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ABSTRACT 

A novel technique that applies the neural-network learn- 
ing strategy of back-propagation to recognize seman- 
tically incorrect rules is presented. When the rule 
strengths of most rules are semantically correct, semanti- 
cally incorrect rules can be recognized if their strengths 
are weakened or change signs after training with cor- 
rect samples. In each training cycle, the discrepancies in 
the belief values of goal hypotheses are propagated back- 
ward and the strengths of rules responsible for such dis- 
crepancies are modified appropriately. A function called 
consistent-shift is defined for measuring the shift of a 
rule strength in the direction consistent with the strength 
assigned before training and is a critical component of 
this technique. The viability of this technique has been 
demonstrated in a practical domain. 

1 Introduction 

One important issue in designing a knowledge-based sys- 
tem is the management of uncertainty. Among the 
schemes that have been developed for this purpose, the 
probability and CF (certainty factor) are most widely 
used. While a knowledge-based system primarily con- 
ducts symbolic reasoning, uncertainty is often handled 
numerically. A question often raised is how to assign rule 
strengths (CF’s). If we view the rule base as a network 
and rule strengths as connection weights, it is possible 
to apply neural-network learning strategies such as back- 
propagation to assign or adjust rule strengths. It seems 
that a neural-network learning strategy alone is inade- 
quate for determining rule strengths because it only seeks 
locally optimum behavior. Rule strengths generated in 
this way may not carry the desired semantics. 
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However, it may be a good idea to apply such St&e- 
gies to refine the knowledge base which for the most 
part is sound. The complexity analysis of knowledge- 
base refinement can be found in [7] and [8]. This paper 
presents the approach of knowledge base refinement us- 
ing the back-propagation strategy. 

2 Back-Propalgation in Inference 
Networks 

It has been known that a rule-based system (knowledge 
represented in rules) can be transformed into a.n infer- 
ence network where each connection corresponds to a. 
rule, and each node corresponds to a premise or the eon- 
elusion of a rule. Reasoning in such systems is a process 
of propagating and combining multiple pieces of evidence 
through the inference network until final conclusions are 
reached. Uncertainty is often handled by adopting the 
certainty factor (CF) or the probabilistic schemes which 
associate each fact with a number called belief value. An 
important part of reasoning tasks is to determine the be- 
lief values of predefined final hypotheses given the belief 
values of observed evidence. The network of a,n infer- 
ence system through which belief values of evidences 01 
hypotheses are propagated and combined is ca.lled beltcf 
netwark. Correspondence in structural and behavioral 
aspects exists between neural networks and belief net,- 
works. For instance, the summation function in neural 
networks corresponds to the function for combining cer- 
tainty factors in MYCIN-like systems. The thresholding 
function in neural networks corresponds to predica.tes 
such as SAME (in MYCIN-like systems) which cuts off 
any certainty value below .2. Fu [5] described a.n ap- 
proach that maps a rule-based system such as MYCIN 
[l] into a neural architecture. 

When a rule-based system makes error, a key issue is 
how to identify and correct rules responsible for these 
errors. An error can be defined as the disagreement be- 
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tween the belief value generated by the system and that 
indicated by a knowledge source assumed to be correct 
(e.g., an expert) with respect to some fact. The prob- 
lem of identifying the sources of errors is known as the 
blame assignment problem. TEIRESIAS [2] is the typ- 
ical work. It maintains the integrity of the knowledge 
base by interacting with experts. However, as the size 
of the knowledge base grows, it becomes difficult for hu- 
man experts to consider all possible interactions among 
knowledge in a coherent and consistent way. TMS [3] re- 
solves inconsistency by altering a minimal set of beliefs, 
but it lacks the notion of uncertainty in the method it- 
self. 

Back-propagation [6] is a powerful technique to train 
the neural network. It is a recursive heuristic which prop- 
agates backwards errors from a node to all nodes pointing 
to that node, and modifies the weights of connections 
leading into nodes with errors. This technique is just 
a kind of gradient-descent technique which minimizes a 
given criterion function iteratively. If we define the cri- 
terion to be the difference (or the square of the differ- 
ence) between the desired and the actual belief values of 
goal hypotheses, we can modify the strengths of rules in- 
ferring these hypotheses by the back-propagation proce- 
dure. However, there are important differences between 
the knowledge-based network and the neural network. 
The former is often much more sparse than the latter 
since many connections have no psychological meanings. 
In addition, rule strengths in the knowledge-based net- 
work before training can be estimated from a knowledge 
source, whereas in the neural network, weights are ran- 
domized before training. These differences explain why 
the knowledge-based network can be kept from some an- 
noying problems that are encountered by the neural net- 
work. The sparseness of the knowledge-based network 
and knowledge-based decomposition of a network into 
a number of independent networks can help escape the 
problem of combinatorics. The knowledge-based assign- 
ment of rule strengths before training can facilitate con- 
vergence to a desired result. 

