Check for
Updates

SIGPLAN Notices 16 1976 August

technical contributions

STRUCTURED PROGRAMMING IN COBOL

UNDER IBM 360/370 OS

Melvyn Feurman,
Mary R. Dallal, and Lillian Liebling
c/o Dept. of Air Resources
The City of New York

51 Astor Place

New York, N.Y. 10003

Introduction

In this work, we illustrate structured programming techniques for IBM COBOL
360/370 OS by tracing the development and associated documentation of a COBOL edit
program through four steps: problem definition, program specification, program
design, and program coding. We have also outlined, in an appendix, the 0S JCL
required to compile and execute a COBOL main program with subroutines. _

Programming Technique

In our opinion, the single most important feature of structured programming is
highly readable code. In this regard, we have implemented many of the suggestions
made by Baker and Mills (1) who have written that a readable program permits

"'the chief programmer to read, understand, and validate all programs -
and data developed by other programmers on the team; this motivates
better programming. The other programmers in turn read and understand
programs written by the chief programmer that define the program stubs
which they must interface. While this organization results in the
benefits of 'ego-less programming', as described by Weinberg, it goes
farther in insuring that at least two programmers fully understand
every line of the program." (Emphasis added)

We have also adopted the well-known suggestion made by Dikj 1stra as to
programming without the GO TO statement (2).

Modular Programming

In our programming, we have used CALL and ENTRY statements to write modular
programs. These two statements are proposed extensions to ANS COBOL (3) that
already have been implemented under IBM 360/370 COBOL (4). Our modular design
techniques are similar to those proposed by W.P. Stevens, G. S. Meyers, and
L. L. Constantine (5). Consider the following specifications for controlling
charges for water and sewer usage in The City of New York.


http://crossmark.crossref.org/dialog/?doi=10.1145%2F987531.987533&domain=pdf&date_stamp=1976-08-01

SIGPLAN Notices 17 1976 August

Problem Definition

"A customer record will be transmitted fram one of five borough offices.
This record must be checked for accurate, reasonable, and valid informa-
tion, Incorrect records must be returned with an accampanying errors
list for correction. Correct records will be converted aecording to
specifications." .

This is a common problem for an edit program: ‘edit the file and create an

exceptions list for error records. In the next step we translate the problem
into program specifications.

Program Specifications

A file called OFFSET-TRANSACTIONS, containing customer credits, is input to
the edit program, where the validity of all fields in the record is checked. If
the record is valid, it is converted to a specified format called FINANCE format.
If the record is invalid--where one or more fields in the record is in error--
the record is printed with an appropriate error message. The program must also
maintain counters for the mumber of records checked, converted, printed, etc.

vesign Technique

W. P. Stevens et al have illustrated the division of the design process into
a general program design and a detailed program design:

"Genéral program design is deciding what functions are needed for the
program (or programming system). Detailed design is how to implement
the functions."

We begin by examining the overall flow of control dictated by the problem
definition. Then we prepare a general and detailed program design; Finally, we
code the program into clear meaningful COBOL program statements.

A Flowchart

In Figure 1, the overall flow of control is defined. At (1) a record is read.
The validity of the record is then checked against pre-determined specifications
at (2). If the record is invalid, we process the record at (3). If the record is
valid, we process it at .(4). At (5) we specify that the entire process.is to be
repeated until the end of the input file. -



SIGPLAN Notices 18 1976 August

General Program Design

We begin, with the aid of the flowchart, by dividing the program specifications
into distinct functions. For each overall function of the program, we assign a
module name:

Module Name Function
FRONT1 Read Input
FRONT2 Check Input
FRONT3 Print Invalid Records
FRONT4 Convert Valid Records
FRONTS Write Output

Figure 2 represents our implementation of this structured design technique,
where each step in the flow becomes a module.

Detailed Program Design

The next task is to translate the general program design into a detailed design.
This process involves defining a main program, subroutines, and the parameters that
are passed between calling and called programs. In Figure 3, we present a "'structure
chart" (a temm used by Constantine) for the five modules; here we shall refer to them
as subroutines. A sixth module named FRONT11 has been added as a main program. Later
wsb shall show how a main program such as FRONT11 can call and pass parameters to
subroutines.

