
A Comparison of Four Tests for Attribute Dependency 
in the LEM and LERS Systems for Learning from Examples 

Jerzy W. Grzymala-Busse and Sachin Mithal 
Department of Computer Science 

University of Kansas 
Lawrence, KS 66045 

Abstract. The paper discusses two programs for learning 
from examples, LEM (Learning from Examples Module) 
and LERS (Learning from Examples based on Rough 
Sets). A few versions of both programs are implemented 
in Franz Lisp and are running on VAX 11/780. Both 
programs’ main task is to automate knowledge acquisition 
for expert systems. Hence, they produce rules in the 
minimal discriminant form. The main problem addressed 
in the paper is the selection of the best mechanism for 
determining coverings, the minimal sets of relevant 
attributes. Four different methods, based on indiscernibility 
relation, partition, characteristic set and lower boundary are 
compared. Both theoretical analysis and experimental 
results of multiple running of many sets of examples, 
with variable number of examples and with variable 
number of attributes are taken into account. As a result the 
partition method is determined to be the most efficient way 
to compute coverings. 

1. Introduction. 

The paper discusses learning from examples, the most 
popular form of similarity-based learning [8,9]. The idea 
of learning simple rules with only relevant attributes 
involved is well known [l - 7, 101. The paper addresses the 
issue of choice of the best mechanism for determining the 
minimal sets of relevant attributes. 

The two systems for learning from examples, LEM and 
LERS, were designed to automate knowledge acquisition 
for expert systems. Hence, both systems produce rules in 
the minimal discriminant form [9]. The first system, LEM 
(Learning from Examples Module), learns rules from the 
set of consistent examples, while the second system, 
LERS (Learning from Examples based on Rough Sets), is 
able to learn rules from inconsistent examples. Both 
systems are implemented, in a few different versions, in 
Franz Lisp and both are running on VAX1 l/780. In the 
process of improving LEM and LERS, special attention 
was paid to the execution time of programs as well as the 
required space. Earlier versions of LEM and LERS used 
characteristic sezs as a tool for finding minimal sets of 
relevant attributes. The newest versions employ another 

hTIIiSSiOfl to COPY WithOUt fee a or part of this material is gmnted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy other- 
wise, or to republish, require-s a fee and/or specific permission. 

@ 1990 ACM 089791-372-8/90/0007/0949 $1.50 949 

mechanism, lower boundaries, thus accomplishing much 
greater efficiency. The above two and two additional 
mechanisms, called partition and indiscernibility reIation 
methods, are described and compared in the paper. 

2. Four Methods for Testing Attribute 
Dependency 

The following definitions are used in the sequel. In the 
process of learning given are examples (in other works 
also called objects or instances). The set of all examples is 
called an universe and denoted U. Each example is 
described by n attributes, where n is a positive integer. For 
each attribute the number of attribute values is finite. For 
any two different attributes, their value sets are not 
necessarily mutually exclusive. An example is represented 
by a vector of the length n of pairs (attribute, 
attribute value). Two different examples may be 
represented by the same vector of 
(attribute, attribute value) pairs. A nonempty subset C of 
U is called a concept (to be learned). In other works the 
concept is also called a class. Members of C are called 
positive examples, while members of U - C are called 
negative examples. In the process of learning, a 
representation of the concept C is sought. In this paper, 
like in the most of other approaches to learning from 
examples, a set of if-then rules is such a representation. 

Let Q denote the set of all, attributes. It is clear from 
the previous assumptions that the number of elements in 
Q is n. Let P be a subset of Q. Let k be the number of 
elements in P. Two examples, x and y, represented by the 
same vector of length k of pairs 
(attribute, attribute value), where each attribute is a 
member of P, are called P-indiscernible, and denoted 
x -p y. Obviously, --p is an equivalence relation on U. 
The equivalence relation .+ induces a partition on U, 
denoted P* . Such a partition P* is the set of all 
equivalence classes of .+, called blocks. 