On a given trial, the network generates an output vec- 
tor given the input vector of the training instance. The 
discrepancy obtained by subtracting the network’s from 
the desired output vector serves as the basis for adjust- 
ing the strengths of connections involved. The adapted 
back-propagation rule is formulated as follows: 

AWji = rDj(aOj/aI$i) (1) 

where 

Dj =Tj-Oj, 

Here, semadically incorrect rules refer to those rules that 
are inconsistent with the semantics defined by the de- 
sired local or global inference behavior of the system. 
Such rules result from inadvertence or misconception of 
knowledge engineers or experts and may cause the sys- 
tem to reach incorrect conclusions. System performance AWji is the weight adjustment of the connection from 

input node i to output node j, r is a trial-independent can usually be improved by removing these rules. 

learning rate, Dj is the discrepancy between the desired 
belief value (q) and the network’s belief value (Oj) a.t 
node j, and the term dOj/dWji is the derivative of Oj 
with respect to Wji. According to this rule, the magni- 
tude of weight adjustment is proportional to the product 
of the discrepancy and the derivative above. 

A multi-layered network involves at least three levels: 
one level of input units, one level of output units, a.nd 
one or more levels of hidden units. Learning in a. multi- 
layered network is more difficult because the beha.vior 
of hidden units is not directly observable. Modifying the 
weights of connections pointing to a hidden unit requires 
the knowledge of the discrepancy between the network’s 
and the desired belief value at the hidden unit. However, 
the desired values at hidden units are not given. The 
discrepancy at a hidden unit can be derived from t.he 
discrepancies at output units which receive a.ctivat.ion 
from the hidden unit [6] Th is is a recursive definition 
in which the error at a hidden unit is alwa,ys derived 
from errors at the next higher level. Hence, errors are 
propagated backwards. 

In addition, the network’s belief value at a hidden Itnit, 
can be obtained by propagating the belief values at input 
units recursively and combining these values properly 
until the hidden unit is reached. 

The mathematical requirement for applying ba.ckprop- 
agation is that the relationship between the output a.nd 
the input of a node is determined by a differentia.ble func- 
tion. One apparent difficulty with the use of the back- 
propagation procedure in symbolic inference networks is 
that combining belief values in most cases involves such 
logic functions as logic AND and logic OR. To handle be- 
lief values, logic AND returns the minimum of its a.rgu- 
ments, while logic OR returns the maximum. Since these 
logic functions are not differentiable in the whole do- 
main, backpropagation cannot be applied directly. This 
problem can be solved if we view backpropa.gation a.s 
performing hill-climbing search rather than gradient cle- 
scent search. Because of space limitation, this approaclt 
will not be described here. Interested readers can refel 
to [5]. 

3 Recognition of Semantically 
Incorrect Rules 
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Semantically incorrect rules are classified into three 
types. In the first type, a rule has a positive CF but 
its premise actually disconfirms its action. In the second 
type, a rule has a negative CF but its premise actually 
confirms its action. In the third type, a rule has a posi- 
tive or negative CF but its premise neither confirms nor 
disconfirms its action. 

Although semantically incorrect rules can often be dis- 
covered by scrutinizing the rule base or by running on 
test cases, it is not always an easy task especially when 
the rule base is large. A technique that allows one to 
recognize this kind of rules will be useful in the course 
of knowledge engineering. 

Suppose a system has reached an equilibrium. If the 
system loses the equilibrium because of some perturba- 
tion and then reaches another equilibrium again, the new 
equilibrium will usually be close to the old one unless the 
perturbation is great. Furthermore, if we assume that 
the system equilibrium depends on a number of vari- 
ables, the variables under greater perturbation will be 
subject to greater changes than those under smaller per- 
turbation so that the new equilibrium can be attained 
faster and be closer to the old one. This intuition also 
a.pplies to the following argument. Suppose we have a 
neural network that has been trained to converge to a 
stable state. If we deliberately change the weights of 
a small number of connections and then train the net- 
work again with the same set of samples, we can expect 
that the network will be restored to the state close to 
the previous state and those perturbed connections will 
have greater changes in weights than unperturbed ones. 

