
SIGPLAN Notices 31 1976 August

STRCMACS - AN EXTENSIVE SET OF MACROS TO AID IN
STRUCTURED PROGRA~4ING IN 360/370 ASSEMBLY IL4NGUAGE

C. Wrandle Barth
Goddard Space Flight Center
Greenbelt, Maryland 20771

In spite of the confusion in the past few years over the
precise meaning of the term "structured programming," there
is one point which seems to be gaining increasing acceptance:
the intuitive concept of a "well-structured program" cannot be
totally realized through blind adherence to a few mechanical
rules. Anyone who has worked with languages such as BLISS or
SIMPL (particularly in a student environment) will testify
that elimination of the goto in these languages does not
guarantee all programs to be legible and readable. Catastrophes
can be constructed from the top down. A chief programmer team
can still design a horse as a camel. The real lessons of
software engineering are much more in the realm of attitude,
approach, and emphasis than on techniques and rules.

Although this "structured programming attitude" can be
applied in any program in any language, some programming
environments are more hospitable than others to it. For example,
languages (such as PL/I and Algol) which provide standard control
structures and arbitrary nesting impose a smaller burden on
the programmer when he is constructing his control flow than do
languages (such as Fortran and Cobol) which are deficient in
these areas.

In general, the programmer should show preference for those
languages which aid rather than impede the intellectual
manageability of programs. However, other real-world considerations
(such as portability, efficiency, and availability)often
dictate the choosing of a language which is less than ideal
for reliable program development. The recent proliferation
of Fortran preprocessors has been an attempt to provide a cleaner
environment for applying structured programming concepts within
the framework of one dirty, but widespread, language.

In the use of assembly language, one runs into much the
same problem as with Fortran. From a structured programming
standpoint, assembly language is a bad choice several times over.
But there are times when it must be used, whether for interfaces
not available in high-level languages, to take advantage of
facilities not otherwise accessible, or for efficiency reasons.
In these cases, it is worthwhile to employ aids to make assembly
language as hospitable as possible. Macro processors, which
have been almost universally available in assembly languages

http://crossmark.crossref.org/dialog/?doi=10.1145%2F987531.987534&domain=pdf&date_stamp=1976-08-01

SIGPLAN Notice s 3Z 1976 August

(and are only now beginning to make in-roads into high-level
languages) provide a mechanism for realizing such aids in
assembly language.

The use of macros to provide control structures in
assembly language is not new. In December of 1970, Marvin Kessler
of IBM's Federal Systems Division introduced the ~CONCEPT ~ 14
macros. The package provided looping (do-while, do-until,
indexed, and search [two exit] loops) and conditional selection
(if-then-else and integer-case). Conditional tests were stated
as single instructions and condition code tests, with limited
capabilities for producing compound conditionals. ~CONCEPT* 14
has been distributed informally by IBM FSD for some time.

During 1973, I developed a similar set of structured
programming macros. Althoughthe initial development was
independent of other efforts, I incorporated ideas from other
packages as they became known to me. This macro package, called
STRCMACS, was first distributed in January of 1974, and remains,
to the best of my knowledge, the most extensive macro package
for structured programming in 360/370 assembly language. ~

Since that time, STRCMACS has been distributed to about
sixty installations. User reaction has been favorable. The
macros have proven reliable (only five bugs were discovered,
all fairly minor). This was due at least in part to the use of
structured programming techniques and attitudes in their develop-
ment.

I will not go into great detail on the macros' form and
capabilities here since this information is available in a
separate publication. The examples shown below should provide
the flavor of the package.

The if-then-else and do-while provide the basic starting
point:

IF (LTR,3,3,Z) DO WHILE,(LTR,3,3,Z)

A C

ELSE OD

B

FI

~There exist some full preprocessors with more extensive
capabilities, but these amount to full languages wb~h translate
to assembly language.

SIGPLAN Notices 33 1976 August

A is executed if register 3 contains zero; else B. C is executed
zero or more times as long as register 3 remains zero. Post-loop
testing is provided by the UNTIL keyword:

DO UNTIL, <,(CR,7,5,EQ),OR,(SR,3,i,Z),>,AND,(LRT,i,i,MASK=8)

D

OD

This example also shows a complex conditional with parenthesizing
via angle brackets. Several forms of case statements are provided.

Integer:

DOCASE I

CASE 3

A

ESAC
CASE

B

ESAC
CASE

C

ESAC

ESAC0D

Character String:

DOCASE

CASE

D

ESAC
CASE

E

ESAC

CASE

F

ESAC

ESACOD

7,(9,12)

(This block executed if I contains 3)

(Seven and nine through twelve)

'DELT'

'REPL','CHNG'

(OPCODE,4)

'ADD '

MISC (All others)

SIGPLAN Notices 34 1976 August

Conditional Test:

DOCASE

CASE

G

ESAC

CASE

E

ESAC

CASE

I

ESAC

ESACOD

(LTR,3,3,Z) (Fimst CASE which evaluates tmue
is executed.)

(CR,1,2,EQ),0R,(TM,FLAG,X'80',0)

(S,5,WORD,P)

A two-exit loop capability (useful in table-searching) is available.
The syntax and equivalent flow chart is shown below.

LOOP DO WHILE, a

4

IF le, EXIT ,, LOOP

B

ATENO

C

ONEXIT

D

OD

• FALSE,

A

i

• i

B

i

I

i I I

I
I; C

I

S I G P L A N N o t i c e s 35 1976 August

In addition to control structures, the ability to create
simple local procedures is useful in the structured programming
environment. The PROC and CORP macros provide this capability
and, in addition, handle a number of details dealing with
register saving and restoring, OS and DOS linkage conventions,
base register handling, and debug aids.

The above examples are far from complete. Full documentation
is provided in a manual called "STRCMACS: An Extensive Set of
Macros for Structured Programming in 0S/360 Assembly Language. ''~
This document is available from the sources shown below.

While STRCMACS will not turn straw programmers into gold,
it is a tool which provides a framework within which the
techniques and attitudes of structured programming can be more
confortably exercised.

Number of macros: 34

Number of card images: about 3000

Operating System: DOS or OS

Assembler: DOS-D or F; OS-F, G, or H

Available from:

Author: C. Wrandle Barth
Code 603
Goddard Space Flight Center
Greenbelt, Maryland 20771

(Please provide minireel)

o r COSMIC: University of Georgia
Suite 112, Barrow Hall
Athens, Georgia 3 0 6 0 2

(Program No. GSC 11938)

*The most recent version of STRCMACS is DOS-compatible.