Parameter Table

In Figure 3, the parameter linkages between main program and subroutines have
been labelled 1 through 5. Figure 4 represents a parameter table or program stub
tnat contains the parameters that are passed between FRONT1l and the called programs.
For example, FRONT1, a module designed to read and count records, returns three
parameters to FRONT1l, namely:

(1) a COUNT-OF-OFFSET-RECORDS-READ
(2) an OFFSET-TRANSACTION record
(3) an EOF-SWITCH-OFFSET-FILE.

Therefore, these three parameters are shown under the OUT column in the table.
Similarly, FRONT1 is passed as input a COUNT-OF-OFFSET-RECORDS-READ parameter. Note
that this parameter is both an input and output parameter because--as we shall see
later--it is received, Incremented, and returned by FRONT1 every time a record is
read. In a similar manner, parameters are listed for the other four modules that
are called by the main program FRONT11.

FRONT2 is used to check the validity of an offset record; it is passed the
following parameters as input from FRONT1l:

(1) an OFFSET-TRANSACTION-RECORD

(2) a COUNT-OF-RECORDS-CHECKED

(3) a OOUNT-OF-RECORDS-FOUND-VALID
(4) a COUNT-OF-RECORDS-FOUND-INVALID



SIGPLAN Notices 19 1976 August

FRONT2 returns as output the following parameters to FRONT1l:

(1) a twenty-one element EDIT-ERROR-TABLE, where each element contains a
:0' or '1'. A jl'. in EDIT-ERROR (I) indicates that the Ith field is
invalid; a '0' indicates the Ith field is valid.

An I?DIT-ERROR-TAI}LE pictured: '010000011000000000000'
indicates that fields two, eight, and nine have errors; while the
remaining eighteen fields are correct.

(2) a RECORD-VALIDITY-INDICATOR. Although there is a redundancy here--since
EDIT-ERROR-TABLE will likewise indicate invalid records--we shall show that
this parameter makes the main program more readable. -

) a CDUI;T-OF-REOORDS—G{ECKED incremented by 1 for every record checked by

(4) a COUNT-QOF-RECORDS-FOUND-VALID incremented by 1 for every record found valid.
(5) a COUNT-OF-RECORDS-FOUND-INVALID.

Note that in this list, the last three parameters are both input and output parameters.
In a similar manner in Figure 4, we define parameter lists for FRONT3, FRONT4, FRONTS.

Subroutine Entry Points

In the final step of the design process we use CALL and ENIRY statements to
further modularize the functions of each subroutine., A list of entry point names and
associated functions is shown in Figure 5. In Figures 6 and 7, we show a structure °
chart and corresponding parameter table to illustrate the final modularization of FRONT1.

In the remaining sections of this paper, we present a detailed analysis of
three of the modules--FRONT11, FRONT1, and FRONT2--as we tramslate the structure
chart into clear COBOL statements. It is useful to re-write the original program
specifications introduced above to show how English language statements can be
made analogous to the paragraphs in the Procedure Division of a COBOL program.

Revised Program Specifications

Open input and output files; initialize counters to zero. Read an OFFSET record;
if an EOF is reached, close all files, display counters, stop run.

Check the validity of a record; if the record is invalid, print an appropriate
error message, keep a count of bad records; if the record is valid, convert the .
record to FINANCE format, then write the record-as-converted to an output file, keeping
a count of records converted and written. _ -

Continue this process until an EOF has been read.



SIGPLAN Notices 20 1976 August

Translation of the Structure Chart into COBOL Statements

* We begin by examining in Figure 8 the FRONT1l main program that calls the five
subroutines listed in the structure chart of Figure 4. FRONT1l contains the

fundamental control logic of the system; it determines when each of the subroutines
should be called. : '

The COBOL source code in FRONT1l is a good example of the internal documentation
techniques available in COBOL. The data names that are defined in the Working Storage
Section and used in the CALL statements correspond almost exactly with the English
phrases used in the parameter table of our structure chart. Descriptive data and
paragraph names such as RECORDS-FOUND-VALID and READ-AN-OFFSET-RECORD were chosen to
make the program completely transparent to all the programmers on the project. Note
also the flow of control in FRONT1l: top down, with no GO TO statements. Here we
use PERFORM UNTIL... and IF...ELSE to control program loops.