This a.rgument can be further extended. Suppose we 
a.dd some connections to a neural network that has al- 
ready arrived at an equilibrium and assign weights to 
these added connectionsin such a way that incorrect out- 
put vectors are generated. Thus, these connections as a 
whole are semantically incorrect. Then, if we train the 
network with correct samples, the weights of the added 
connections will be modified in the direction of minimiz- 
ing their effect. What happens is that the weights will 
go toward zero and even cross zero during training. 

Recall that three types of semantically incorrect rules 
have been defined. Consider the connection pointing 
from node A to node B. If the activation at node A 
is positively correlated with that at node B in the statis- 
tical sense, then a negative weight is semantically incor- 
rect. Likewise, if the activation at node A is negatively 
correlated with that at node 8, then a positive weight 
is semantically incorrect. Thirdly, when the activation 
at node A is uncorrelated with that at node B, a signifi- 
cant nonzero weight either positive or negative is seman- 
tically incorrect. Suppose we train the neural network 
with correct samples. In the first two cases, the weight 

is expected ta first shift toward zero and then cross zero; 
in the third case, the weight is expected to gradually 
approach zero. 

The notion of consistent shift for connection weights 
is introduced as follows. If the absolute magnitude of a 
weight after training is greater than or equa.1 to tJlat of 
the weight before training and their signs are the same, 
then the weight shift is said to be semantically consist,ent. 
with the weight before training; otherwise the shift is 
inconsistent. The function consistent-shifl is defined by 

{ 

wa - wb ifwb > 0 
consistent-shift = Wij - w, if Wb < 0 

IWa-wbl if?.&,=0 

where wa and wb denote the weights after a.nd before 
training respectively. With this definition, a. shift. of 
weight is consistent if consistent-shift is grea.ter t.han OI 
equal to zero; else it is inconsistent. 

While semantically incorrect rules will genera.lly not, 
experience consistent weight shift by training with cor- 
rect samples, the weight shift of semantica.lly correct 
rules is not always consistent. If the weight a.ssignetl 
to a semantically correct rule before training is overly 
high, inconsistent weight shift may be observed after 
training. However, if the weight before training is suffi- 
ciently accurate, the degree of inconsistent shift ca.nnot 
be great. Moreover, when semantically correct rules a.re 
mixed with some incorrect rules, the weights of correct 
rules will often be reinforced consistently to mit,igate the 
effect of incorrect rules. Therefore, under such circum- 
stance, the chance and the degree of inconsistent shiCt 
for semantically correct rules will be even smaller. In 
practice, a weight shift is regarded as inconsistent only 
if the corresponding value of the function cons&en&shifl 
is less than a predetermined negative threshold. In the 
experiments conducted, -.2 was used as the threshold. 
Besides, because of the reinforcement in the weights of 
correct rules, the weights of incorrect rules do not nec- 
essarily move across or approach zero by tra.ining. 

When inconsistent weight shift is observed, the corre- 
sponding weight before training is considered as seman- 
tically incorrect. However, an important assumption is 
that the network is trained with an initial sta.te where 
the weights of most connections are semantically correct, 
rather than randomly chosen and are not overly high. If 
initial weights are randomly chosen, it makes no sense Lo 
state whether a shift is consistent with the initial assign- 
ment or not. Furthermore, since the back-propa.ga.tion 
rule is just a gradient-descent algorithm seeking a lo- 
cal optimum, random weights before training will most, 
likely lead to post-training weights that are dissocia.ted 
from the semantics normally embedded in correspond- 
ing rules. Hence, it is essential that most of rules are 
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semanticahy correct so that learning can be constrained 
properly. 

The procedure for recognizing semantically incorrect 
rules is given below: 

step 1. Train the network derived from a rule base 
using the back-propagation procedure. 

step 2. Compute the value of the function 
consistent-shift for each rule after training. 

step 9. If the value of consistent-shift is less than a 
predetermined negative threshold, then put the rule 
associated with its CF before training in the set of 
semantically incorrect rules. 

