s old Interrupt Service Routine (ISR) will be executed. The old
ISR address which was in the Interrupt Vector may be called or restored using other member functions.

3.2 Interrupt Locks, Semaphores and Regions

Scheduling can be disabled by INTERRUPT_LOCK objects. An interrupt lock is usually unnamed. The
constructor of interrupt locks will disable interrupt-driven scheduling, and its destructor will reestablish
the condition which existed prior to the lock. Interrupt locks are designed for defining higher-level objects.
Interrupt locks allows a structured access to a processor’s interrupt control.

Binary SEMAPHORESs are provided for exclusion control. Semaphores consist of a priority list of walting
processes, and a pointer to the process owning the semaphore. The classical Wait() and Signal() opera-
tions are provided. If a wait operation cannot be satisfied because the semaphore is busy, the requesting
process will be enqueued into the semaphore’s list. Upon signalling to the semaphore, the highest priority
waiting process will acquire the semaphore and will be scheduled. If configured so, semaphores implement
priority inheritance (refer to 3.6.1).

REGION objects provide a structured access to semaphores. As for interrupt locks, regions are usually
unnamed. A region consists of a pointer to a semaphore, which is initialized when the region is constructed.
The semaphore is waited upon during construction of the region. The semaphore is released when the region
is destructed. Regions can be used asis, or application-specific derived classes can also be defined.

3.3 Interactions and Requests

All inter-process synchronization and communication are based on two foundation classes: requests and
interactions. The basic interactions and requests are virtual classes, i.e. which cannot be used directly by
application software. Derived classes must provide the specialized features required for application use.

REQUESTs are data structures created by processes for communicating and synchronizing with other pro-
cesses. A request usually carries information to the other processes which participate in some interaction.
Requests can be submitted for unconditional execution by simply calling the Perform() member function.
Requests are executed by processes in a mutually exclusive manner. Request types define a synchronizing
condition allowing the request to proceed, and a script to be executed when allowed to proceed. Request
instances are tied to an instance of an interaction. Those request types which can be pending because of
synchronization will also indicate a queue within the interaction, where pending requests will be deposited.

The Perform() function contains all the logic to apply request’s synchronization conditions, to enqueue
requests, and to switch context when required.

INTERACTIONs are the meeting place of participating interactors. Interactors rendez-vous are different
from the Ada tasking model. In Ada, tasking synchronization mechanisms are not symmetric: tasks
communicate and synchronize on one end by entry calls and on the other end by call accepts. Moreover,
a calling task must explicitly reference the desired acceptor task. An acceptor task needs not knowing the
identification of the caller.

By contrast, Interactors allows symmetrical communications between interactors. This is made possible
by restricting all exchanges between processes to use named, passive, INTERACTION objects. When a rendez-
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vous takes place, the last ready interactor will effectively complete applicable pending requests prepared
by all participating interactors, including itself.

Interactions typically include queues for requests which cannot immediately be serviced, if synchronous
interactions are desired.

If asynchronous operations are required, the interactions will rather contain buffers allowing to imme-
diately release the requesting process, providing a wait-free operation.

3.4 The Channel Built-In Interaction

The Interactors environment includes a CHANNEL built-in interaction class. Channels are synchronous,
unbuffered, portals where information may be exchanged in one way only, from the point of view of a
requestor. Two classes of requests are associated with channels: SENDs and RECEIVEs. Although each
request is unidirectional, a process may alternately send and receive on a given channel.

A send request identifies the channel and source of data, and the number of receivers which need the
information. Usually, only one receiver will be required. A receive request identifies the channel, and the
destination of data.

Channels allow broadcast communications to be implemented. A transfer will be ready only when
(1) one sender is ready, and (2) as many receivers as requested by the sender are ready.

The definition of channels contain inline members functions, which are more programmmer-friendly
than SEND(...) .Perform() and RECEIVE(...).Perform(). These functions are naturally named
Send(...) and Receive(...).

3.5 Selective Waiting

Selective walting, for a process, is the ability to initiate a set of possible requests. Only one of these
requests, at most, will be selected. For each select choice, the programmer specifies a statement to be
executed, should that request be selected.

Selective waiting has been inspired by the rich set of options which are offered by the Ada language.
The selection is not constrained to data transfer types of requests. Any request type may be specified in
a selective walt construct. For instance, a process may selectively wait on sending on channel A, receiving
on channel C, and obtaining a resource from a programmer-defined interaction.

Selective waiting is specified by the select ... endselect pair. Select alternatives are specified by
when(...) clauses.

The following selective wait forms are mutually exclusive:

Unconditional will block the selecting process until a request is served.

Conditional will not block the selecting process except perhaps for mutual exclusion into the interactions.
The interaction’s own synchronization conditions will not block the selecting process. This option is
specified by when (nothing) as the last alternative.