In many papers on machine learning from examples the 
importance of using relevant attributes in representation of 
the concept has been observed [l - 7, lo]. Nevertheless, 
very few methods for selection relevant attributes were 
given [2, 31. The problem of selection of relevant 
attributes is the main problem of this paper. First of all, 
the formal definition of relevant attribute is needed. The 
following definition of dependency is borrowed from 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98894.99103&domain=pdf&date_stamp=1990-06-01


relational databases, where it is known under the name of 
functional dependency [ll, p. 2131. Here, the name of 
functional dependency is abbreviated to dependency because 
it is the only kind of attribute dependency which is 
discllssed. 

Note that for a concept C, the set C* = [C, U - C) is a 
partition on U. Hence we may think about yet another 
attribute, different from all attributes from the set Q, and 
corresponding to the concept C. Such an attribute will be 
called a concept attribute and also denoted C. The concept 
and concept attribute may be easily distinguished by 
context in which they are used. The assumption is that the 
concept attribute is not a member of the attribute set Q. 
An indiscernibility relation, corresponding to the partition 
C* on U will be denoted --c . Therefore, a concept C 
depends on a subset P of the set Q of all attributes, denoted 
P + C, if and only if 

-p G -c. 
Practically, concept C depends on a subset P of the set 

Q of all attributes if and only if the description of positive 
examples by attributes from P is sufficient to recognize 
the concept of C, i.e. the set of all positive’ examples is 
the union of some blocks of relation -p (and then, as a 
consequence, the set of all negative examples is also the 
union of some blocks of relation -p. 

Obviously, the most interesting case is when k, the 
size of the set P, is the smallest possible. Thus, a new 
definition is needed: a subset P of the set Q of all 
attributes is called a covering of the concept C if and only 
if C depends on P and P is minimal. This is equivalent to 
the following: P is a covering of C if and only if C 
depends on P and no proper subset P’ of P exists such that 
C depends on P’. The notion of a covering of the concept 
C, for Q” = C*, is analogous to that of a key of relation 
scheme [ll, p.2171. 

All algorithms of LEM and LERS are based on 
looking for coverings, since the task of these programs is 
finding the minimal discriminant descriptions. The 
problem is how to recognize the fact that concept C 
depends on a subset P of the set Q of all attributes. The 
first method, called an indiscernibility relation method, is 
described above. The second method, called a partition 
method, follows immediately from the first one and is 
based on the following condition: the concept C depends 
on a subset P of the set Q of all attributes if and only if 

P* 5 c*, 

where C* = (C, U - C). Partition P* is smaller than or 
equal to partition C* if and only if each block of P* is a 
subset of either C or U - C. The next test is based on the 
notion of characteristic set. Let U = (x1, x2,..., x,). Let P 
be a nonempty subset of the attribute set Q. A 
characteristic set PC of P is the set of all pairs (xi, Xj), 
where 

(i) i < j, 

(ii) Xi and xj are members of the same block of 
partition P* on U, and 

(iii) 1 5 i, j 5 m. 

A characteristic set P” of P is a subset of the 
indiscerniblity relation -p. Thus, the concept C depends 
on a subset P of the set Q of all attributes if and only if 

P” G C”, 

where Cc is defined the same way as PC, except that 
-p should be substituted by --c . In the first version of 
LEM the above condition was checked in a slightly 
different form, namely 

n ((pp- cc) = 0. 
PEP 

The last method is called lower boundary method. In 
order to introduce it the following definition is necessary. 
Let X be a subset of U and P be a subset of Q. Then the 
P-lower boundary of X, denoted &(X), is defined as 

X-(XE UI[x]pCX), 

where [x]p is a block of-p containing X. The set (x E U 
I [x]p C X) is called a P-lower approximation of X. It is 
shown in [2] that the concept C depends on a subset P of 
the set Q of all attributes if and only if 

BP(C) = 0. 

3. Algorithms 

The following are algorithms to compute coverings using 
the above four methods. 