Call Statements

The use of subroutines allows us to develop a main program that is relatively
short--the Procedure Division length is approximately one page. FRONT11 is
uncluttered with special tests; we have thus avoided confusing main-line logic
with specific subroutine fumnctions.

Nested PERFORM Statements

This technique also involves the use of nested PERFORM statements. For example,
the MAIN-SEGMENT paragraph contains a PERFORM statement at 006500, which invokes the
PROCESS-RECORDS paragraph which in turn performs the READ-AN-OFFSET-RECORD paragraph
which finally calls FRONT1 to read a record from the OFFSET file.

The input logic can be clarified by using the structure chart of Figure 9.
At (1) the MAIN-SEGMENT paragraph performs the PROCESS-RECORDS paragraph. At (2)
PROCESS-RECORDS performs READ-AN-OFFSET-RECORD., At (8) READ-AN-OFFSET-RECORD
calls FRONT1B to read an OFFSET record. '

We again use nested PERFORM statements to edit input records. For example, in
the PROCESS-RECORDS paragraph at 007100, the PERFORM CHECK-A-RECORD THROUGH WRITE-A-
FINANCE-RECORD causes the CHECK-A-RECORD, PRINT-ERROR-MESSAGE-IF-ERROR, CONVERT-TO-
FINANCE-FORMAT, WRITE-A-FINANCE-RECORD paragraphs to be performed. The flow of
control for processing valid records can again be clarified by examining the path
)-(2)-®)-(3)-(9)-H-(10)-(5)-(11)-(6)-(12)-(7) in the structure chart.

End-of-File Logic

A switch named EOF-SWITCH-OFFSET-FILE (defined at statement 004100) is returned
to FRONT11 from FRONT1 after the READ-AN-OFFSET-RECORD paragraph is performed. A
value of 0 for EOF-SWITCH-OFFSET-FILE indicates that a record has been read from the
OFFSET file; a value of 1 means that FRONT1 has read an end-of-file in this file.

We define a level-88 entry name END-OF-OFFSET-FILE to utilize the PERFORM UNTIL
option, avoiding the customary use of the GO TO statement after an end-of-file test.
This technique also adds to the readability of the program.



SIGPLAN Notices 21 1976 August

How Parameters are Passed Between Programs

There must be a one-to-one correspondence between parameters in CALL and ENTRY
statements, Consider for example the CALL FRONT1A, CALL FRONT1B, and CALL FRONT1C
statements at 005600,009800, and 006600 in FRONT1l. For each of these CALL state-
ments in tne main program there must be corresponding ENTRY FRONT1A, ENTRY FRONT1B,-
ENTRY FRONTIC statements in a subroutine. . ‘

A Linkage Section in the Data Division of the called program is used to define
parameters that are passed from the calling to the called program. A Linkage Section,
should only be included in a program when that program receives a parameter from a

calling prog .

FRONT11l, as a main program, contains no Linkage Section; as a calling program
only, it does not receive parameters. FRONT1, FRONT2, FRONT3, FRONT4. and FRONTS
contain Linkage Sections because they receive parameters fram FRONT11. '

FRONT1

In this section, we examine the Linkage Section and the Procedure Division of
FRONT1, shown in Figure 10,

The data names in the CALL and ENTRY statements need not be the same in the
calling and called programs; however, in FRONT1l and FRONT1l, corresponding data names
have been made identical to add to program readability. For example, COUNT-OF-OFFSET-
RECORDS-READ is defined in both the Working Storage Section of FRONT1l and the
Linkage Section of FRONTI. :

Linkage Section in FRONT1

The parameters that are in an ENTRY statement must be defined in the Linkage
Section of the called program. For example, the 01 entry for COUNT -OF-OFFSET-RECORDS
at 003250 defines the parameter passed in the ENTRY FRONTIA statement. At statement
003300 and 003400, we define OFFSET-TRANSACTION and EOF-SWITCH-OFFSET-FILE as the
two parameters used in the ENIRY FRONT1B statement.

Note that the definition of parameters in the Linkage Section does not have .
to be in the same order as they appear in the corresponding ENIRY statement. For
exanple, EOF-SWITCH-OFFSET-FILE appears before COUNT-OF-OFFSET-RECORDS-READ in
the Linkage Section.

Upon entry to the called program, the current values of all the data items
in the parameter list of the ENTRY statement are copied into the called program
from the calling program. Later when the called subroutine executes a GOBACK
statement, the current values of the items in the parameter list are copied back
into the calling program, overriding the original values of the parameters in the
calling program.