The output can further be examined by human experts. 
The procedure applies to a collection of rules and is not 
affected by the order of rule acquisition. 

When training samples are not described by interme- 
diate concepts (which is often the case), a procedure 
based on sample statistics is not feasible for debugging 
intermediate rules. In the above procedure, the back- 
propagation heuristic allows the derivation of local errors 
manifested at hidden nodes from global errors at output 
nodes and is therefore important for detecting semanti- 
cally incorrect rules involving intermediate concepts. 

Example 1 

A rule base is given which involves five binary-valued 
features, three intermediate hypotheses and three final 
hypotheses. Assume that the three final hypotheses are 
mutually exclusive but the three intermediate hypothe- 
ses are not. The training samples are displayed in Table 
1. The rule base consisting of Rule-BOO1 . . Rule-BOO15 
shown in Figure 1 can classify or diagnose these samples 
correctly. To make sure that the strength of each rule 
in this rule base is proposely assigned, the rule base was 
trained with the samples; the resulting weights are shown 
under the category “Before training” in Table 2. In the 
next step, six rules were added including Rule-BOO16 . . 
Rule-BOO21 (see Figure 1) to the rule base. The weights 
assigned to the six rules are also shown under the cat- 
egory “Before training” in Table 2. These added rules 
are semantically inconsistent with the training samples 
since only 10 out of 20 samples are classified correctly 
using the new rule base. 

The network derived from the rule base composed of 
Rule-BOO1 . . Rule-BOO21 was then trained with the sam- 
ples. The resulting weights upon convergence (at cycle 
3000) were recorded and are shown under the category 
“After training” in Table 2. The value of the function 
consistent-shift was computed for each rule and is also 
included in Table 2. Assume that the threshold for de- 
termining semantically incorrect rules is -.2. All the six 

Table 1: Training samples 

El Ez ~73 E4 Es Cl C2 C3 
no no yes no no yes no no 
no no yes no yes yes no no 
no yes no no yes yes no no 
no yes no yes yes no no Yes 
no yes yes no no no yes no 
no yes yes no yes yes no no 
no yes yes yes no no yes no 
yes no no no no no no 5-s 
yes no no no yes no no yes 
yes no no yes no no no yes 
yes no no yes yes no no yes 
yes no yes no no yes no no 
yes no yes no yes yes no no 
yes no yes yes yes no no yes 
yes yes no no yes yes no no 
yes yes no yes yes no no yes 
yes yes yes no no no yes no 
yes yes yes no yes yes no no 
yes yes yes yes no no yes no 
yes yes yes yes yes yes no no 

Rule-BOOl: Ml - Cr 
Rule-B002: MS - Cl 
Rule-B003: Ml - (5’2 
Rule-B004: M2 + C, 
Rule-B005: M2 - C3 
Rule-B006: M3 - C3 
Rule-B007: E2 - MI 
Rule-B008: E3 - Ml 
Rule-B009: Eq - Ml 
Rule-BOOlO: El - Mz 
Rule-B0011: E2 - M2 
Rule-B0012: E3 - Mz 
Rule-B0013: E2 - MS 
Rule-B0014: &‘a + MS 
Rule-B0015: ES - MS 

Rule-B0016: Mz - Cl 
Rule-B0017: MS - Cz 
Rule-B0018: MI - C’s 
Rule-B0019: El - Ml 
Rule-B0020: E5 -+ M2 
Rule-B0021: E3 -----t M3 

Figure 1: Inference rules 
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Table 2: Rule strengths before and after training 

Rule name Before After Consistent-shift 
Rule-BOO1 .95 0.05 
Rule-BOO2 
Rule-BOO3 
Rule-BOO4 
Rule-BOO5 
Rule-BOO6 
Rule-BOO7 
Rule-BOO8 
Rule-BOO9 
Rule-BOO10 
Rule-BOO11 
Rule-BOO12 
Rule-BOO13 
Rule-BOO14 
Rule-BOO15 