3.1 General Algorithm for Computing 
Coverings 

Start algorithm 
input C (the concept attribute); 
input Q (the set of attributes); 
initialize coverings to nil; 
read data from input file and insert them into property 

lists; 
pass the list of attributes to function Comb, which 

returns a list combs, the power set of U; 
for each element P of the list combs do 
begin 

if C depends on P {Check Dependency) 
then if P is minimal 

then add P to the list coverings 
end (for] 
return the list coverings, which has coverings as its 

elements; 
end algorithm. 

950 



examplel := first of examples; 3.2 Algorithms for Checking Dependencies 

3.2.1 Algorithm 1 (Indiscernibility Relation 
Method) 

Procedure Check Dependency Method1 (P, C) 
(P is a set of attributes) 

(data from input file inserted into property lists) 
compute the indiscernibility relation associated with P; 
compute the indiscernibility relation associated with C; 
if the indiscernibility relation of P is a subset of 
indiscernibility relation of C, 
then return “C depends on P” 
else return “C does not depend on P” 

end; (Check Dependency Method1 ) 

Procedure Indiscemibility Relation (p, U) 
(P is a set of attributes, U is the set of examples) 

for example1 := first example to last example do 
for example2 := first example to last example do 

begin 
for attribute := first of P to last of P do 

begin 
get the value of attribute associated with 
example 1; 
get the value of attribute associated with 
example2, 
if the above two values are identical 
then go to next outer loop; 
end; (for attribute loop ) 

if the above loop was successful 
then add the pair (examplel, example2) to result 
else continue; 
end; (example2 loop) 

return the result, which is a list of pairs of examples, 
which succeeded the matching; 
end; (procedure Indiscernibility Relation) 

3.2.2 Algorithm 2 (Partition Method) 

Procedure Partition Method2 ( P, C) 
(P is a set of attributes) 
(data from input file inserted into property lists) 

compute the partition for P, 
compute the partition for C; 
If defined subset (partition P, partition C) is true 
then return “C depends on P” 
else return “C does not depend on P” 

end; (Partition Method2) 

Procedure Defined Subset (A, B) 
(A and B are partitions on U) 

for each block of A do 
if there exists a superset block in B 
then return true 
else retum false; 

end; (procedure Defined Subset) 

procedure Partition (P, U) 
(P is a set of attributes, U is the set of examples) 

while not empty U do 
begin 

for example2 := rest of examples do 
for attribute := first of P to last of P do 

begin 
get the value of attribute associated with 
examplel; 
get the value of attribute associated with 
example2; 
if the above two values are identical 
then attribute := next attribute 
else break to next outer loop; 
end; (for attribute loop ) 

if the above loop was successful 
then add example2 to the same block as example1 
else form another block with example2 in it; 
remove example2 from U 
end (of example2 loop] 

end; (of while loop) 
return a list, which contains blocks (simple sublists); 

end; (procedure Partition} 

3.2.3 Algorithm 3 (Characteristic Set Method) 

Procedure Characteristic Set Method3 ( P, C) 
(P is a set of attributes] 
{data from input file inserted into property lists} 

compute the characteristic set of P; 
compute the characteristic set of C; 
if characteristic set P is a subset of characteristic set C) 
then return “C depends on P” 
else return “C does not depend on P” 

end; (Characteristic Set Method3) 

Procedure Characteristic Set (P, U) 
(P is a set of attributes, U is the set of examples) 

for example1 := first example to last example do 
for example2 := next example to last example do 

begin 
for attribute := first of P to last of P do 

begin 
get the value of attribute associated with 
exampleI; 
get the value of attribute associated with 
example2; 
if the above two values are identical 
then attribute := next attribute 
else break to next outer loop; 
end; (for attribute loop ) 

if the above loop was successful 
then add the pair (examplel, example2) to result 
else continue; 
example2 := next example; 
end; (example2 loop) 

return the result, which is a list of pairs of examples, 
which succeeded the matching; 
end; (procedure Characteristic set) 

3.2.4 Algorithm 4 (Lower Boundary Method) 

Procedure Lower Boundary Method4 (P. C) 
(P is a set of attributes) 