; For example, when the CALL to FRONTIA is made, the value of COUNT-OF-OFFSET-
RECORUS-READ in FRONT1l is copied into FRONT1 and set equal to zero. After the
GUBACK is executed at statement 004160, COUNT-OF-OFFSET-RECORDS-READ is copied back.
into FRONT11, setting COUNT-OF-OFFSET-RECORDS-READ in FRONT1l equal to zero.

Later, when FRONT1B is called Aby FRONT11 to read a record, COUNT-OF-OFFSET-
REQORDS-READ is again copied into FRONT1, incremented by 1 and copied back into FRONT1l.



SIGPLAN Notices 22 1976 August

FRONT2

In Figure 11, we show an abbreviated version of FRONTZ2, which contains its
Working Storage Section, Linkage Section, and Procedure Division. As noted above,

the function of FRONT2 is to identify all of the fields in the input record that are
in error.

FRONTZ fills EDIT-ERROR-TABLE, a 21-element table (for the 21 fields in the

record) with elements 1 or 0, depending on the result of the validity check performed
on each field.

We again use ENTRY points to modularize the functions of FRONT2. For example,
FRONTZ2A is used to initialize counters and switches in the program.

FRONTZB js called to check the validity of an input record. As each paragraph
is performed, an INDEX is incremented by 1 to keep track of the field being tested.
If a field is in error, the STORE-INDEX-PARAGRAPH is performed, which sets the
corresponding element in EDIT-ERROR-TABLE to 1, and sets the RECORD-VALIDITY-
INDICATOR to 1 as well. ’

Conclusions

In this work, we have made the basic concepts of structured programming design
more concrete by examining a COBOL main program and its subroutines. We have also
discussed the case of structured documentation techniques to clarify the design process.

All of the programs that were presented were written in a productive environment
under ''real life'" conditions. We have found that the techniques presented resulted in
a system of easily modifiable programs with few errors; developed within a group
enviroment in which junior programmers, working in liaison with a senior programmer,
improved and strengthened their COBOL programming and structured programming ability.



SIGPLAN Notices 23 1976 August

APPENDIX

JCL to Compile a Main Program and Subroutines

Under IBM 360/70 OS, the COBOL compile-link-go procedure (COBUCLG) and the
COBOL compile (COBUC) procedure are used to run a COBOL main program and subroutines,

Overview

In the first step of the job, we use the COBUC procedure to translate the main
program into an object module that is stored on disk.

In subsequent steps, we again execute the COBUC procedure to translate the
subroutines; in each step we can compile only a single subroutine. In addition,
we use special JCL statements to connect the object module created in each step
into a single object module.

In Figure 11, we show the JCL required to compile FRONT1l1 and the five
subroutines in our job. : :

At (1) we execute the COBUC with the LIB parameter because we use COPY
statements in our programs.

The COB.SYSIN DD card at (2) is used to override the SYSLIN DD card in the COB
step of the COBUC procedure. Here we allocate SPACE on disk (UNIT=3330) for a
temporary file named §0BJ. We specify PASS to pass §OBJ to the next step.

At (3) we define EPA.FRN.SOURCE as the library which contains the members'
reference in the COPY stateménts of our programs.

At (4) we define FRONT11 as the first program to be compiled in the job.
Note that the first program to be compiled using the technique described here must
be the main program. , '

" At (5) we use the COBUC procedure to compile FRONTL.

At (6) we specify on the COB.SYSLIN DD card the MOD parameter because we are
extending §0BJ to include the machine language equivalent of FRONT1.

At (7) we use the COBUC procedure to compile FRONTZ2, extending §OBJ further to
include the FRONT2 machine language code.

This process continues until the last subroutine is to be compiled, where
we use the COBUCLG procedure to finish the job. Thus at (8) we use the COBUCLG to

compile FRONT9. At (9) we insert the JCL that defines the input and output files
for our programs.