Delayed will block the selecting process for a maximum delay. This option is specified by when (delay.-is
(...)) as the last alternative. The argument of the delay_is construct is a time duration,

Deadlined will block the selecting process until a specified calendar time. This option is specified by
when (time_.is (...)) as the last alternative. The argument of the time_is construct is a calendar
time.

The above select keywords are implemented as simple C pre-processor macros.
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3.6 Scheduling
3.6.1 Algorithms

In real-time systems, the scheduling algorithms must be carefully selected, so that critical tasks be executed
within their deadline. Carnegie-Mellon University research [Cornhill| has identified important requirements
for real-time scheduling, which have all been incorporated and validated by at least one Ada vendor. These
recommendations are being implemented into Interactors:

e The scheduler should be preemptive.

e Integration of the same scheduling algorithms for both interactions and for task activation and
suspension.

e When multiple requests are ready for a selecting process, the request which is tied to the highest-
priority interaction will be given priority.

e Priority queues are used as the standard mechanism for both the ready list and for the interaction
walting queues.

e Priority inheritance raises the priority of processes while they utilize a shared resource which blocks
a higher-priority process.

3.6.2 Priority of Requests

Each request type has a virtual member function returning its priority. In general, that priority should
be specified as the highest priority of any waiting process which will be scheduled when executing that
request. This will be used by selecting processes to arbitrate between open alternatives, in favor of the
waiting process with highest priority.

3.6.3 Scheduling lists

Two scheduling lists are used:

e The ReadyList is used to keep processed which are ready for execution, but which are not currently
executing. This list is sorted by priority. Whenever the executing process is suspended, it is normally
the first process on the ready list which is given control by the scheduler.

e The DelayedList is used to keep processes which are scheduled for later activation. This list is sorted
by scheduled time. Periodic interrupts will trigger the time-based scheduler, which will determine if
any delayed process can be made ready or if the running process has elapsed the duration of its time
slice, if enabled.

3.6.4 Time

Calendar time is internally represented as a two-fold data structure: one part is the time_t ANSI C type,
which is the current time in seconds since 00:00:00 1 January 1970; the other part is the 16-bit binary
fraction of a second. This format (1) is independent of the actual duration of the hardware clock tick,
(2) lends itself to easy manipulation with integer arithmetic, and (3) is compatibile with ANSI C standard
time.

Durations are kept in the same format, seconds and fraction, with the semantic of being relative.
Durations are easily be added to calendar time. In order to allow implementations without floating point
arithmetic, a maco was defined (TIME_F(...)) which accepts a duration in seconds and converts it into a
class constructor with integer arguments only.
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#include <channel.hpp> void MAIN::Script()

CHANNEL CHAN,; {
class PROC : public PROCESS PROC() ;
{ for (int data=1; data != 10;)
public: {
PROC() {Schedule();} CHAN.Send(data) ;
void Script() CHAN .Receive(data);
{ }
int data; }
while(1)
{

CHAN .Receive(data);
CHAN.Send(++data):
}

Figure 1: Consumer/Producer processes on a single channel.

4 Examples

The following are examples of classical problems coded in the Interactors environment.

4.1 Two Producer/Consumers, One Channel

In this example, two processes, exchange data back and forth. The first process will initially send, while
the other will initially receive. A single channel is necessary for this type of interaction, because the roles
of sender and receiver are synchronized. The complete example’s source code is shown in figure 1

A static channel object, CHAN, is declared. A PROC process class is defined. The constructor of the PROC
class schedules the process for immediate execution. The process’s script is a never-ending loop: an integer
value is read from the channel, is incremented, and sent back to the channel.

The main process creates an un-named PROC process. The main process sends to the channel, initially
the value one, receives a new value from the channel, and will loop until the value 10 is received.

4.2 One Producer, Two Consumers, Two Channels

In this example, the main process sends data to either of two channels, each channel being used by a
consumer. The consumer processes are not always receiving. Although two channel are used in this
example, similar results could be achieved using a single channel. The complete example’s source code is
shown in figure 2

Two static channel objects, CHAN1 and CHAN2, are declared. A PROC process class is defined, containing
a private pointer to the channel to be used by the consumer process. The constructor of the PROC class will
receive as an argument a pointer to a channel. The channel address is saved by the constructor, and the
process is also scheduled for immediate execution. The consumer process’s script is a never-ending loop:
an integer value is read from the channel, and the consumer waits for 0.5 seconds.