951 



(data from input file inserted into property lists) 
compute the partition of P; 
compute the partition of C; 
if X is P-definable for all blocks X of partition C* 
then return “C depends on Y 
else return “C does not depend on P” 

end; (procedure Lower Boundary Method4) 

procedure Partition (P, U) 
(P is a set of attributes, U is the set of examples] 

while not empty examples do 
begin 
example1 := first of examples; 
for example2 := rest of examples do 

for attribute := first of Q to last of Q do 
begin 
get the value of attribute associated with 
examplel; 
get the value of attribute associated with 
example2; 
if the above two values are identical 
then attribute := next attribute 
else go to next outer loop; 
end; (for attribute loop ) 

if the above loop was successful 
then add example2 to the same block as example1 
else form another block with example2 in it; 
remove example2 from U 
end {of example2 loop) 

end; (of while loop) 
return a list, which contains blocks (simple sublists); 

end: (procedure Partition) 

Procedure P-definable (X, P) 
for block1 := first block of P to last block do 

begin 
find lower approximation (X, P); 
subtract lower approximation from X; 
append this to the result; 
end; (of for loop) 

return the result from above; 
end; (Procedure P-definable) 

Procedure Lower Approximation (X, P) 
if block1 is a subset of X 
then add block1 to the result 
else next block 

return rest& 
end; (procedure Lower Approximation], 

4. Time and Space Complexity Analysis 

In this section time and space complexity analysis for 
all four methods is cited. 

4.1. Time Complexity 

Algorithm 1. Here for checking dependency P + C, the 
indiscemibility relations are computed for both P and C. In 
each case, if there are m examples, then m2 pairs are 
compared for equality of attributes. Since such a relation is 
computed for all n attributes, the total number of 
comparisons in this worst case is m*n. After computing 
the indiscernibility relation for both P and C, the subset 
relationship is checked. This results in m2pairs being 
matched with m2 pairs, hence m4 comparisons are 
executed. This takes up the worst-case function to m4 + 
m2n. Similarly, the best-case scenario is when no pairs 
match each other. That results in m2 + m2 comparisons. 

Algorithm 2. The worst-case is when each example lies 
in a different block. For this, the upper-bound will be 
nm(m-l)@. Then, moving on to checking of the subset 
relation, the worst case is when each block of P is a subset 
of some block of R. Say there is p blocks of average size 
q. Here pq=m. The number of comparisons needed for 
checking the relation that each block of P is a subset of a 
block in R will need p2q2 comparisons. But since pq=m, 
p2q2 = m2. Therefore, the worst-case will result in 
complexity of m2n + m2. In the best-case, all the 
examples are in the same block. Thus, the total number of 
comparisons is mn + m. 

Algorithm 3. This method is similar to the first one, 
except that it needs fewer comparisons. The redundant pairs 
which were present in indiscernibility relation are 
automatically omitted. This results in (m2/2)n 
comparisons. For checking the inclusion relation m4/4 
comparisons are needed. This totals up to m4/4 + (m2/2)n 
comparisons. The best-case is when no pairs match each 
other. As in method 1, this results in m2 + m2 
comparisons, which occurs only if all examples are 
different blocks and hence do not match any other example. 

Algorithm 4. In this method blocks are computed first. 
The worst-case is when each example lies in a different 
block. Then the lower boundary is computed by checking 
whether a block is a subset of C (another block). Similar 
to the subset checking in method 2, p2q2 = m* 
comparisons is necessary. Then subtraction may take 
another m2 steps. The total is m2 + m2 + m*n 
comparisons. In the best-case, mn steps are required for the 
partition and m* for checking the inclusion relation and 
subtraction, which totals to m2 -t mn. 

Table 1 presents time complexity for all four methods. 