1976 August

24

SIGPLAN Notices

SNOILINNd WYY¥30¥d 0L
SIWVN ITNAOW ININIISSY ¥3ldy
SQY033¥ 13S440 ONILIA3 ¥Od4
T0Y1NOD 40 MOTd

¢ JN9I4

qyoJ3N

aIvA
Y 3LIUM

SINOYd
ayody Q40O
aIvaA QITVANI
Y $S3004d Nv SS3004d

vINOYA €.LNOY4

Q4033
RNELN

¢INOY4

LINO¥4

$$3004d
40 Lyv1S

SQY093Y 135440 ONILIAI ¥04
041NOD 40 MOT4

L NI

(5)
04023y
aIwA
v ILIdM
QU003 Q409 7y
aIva (¢) | QITVANI
V¥ $S3004d NV SS320¥d
ay093y (2)
J93HI
0¥093¥ 0
Y \

$53J0¥d
40 LyviS

(€)



SIGPLAN Notices

25

FRONT11

1976 August

v!

P ER—

FRONT1: - FRONT2 FRONT3

FRONT4 FRONTS

ey ‘} 5

FIGURE 3

STRUCTURE CHART FOR FRONT11 AND SUBROUTINES

SUBROUTINE
FRONT1

FRONT2

“FRONT3

FRONT4

FRONTS

INPUT PARAMETERS

COUNT-OF-OFFSET-RECORDS-READ

OFFSET-TRANSACTION
COUNT-OF~RECORDS~CHECKED
RECORDS~-FOUND-VALID
RECORDS-FOUND-INVALID

OFFSET-TRANSACTION
EDIT-ERROR-TABLE
RECORDS-ON~ERRORLIST

OFFSET-TRANSACTION
COUNT-OF-RECORDS-CONVERTED
RECORDS-ON-CREDITLIST
RECORDS~ON-DEBITLIST

FINANCE-TRANSACTION
GOOD~-CREDITS-ONTO-TAPE
GOOD-DEBITS-ONTO-TAPE

OUTPUT PARAMETERS

COUNT-OF-OFFSET-RECORDS-READ
OFFSET TRANSACTION
EOF SWITCH OFFSET FILE

EDIT-ERROR-TABLE

COUNT-OF -RECORDS~CHECKED
RECORDS~-FQOUND-VALID
RECORDS-FOUND-INVALID
RECORD-VALIDITY~INDICATOR

RECORDS-ON-ERRORLIST

FINANCE-TRANSACTION
COUNT-QOF-RECORDS-CONVERTED
RECORDS-ON-CREDITLIST
RECORDS-ON-DEBITLIST

GOOD-CREDITS-ONTO-TAPE
GOOD-DEBITS-ONTO-TAPE

FIGURE 4
PARAMETER TABLES

FOR FRONT11 SUBROUTINES




SIGPLAN Notices

26 1976 August

ENTRY POINT NAME FUNCTION
FRONT1A OPENS INPUT FILE; INITIALIZES COUNTERS
FRONT1B READS INPUT RECORD;SETS EOF SWITCH
FRANT1C CLOSES INPUT FILE
FRONT2A INITIALIZES COUNTER FOR RECORDS CHECKED
FRONT2B VALIDATES A RECORD;CREATES AN ARRAY INDICATING
ERROR FIELDS; SETS ERROR INDICATOR TO O OR 1
FRONT3A OPENS ERROR PRINTFILE; INITIALIZES COUNTER
FRONT3B PRINTS ERROR RECORD; INCREMENTS COUNTER BY 1
FRONT3C CLOSES ERROR PRINTFILE
FRONT4A OPENS PRINT FILE; INITIALIZES COUNTER
FRONT4B CONVERTS AND PRINTS VALID RECORDS
FRONTA4C CLOSES PRINT FILE
FRONTS5A OPENS OUTPUT FILE |
FRONTSB WRITES OUTPUT RECORD; INCREMENTS COUNTER BY 1
FRONTSC CLOSES OUTPUT FILE
FIGURE 5: ENTRY POINT NAMES AND ASSOCIATED FUNCTIONS
INPUT PARAMETERS ” OUTPUT PARAMETERS
p| FRONTIA COUNT-OF-OFFSET-RECORDS-READ || COUNT-OF-OFFSET-RECORDS-READ
OFFSET-TRANSACTION-OUT
FRONT11 - FRONT1B COUNT-OF-0FFSET-RECORDS-READ || EOF-SWITCH-OFFSET-FILE
COUNT-OF-OFFSET-RECORDS-READ
“» FRONT1C NONE ‘ NONE
FIGURE 6 FIGURE 7