The main process creates two un-named PROC processes, one for each channel. The main process will
selectively send data to channel CHAN1, to CHAN2, selecting for at most 0.2 seconds. The main process will
loop 10 times.
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#include <channel.hpp> void MAIN::Script()

#include <select.hpp> {
#include <stream.hpp> PROC (&CHAN1) ;
PROC (&CHAN2) ;
CHANNEL CHAN1, CHANZ2: for (int data=0; data <10; data++)
{
class PROC : public PROCESS select
{ when(CHAN1.Send(data))
CHANNEL #*chan; {cout << "CHAN1 ": cout.flush();}
public: when (CHAN2 . Send (data))
PROC (CHANNEL x*c¢) {cout << "CHAN2 "“: cout.flush():}
{chan = ¢; Schedule();} when(delay_is(0.2))
void Seript() {cout << "Timed out "; cout.flush():}
{ endselect
int data; }
while (1) }
{
chan->Receive(data);
delay(0.5);
he
}
H

Figure 2: Single Producer, two channels, a Consumer on each channel

4.3 Dining Philosophers

The problem of dining philosophers is a classical synchronization problem cited in numerous articles
and textbooks, for instance [Ringwood] and [Milenkovic]. This introduction to the problem is extracted
from [Ringwood]:

“Though the problem of the dining philosophers [Dijkstra] appears to have greater entertain-
ment value than practical importance, it has had huge theoretical influence. The problem allows
the classic pitfalls of concurrent programming to be demonstrated in a graphical situation. It is
a benchmark of the expressive power of new primitives of concurrent programming and stands
as a challenge to proposers of these languages.”

There are five philosophers living in a monastery. The philosophers endlessly think and eat rice which
is continually replenished by servants (not part of the problem). The dining room has a round table with
five places, five bowls, and five chopsticks. A philosopher needs two chopsticks to eat. The problem is
to provide synchronization between the philosophers providing mutual exclusion, avoiding deadlock and
lockout. The complete example’s source code is shown in figures 3 and 4.

The approach starts with designing a CHOPSTICKS interaction class which will synchronize all the
philosophers, and keep a record of allocated chopsticks. There will be a single instance of this interaction.
The chopsticks interaction has two data components: (1) the current status of each of the five chopsticks,
inUse[5], and (2) five lists of pending philosopher’s requests, waitList [6]. Lists are used rather than
a single pointer, allowing to borrow the built-in mechanisms of interactions. The constructor of the
interaction will mark all chopsticks as not in use. Two access functions, Get () and Put () will be defined
later. An instance object, CHOPSTICKS, is created statically. By convention, chopsticks are assigned to
philosophers as follows: the left chopstick has the same number as the philosopher’s seat; the right chopstick
is the philosopher’s number plus one, modulo five.

Request classes are needed for getting and returning chopsticks. Each of those requests will contain a
single data item, the requesting philosopher’s identification, a number between zero and four.
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The get request class, GET_CHOPSTICKS, when constructed, will save the philosopher’s identification,
Virtual member functions are defined:

e Interaction() returns a pointer to the CHOPSTICKS interaction;

e InteractionList() will return a pointer to the request waiting list associated with the requesting
philosopher’s identification.

e Ready() returns a boolean indicating if the request may be performed. It is computed by verifying
that both the left and right chopsticks of the requesting philosopher are not in use.

¢ Script() is associated with executing the request. It simply assigns the chopsticks as in use, therefore
preventing other philosophers from using the left and right chopsticks.

The return request class, RETURN_CHOPSTICKS, when constructed, will save the philosopher’s identifica-
tion. Virtual member functions are defined:

e Interaction() returns a pointer to the CHOPSTICKS interaction;
¢ Ready() is always true: chopsticks may be returned any time.

e Script() is associated with executing the request. It marks the chopsticks as not in use, therefore
allowing other philosophers to use the left and right chopsticks. Then, the returning philosopher,
being very courteous, will see if any of its neighbors need help. Any pending requests to its left or
to its right will be processed, in this order.

The chopsticks interaction, as written, could be used without modification to allocate chopsticks to
more than five philosophers, as long as only five seats are assigned.

Two programmer-friendly functions are defined on chopsticks: Get () and Put(). These functions will
only call the generic interaction’s Perform() member function.

We can now look at the philosopher class, PHILOSOPHER, defining the properties of philosopher processes.
The class has a static data member, n, used for assigning unique identifiers to each new philosopher. Each
philosopher has an idenfifier, and a counter of the number of times he ate. The philosopher’s constructor
simply assigns the next sequential number to the philosopher’s identifier, clears the counter, and schedules
the philosopher for immediate execution. The philosophers will endlessly think for three seconds, acquire
chopsticks, eat for two seconds, and return the chopsticks.

The main program creates five philosophers, waits for some duration, and then displays how many times
each philosopher ate. When runing this program, we see that resource allocation is fair, as philosophers
eat approximately the same number of times.
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5 Current Implementation

5.1 Development Environment

The Interactors development environment is currently IBM/PC based. Targets are the Intel 8086 processors
or family, although other processors are possible in the future.