-. 9 0 
.7 2 

-.85 o-.-o5 
.8 .l 

-.85 .15 
23 0 
.a .l 

:65 7 0.05 .3 

.3 0 
-.35 -.15 
-75 -0.05 

-:s, 3 0.07 0 

Rule-BOO16 
Rule-BOO17 
Rule-BOO18 
Rule-BOO19 
Rule-BOO20 
Rule-BOO21 

.9 
-. 9 
.9 

-. 8 
.7 

-. 7 
-8 
.7 
-. 4 
.6 
.3 
-. 5 
.a 
-. 3 
-. 6 

.7 
-. 6 
.5 
.4 

-. 6 
.5 

.18 -.52 
-.65 0.05 

:;5 6 -1.1 -.25 
-.38 -.22 
.18 -.32 

added rules except Rule-BOO17 can be recognized as se- 
mantically incorrect. After excluding the five recognized 
rules, the misclassification rate becomes 3/20 with an 
improvement of lo/20 - 3/20 = 7/20. The failure to rec- 
ognize Rule-BOO17 as incorrect can be ascribed to the 
uncertainty involved in this example. Rule-BOO3 with 
consistent-shift = -.2 is very close to being recognized as 
an incorrect rule. From Figure 1 and Table 2, we see that 
Rule-BOO1 and Rule-BOO3 are inconsistent in the sense 
that Cr and C2 are mutually exclusive. Thus, it is rea- 
sonable to believe that either Rule-BOO1 or Rule-BOO3 is 
semantically incorrect. From the consistent-shift, Rule- 
BOO3 should be the incorrect one. If Rule-BOO3 is re- 
moved from the original rule base including Rule-BOO1 . . 
Rule-B0015, the remaining rules can still classify all the 
samples correctly. 

4 Results on a Practical Domain 

The back-propagation procedure has been experimented 
with in the domain of diagnosing jaundice. To handle 
the problem due to logic conjunction, the first approach, 
called approach I, uses approximate differentiable func- 
tions, whereas the second approach, called approach II, 

Table 3: The number of incorrect rules with consistent- 
shift greater than -.2 (called index A) and the number 
of correct rules with consistent-shift less than -.2 (called 
index B) after applying the back-propagation technique 
under approach I and II. 

Incorrect 
rule no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-I- Approach I I Annroach II 
Index- A Index B Index A Index R 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 2 0 0 
0 2 0 0 
1 2 0 0 
1 3 1 1 
2 4 1 1 
3 4 2 2 

uses hill-climbing search (see [5]). The algorithms were 
implemented in COMMONLISP. 

A rule base, derived from JAUNDICE [4], contained 
50 rules, 5 diseases, 5 intermediate hypotheses, and 15 
clinical attributes. This rule base was transformed into 
a four-layered network with 5 output units, 28 hidden 
units, and 15 input units. 

Ten experiments were carried out. In ea.41 csperi- 
ment, a small number of incorrect rules (the definit.ion 
was given earlier) were added in the network described 
above. In order to evaluate how good errors ca.n be prop- 
agated to hidden layers, most of the incorrect rules added 
were connected with hidden units in each experiment. 

Twenty instances were used as training sa.mples. All 
these instances can be diagnosed correctly with the 50 
rules and were collected from the JAUNDICE case li- 
brary where cases were obtained from the Stanford Riled- 
ical Center. The frequencies of the five diseases were 
equal. 

As shown in Table 3, approach I had more false detcc- 
tions than approach II. A correct rule sometimes csperi- 
enced a significant inconsistent shift of the weight a.fkr 
the procedure because of its interaction with incorrect 
rules. Fortunately, when this was the case, the correct 
rule was often decided to be kept because its removal 
would worsen the system performance. If an incorrect 
rule contributes to the error observed, it will generally 
be identihed; otherwise, it may not be detected. This 
is the limitation of the back-propagation learning tech- 
nique . 
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5 Conclusion 

A physical system at an equilibrium will tend to main- 
tain that equilibrium when undergoing small perturba- 
tion: Likewise, when a neural network is moved away 
from an established optimum state, it will tend to re- 
store (relax toward) that state. This observation is the 
rationale behind the approach presented in this paper. 

By semi-qualitatively reasoning with the shift of rule 
weights after training with correct samples, semantically 
incorrect rules can be recognized. This technique is par- 
ticularly useful for debugging intermediate rules when 
we only have samples that are not described by any in- 
termediate concepts. However, it is important to point 
out that the sparseness of the knowledge-based network 
and knowledge-based decomposition of a network into a 
number of independent networks can alleviate the prob- 
lem of combinatorics (difficulty in scaling up) that often 
arises in the neural-network approach. In addition, there 
must be adequate initial knowledge to make the process 
less random and more predictable. 
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