FRONT1 ENTRY POINTS

PARAMETER TABLE FOR ENTRY POINTS IN FRONT1




1976 August

27

SIGPLAN Notices

L1INOYA Y04 1¥YHD FYNLONYLS

. (2)

6 3YNOIL

gsinoyd | (2t) gyinoyd | (L) geiNoYd | (o) gziNoYd| (6) gLiNO¥d | (R)
SYILINNOD Q4073 1vWoA I9YSSTW Q40734
TIv (L) IINUNIZ | (9) JINYNIS | (S) |¥o¥y3 ININd | (b) qyod3y | (¢€) 135440
AV14SIa v 3LIuM 0L 1¥3ANOD QITYANI 41 Y NI3HD NY QvIy

Nﬂ

SQU0IY

(1)

- $§3304d

INIWI3IS-NIVW




SIGPLAN Notices 28 1976 August

000100 IDENTIFICATION DIVISION.
.000200 PROGRAM=-ID. FRONT!.. . .. [N
-000600. REBARKS._THIS.SUBROUTXNE_JS_LALLJKLBI.A HAIN_PROSRAH_IQ___

000700 READ THE FRONTAGE FILE. THIS PROGRAM 1S PARY OF
.000800 . ... . THE FRONTAGE SYSTEM FOR COLLECTING WATER AND _____
- 000900 SEWER TAXES. THIS PROGRAM HAS THE FOLLOWING
.001000....._. ... THREE ENTRY POINTS .

001100 (1) FRONT1A - OPENS THE FRONTAGE TRANSACTION
001200 EILE

001300 (2) FRONT1B - READS A RECORD FROM THE FRONTAGE
001400 EILE _ .. .

001500 13) FRONT1IC — CLOSES THE OFFSET FILE AFTER THE
001600 . LAST RECORD HAS BEEN READ.

001700 ENVIRONMENT DIVISION,
001800 CONFIGURATION. SECTIONa
001900 SOURCE-COMPUTER. 1BM-370-155.

002000 _08JECT-COMPUTER, _18M=370-155,

002100 INPUT-OUTPUT SECTION.

002200 FILE-CONTROL.
002300 SELECT FRONTAGE-OFFSETS ASSIGN TO UT~2400-S-OFFSETS.
002400 DATA DIVISION.

002500 FILE SECTION.
002600 FD FRONTAGE~OFFSETS

002700 . LABEL RECOROS_ARE STANDARD

002800 RECORD CONTAINS 80 CHARACTERS
.002900_____BLOCK _CONTAINS_O_RECORDS

003000 DATA RECORD IS OFFSET-TRANSACTION.

003100 01 OFESET-TRANSACYION COPY OFFSET.

003200 { INKAGE SECTION.

003250 01 COUNT-OF-OFFSET-RECORDS-READ PIC 9(5) COMPUTATIONAL,
003300 01 _DFFSET~-TRANSACTION-QUT COPY OFFSET,

003400 01 EOF~SWITCH-OFFSET~FILE PIC 9.

ND-OF-OFFSET=FILE VALUE IS 1,

003600 . 88  MORE-RECORDS~IN-OFFSET-FILE VALUE IS 0,
003610 01 EQF~SWITCH-FINANCE-FILE PIC 9.

003620 88 END-OF~FINANCE-FILE VALUE 1S 1. '

003630 ____ 88 __MORE=RECORDS-IN- XNANCE-F!LE = _VALUE IS 0.
003700 PROCEDURE DIVISION.

003800 OPEN-ALL-FJLES,

003900 ENTRY *FRONTLA' USING COUNT~-OF~OFFSET-RECORDS-READ.
004000____ OPEN_INPUT_FRONTAGE~OFFSETS.

004050 MOVE ZEROES TO COUNT-OF-OFFSET-RECORDS-READ.
004100 GDBACK.

004200 READ=AN=DFFSET=RECORD.

004300 ENTRY *FRONT1B® USING OFFSET-TRANSACTION-OUT
004400 ENE-SWITCH-QEFSET=FILE
004410 COUNT-OF-OFF SET-RECORDS~READ.
004500 READ FRONTAGE-OFFSETS AT END

004600 MOVE 1 TO EOF-SWITCH-OFFSET-FILE

006700 . . GOBACK. ___ . )