The run-time system is ROM-able, and targetable to bare microprocessor boards. The run-time sys-
tem is also targeted to DOS Personal Computers. The Interactors environment is to be linked with the
application code.

Interactors allows developing and testing embedded application software on the host PC. This ability
to compile and test, in the PC environment, the actual code which will eventually be programmed into a
target ROM, using source-level debugger, reduces the need for in-circuit emulation.

Zortech’s DOS hosted C+4+ 2.0 compiler [Zortech] is currently used, along with Microsoft’s Codeview
debugger. Zortech’s compiler has proven to be a good choice. Although a few compiler bugs have been
observed, the code generator and optimizer produce excellent code.

5.2 PC Self-Targeted Applications

Simple PC-based applications have been implemented, including the Lift Problem of [Forman].

Reusable classes for handling the computer’s mouse, sound, graphics, and asynchronous RS-232 serial
communications have been created and used. Asynchronous serial communications have been tied to C++
streams.

5.3 Embedded Targets

A custom C++ locator was developed for translating DOS loadable . EXE files to the absolute code formats
required for programming ROMs or transferring to in-circuit emulators. This locator performs all required
ROM to RAM initializations which are required for Zortech’s C++ compiler. The C++ locator currently
translates to Intel Hex and Hewlett-Packard 64000 Formats.

Small demonstration software was uploaded to an Intel ETOX memory evaluation board [Intel], which
1s driven by an 80C186 processor. The 80186 processor’s intialization code and a serial port driver were
developed. The asynchronous serial communications driver was also tied to C++ streams.

6 Conclusion

The development of Interactors indicate that object-oriented languages such as C+- lend themselves to
natural extensions even in core areas such as concurrency. The extensions did not require changing any
part of the language, or to use a non-standard pre-processor or compiler.

Interactors’s programming model should help to narrow the gap between system design and software
implementation.
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#include <stream.hpp>
#include <interact.hpp>
class CHOPSTICKS : public INTERACTION

{

public:
REQUEST_LIST waitList[6]; // Philosophers’ Requests have own list
boolean inUse[8]; // Remember Chopsticks in use
CHOPSTICKS_INTERACTION() {for {(int n=0; n<b6; n++) inUse[n]=FALSE;}
void Get (int) ;
void Return(int);

+H

CHOPSTICKS Chopsticks; // Unique Instance

LI1117777007077077070770777777770000077077770007700777177770077777777771/
class GET_CHOPSTICKS : public REQUEST

{
int id;

public:
GET_CHOPSTICKS(int ID) {id = ID;}
INTERACTION *Interaction() {return &Chopsticks;}
REQUEST_LIST *InteractionList() {return &Chopsticks.waitList([id];}
boolean Ready () {return !Chopsticks.inUse[id] &&

!Chopsticks.inUse[(id+1)%56] ;}
void Seript ()
{Chopsticks.inUse[id] = Chopsticks.inUse [(id+1)%5] = TRUE;}
I

L1717 17071070070770770000707777777700077070077777077777777707077777777777777
class RETURN_CHOPSTICKS : public REQUEST

{
int id;

public:
RETURN_CHOPSTICKS (int ID) {id = ID;}
INTERACTION #Interaction() {return &Chopsticks;}
boolean Ready () {return TRUE;};
void Script();

i

void RETURN_CHOPSTICKS: :Script()

{
Chopsticks.inUse[id] = Chopsticks.inUse [(id+1)%5] = FALSE;
Chopsticks.waitList[(id+1)%56].ProcessRequests();
Chopsticks.waitList[(id+4)%5].ProcessRequests();

}

Figure 3: Dining Philosophers
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void CHOPSTICKS: :Get (int n) { GET_CHOPSTICKS{n) .Perform();}

void CHOPSTICKS::Return(int n) {RETURN_CHOPSTICKS(n).Perform();}
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class PHILOSOPHER : public PROCESS

{
static int n; // Philosopher Counter
public:
int id; // Philosopher's Id
int ¢; // Count How many times the philosopher ate.
PHILOSOPHER () {id=n++; ¢=0; Schedule();}
void Think() { Delay(TIME_F(3));}
void Eat() {c++; Delay(TIME_F(2));}
void Script();
}

int PHILOSOPHER::n = 0;

void PHILOSOPHER: :Script()

{
for (;;)
{
Think();
Chopsticks.Get (id);
Eat();
Chopsticks.Return(id);
}
}
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void MAIN::Script()

{
PHILOSOPHER p[5]; // Create 6 Philosophers
Delay(TIME_F(30.0)); // Let run for some duration ... 30 seconds
for (int n=0; n<5; n++) // Report results
cout << "Philosopher " << n << " ate " << p[n].c << " times.\n";
}

Figure 4: Dining Philosophers (cont.)
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