952 



Table 1 

Algorithm 1 

Algorithm 2 

Algorithm 3 

Algorithm 4 

t 
Time complexity (big oh) 

Worst-case Best-case 

m4 + m2n m’ 

m2n mn 

m4 + m2n m2 

m2n mn 

4.2 Space Complexity Algorithm 3. This method, like Algorithm 1, also 
employs generation of pairs, in this case 2.m(m-1)/2 = 

The space functions, which values represent the number of 
memory locations, are determined below. 
Algorithm 1, Here for checking dependency P + C, 
their indiscernibility relations are computed for both P and 
C. In the worst case, all 2m2 pairs are created. 
Algorithm 2. In this method instead of pairs, blocks are 
generated. Their number is 2m. 

m(m-1) pairs. 
Algorithm 4. This method, like Algorithm 2, also 
needs 2m memory locations. 

Table 2 presents space complexity for all four methods. 

Table 2 

Algorithm 1 

Algorithm 2 

Algorithm 3 

Algorithm 4 

Space complexity (big oh) 

m2 

m 

m2 

m 

These theoretical results are supported by the experimental 
results presented below. Though the space needed by the 
four programs during the actual runs has not been 
measured, the algorithm #l was the first one to fail due to 
the space shortage. In fact, this one failed for as many as 
15 examples and 5 attributes. The second worst was 
algorithm #3, which quit for 27 examples and 5 attributes. 
The other two were much more sturdy as far as the space is 
concerned and were doing well even for 300 examples and 
5 attributes. 

5. Experiments 

Five families of example sets were constructed. For each 
of the four different algorithms a UNIX shell file was 
created. The file would invoke the LISP interpreter, get the 
LISP commands to be run from another file, and redirect 
the output from the LISP interpreter to an output file. The 
main reason for using the shell file is that the time 
command was used to clock the run time used by our 

process. The execution time is measured in seconds. There 
also is an input file which would load the relevant main 
program and invoke the LISP function to start computing 
the coverings. The concept C, an attribute set P, and the 
data file name are also provided by this file. The 
commands which otherwise are typed on the Franz-LISP 
interpreter level were stored in this input file. 

5.1 Results for Variable Number of Examples 
and Constant Number of Attributes 

Below three family of data are presented, all with variable 
number of examples and constant number of attributes. In 
the first two families of example sets five attributes were 
used, while the third family had four attributes. Tables 3 - 
5 and Figures 1 - 3 present experimental results for the 
above three families of example sets. Dashes in the tables 
mean that the program did not even complete the run and 
quit due to the space limitation. 

953 



Table 3 

100 105.9 113.1 

150 172.9 186.2 

200 244.9 276.9 

300 412.0 474.1 

500 

400 

300 

200 

100 

C 

- Algm. # 2 - Algm. # 2 

__Q-- Algm. # 3 __Q-- Algm. # 3 

- Algm. # 4 - Algm. # 4 

I I I I I I 
100 200 

# of examples 

300 400 

Figure 1. Family 1 of example sets, all with five attributes 

954 



Table 4 

12 32.7 10.2 26.4 11.1 

15 52.5 12.0 44.9 13.4 

19 16.1 80.0 18.0 

23 19.5 131.0 21.3 

27 22.3 25.7 

200 

3 ‘0 
6 4 - Algm. #2 

c 
= Y-- Algm. #4 

E 100 
= 

s 
3 
2 

% 

C 
10 20 

# of examples 

Figure 2. Family 2 of example sets, all with five attributes 

955 



Table 5 

100 

80 

60 

40 

20 

C 

- Algm. # 2 
-I Algm. # 3 
- Algm. # 4 

C 10 20 30 

# of examples 

Figure 3. Family 3 of example sets, all with four attributes 

5.2 Results for variable number of attributes and constant number of attributes 

Below two families of data, all with variable number of attributes and with the same number of ten examples, are presented 
an Table 6 and 7 and Figures 4 and 5, respectively. 