004800 'MOVE CORRESPONDING OFFSET-TRANSACTION TO

004900 _ OFFSET~TRANSACTION-OUT _

004950 ADD 1 TO COUNT~OF-OFFSET~RECORDS~READ,

005000 MOVE O _TO EOF-SWITCH-OFFSET=FILE.

005100 GOBACK,

005200 CLOSE~FILES.

005300 ENTRY *FRONT1C®,

005400 . CLOSE FRONYAGE-DFFSETS. . o
005500 GOBACK,

005600

FIGUFE 10



SIGPLAN Notices 29 1976 August

_001800. WORKING-STORAGE_SECTION. PIC 9
1810 7 C-CHECK °
821208 7; ?EDX L4 {~ 99'VALUE ZERC.

002400 LINKAGE SECTION. B
002455 01 COUNT-OF-RECORDS-CHECKED  PIC 9(5) COMPUTATIONAL.

UTATIONAL.
_002456 01 RECORDS-FOUND-VALID .. . PIC . 9(5). .COMP

002457 01 _RECORDS—FOUND-INVALID PIC 9(5) COMPUTATIONAL.

_002462 01 - RECORD-VALIDITY-—INDICATOR PIC 9 TR
002465 88 RECORD-IS-VALID VALUE 1S le_
_002466___ 88  RECORD~IS—INVALID_ . : JE 135 4

002500 01 OFFSET-TRANSACTION COPY OFFSET.
~002700 01 EDIT-ERROR-TABLE.

_002800 05 __EDIT=ERROR PIC 9 COMPUTATIONAL
002900 OCCURS 21 TIMES.
003000 PRNCEDURE DIVISION,
003100 CLEAR-THE=-COUNTERS.

-003105____ _ENTRY *FRONT2A* USING COUNT-OF-RECORDS-CHECKED =
003106 RECORDS-FOUND-VALID

003107 RECORDS~FOUND=INVALID. ==
003110 MOVE ZEROES TO CNUNT-OF-RECORDS-CHECKED

003111 RECORDS~-FOUND-VAL LD

003112 RECORDS-FOUND-INVALID.

003115 ___ GOBACK,
003120 BEGIN-THE-EDIT.

© 003125__ ENTRY *FRONT28® USING OFFSET-TRANSACTION
003200 EDIT-ERROR-TABLE
003300 RECORD-VALIDITY-INDICATOR
003310 COUNT~-OF~RECORDS=CHECKED
003320 RECORD S—FQUND-VAL1D.
003330 RECORDS~FOUND—INVALID.
003400 MOVE _ZERC TO INDX,
003500 MOVE ZEROS TO EDIT-ERROR-TABLE.
003550 MOVE 0 TO RECORD-VALIDITY~INDICATOR.
003560
003600 _CARD-CODE-TEST=CC 1.
003700 ADD 1 TO INDX.
003800 _1F CARD-CODE _NOT EQUAL _TO S
003900 " PERFORM STORE-INDEX.
004000 NEW=AUTHORITY=-TEST-CC2-CC6.
004010 ADD 1 TO INDX.
004100__ EXAMINE_ NEH-AUTHDRITY—uU_BE__BEELAQJNQ_LEADLNQ___________
004200 SPACES BY ZEROS.
004300 IF NEW-AUTHORITY-NUMBER EQUAL TQ *00000¢ =~
004400 PERFORM STORE-INDEX.
004500 IFf NEW-AUTHORITY-NUMBER NOT NUMERIC
004600 PERFORM STORE-INDEX.,
004700_OFFSET-ACTION-TO-BE~TAKEN-CC7.
004800 ADD 1 TO INDX.
004900 IF OFFSET-ACTION-TO-BE-TAKEN NOT _EQUAL TO *1°*
005000 AND OFFSET-ACTION-TO-BE~TAKEN NOT EQUAL TO 2°
005100 PERFORM STORE-INDEX. —_ '

O'l....l....QQOQQQQCCQQQOQ REMAINDER OF PROCEDURE DIVISION ssssess

.nzlzoo,srone-xuosx. ' -

021300 MOVE 1 TO RECORD-VALID!TY-INDICATORs
ﬂ21§ﬂ0_f___ﬂOME_l_IQ_EDJI_EBBDB_lLNQXJ.

FIGRE 11



SIGPLAN Notices 30 1976 August

llDthFRMS JOB (B826,FHWRB, IO'ZDn'MARY Re DALLAL'.CLASS'E

e e = L ESETUP —~  SETUP EPAPAK . . e o e e s s ot eem
/*MESSAGE THIS IS A RUN
_____m“_I‘HESSAGE.____”IIME_? A0 LINES = 2000
1) IISTEPI .EXEC CQBUC,PARM.COB=(LIB) e e e -
(21 //SYSLIN DD DSNAME =80BJ,UNIT=3330, .
o M e _SPACE={4009(1005100)29sROUND)Y,. .
/7 DCB=(LRECL=80,BLKSIZE=400,RECFM=FBS),
Ll NISP=(MOD,PASS)
1 /7/SYSL1B DD DSNAME=EPA.FRN.SOURCE,DISP=0LD 1
—L4) . ___//COB.SYSIN .__ . DD DSNAME=EPA.FRN.SQURCE(FRONT11)s0ISP=0LD ..
/* '

|t5)____s7sTEP2 . EXEC_COBUC,PARM.COB=(LIB) . . _
. (6) /7/COB.SYSLIN DD DSN=808J4,DISP=(MOD,PASS)

—_— //5YSLIB DD _DSN=EPA.FRN,SOURCEDISP=0LD
//C0B.SYSIN DD DSNAME=EPA,FRN.SOURCE(FRONT1),DISP=0LD
e ¥ S

(1 //STEP3 EXEC COBUC,PARM.COB=(LIB)
—_—{/COB,SYSLIN____ DD DSN=&0BJ¢DISP=(MOD,PASS). —_
/7/SYSLIB 0D OSN=EPA.FRN.SOURCE,.DISP=0LD

____LLQDB...S_SJ.N__D_Q_D.SNA_E_EP_A_oﬂN_q_S_BLLB_QEJ_E RONT3),DISP=OLD |

________IISTEP4 .—EXEC_COBUC,PARM,COB=(LIB) .
//7COB.SYSLIN DD DSN=E0BJDISP=(MOD,PASS)

—_—— JISYSLIB . DD DSN=EPA.FRN.SOURCE,DISP=OLO_____
//C0B.SYSIN DD DSNAME=EPA.FRN.SOURCE(FRONT4),DISP=0LD
l* :
//STEPS EXEC COBUC,PARM.COB=(LIB)

o //COB.SYSLIN_____ DD DSN=80BJsDISP=(MOD,PASS)

//SYSLIB DD DSN=EPA.FRN.SOURCE,DISP=0LD
_— //COBJSYSIN DD DSNAME=EPA.FRN.SQURCE(FRONTS5).DISP=0LD_
. /%
—48)___ //STEP&  EXEC COBUCLG,PARM.COR=(LIB)
1. //SYSLIB . DD DSNAME=EPA .FRN.SOURCE,DISP=0LD
. //C0B.SYSIN______ 0D DSN=EPA.FRN,SOURCE(FRONTS),DISP=0LD
/%

-49) __ //GO.OFFSETS DD DSN=0QFFSETS.DISP=0LD
] //6G0.F INANCE DD DSN=FINANCE+DISP=(NEW,CATLG,DELETE), I
L1 UNIT=TAPEQ,VOL =SER=EPA999,LABEL=(1,SL)
//GO.ERRORS DD SYSOUT=A , e
_  _ //G0O.VALIDREC  DD__SYSQUT=A

FIGWREI2

Retcrences

(1) ¥, Terry Baker and Harlan D, Mills, '""Chief Programmer Teams",
Datamation, December 1973, pp.58-61,

(2) E. W, ..Dikjistra'», "GO TO Statement Considered Harmful",
.ommunication of the ACM, Vol. 11, No, 3, March 1968,pp. 147-8.

3) ANSI X3J4 Committee, "Proposed Revision of Standard COBOL",
SIGPLAN, Vol. 7, No. 6, June 1972, pp.25-40,

(4) IMB OS Full American National Standard COBOL (GC 28-6396,
May 197Z, pp. 227-40.

(S) W. P, Stevens, G. S. Meyers, L. L. Constantine,
"Structured Design'", IBM Systems Journal, -Vol, 13, No, 2, 1974,

: pp. 115‘39.