Table 6 

956 



80 - 

60 - 

Algm. # 1 

for i 
over1 

gms. 3 81 4 

ving 

# of attributes 
Figure 4. Family 4 of example sets, all with ten examples 

Table 7 

5. Conclusions 

The summary of the work accomplished can be described 
as follows. First, four different ways to compute coverings 
were implemented in Franz-LISP Opus 38.92 on VAX 
11/780. This was done at csvax computer which is 
available at the Computer Science Department of 
University of Kansas. Several families of example sets 
were generated and used to compute the coverings using all 
four programs on the system. Some of the sets of 

examples were used to compute coverings manually and 
matched with the ones computed by the programs to make 
sure that the programs were correct. Some programs were 
run many times to assess the reliability of the method. 
The time statistics for running all the data of example sets 
to compute the coverings using all four programs were 
collected, tabulated and represented as relevant graphs. 
Based on all the above work, a conclusion was reached as 
to which algorithm is most efficient. 

957 



200 

Y Algm. # 1 
- Algm. # 2 
- Algm. # 3 

7r Algm. # 4 

plots fc 
are 

* ov4 

P 

4 E 

# of attributes 

Figure 5. Family 5 of example sets, all with ten examples 

A clear winner, which is the Partition Method 
(algorithm # 2), is closely followed by the Lower 
Boundary Method (algorithm #4). Trailing far behind is the 
Characteristic Set Method (algorithm #3). The 
Indiscernibility Relation Method (algorithm # 1) turned 
out to be the worst of all algorithms. The respective 
superiority of each algorithm is established not only in 
terms of time, but of space as well. The ranking with 
respect to space complexity is further confirmed by the 
failure of some algorithms due to space limitations. The 
two best algorithms (Partition Method and Lower 
Boundary Method) are very close. In such a case, looking 
at both algorithms and then cleverly programming parts of 
them may change the picture. We have avoided taking such 
clever short-cuts, because that may not be fair to the 
comparative assessment. 

References 

[I] D.W. Aha. Incremental, instance-based learning of 
independent and graded concept descriptions. Proc. 6th 
Int. Workshop on Machine Learning, Cornell 
University, Ithaca, NY, June 26 - 27,1989,387 - 391. 

v ,] C.-C. Chan, J.W. Grzymala-Busse. Rough-set 
boundaries as a tool for learning rules from examples. 
Proc. 4th Int. Symp. on Methodologies for Intelligent 
Systems, Charlotte, NC, October 12 - 14, 1989,281 - 
288. 

[3] J. Dean, J.W. Grzymala-Busse. An overview of the 
learning from examples module LEMl. Report TR-88- 
2, Department of Computer Science, University of 
Kansas. 1988. 

r algms. 3 81 4 
almost 
rlapping 

[4] D.H. Fisher. Conceptual clustering, learning from 
examples, and inference. Proc. 4th Int. Workshop on 
Machine Learning, University of California, Irvine, 
CA, June 22 - 25,1987,38 - 49. 

[5] D.H. Fisher, J.C. Schlimmer. Concept simplification 
and prediction accuracy. Proc. 5th Int. Conf. on 
Machine Learning, University of Michigan, Ann 
Arbor, MI, June 12 - 14,1988,22 - 28. 

[6] J.W. Grzymala-Busse. An overview of the LERSl 
learning system. Proc. 2nd Int. Conf. on Industrial and 
Engineering Applications of Artificial Intelligence and 
Expert Systems, Tullahoma, TN, June 6 - 9, 1989, 
838 - 844. 

[7] J.W. Grzymala-Busse, D. Sikora. LERSl - A system 
for learning from examples based on rough sets. Report 
TR-88-5, Department of Computer Science, University 
of Kansas, 1988. 

[8] Y. Kodratoff. Introduction to Machine Learning. 
Morgan Kaufmann, 1988. 

[9] R.S. Michalski. A theory and methodology, of 
inductive learning. In Machine Learning. R. S. 
Michalski, J.G. Carbonell, T.M. Mitchell (eds.), Tioga 
Publ. Co., 1983, 83 - 134. 

[lo] M.W. van Someren. Using attribute dependencies for 
rule learning. In Knowledge Representation and 
Organization in Machine Learning. K. Morik (ed.), 
Lecture Notes in Al, Springer-Verlag, 1989, 192 - 210. 

[l l] J.D. Ullman. Principles of Database Systems. 
Computer Science Press, 1982. 

958 


