
Recognition of Semantically Incorrect Rules:
A Neural-network Approach

Li-Min F’u

The University of Wisconsin-Milwaukee
Department of EE & CS

Milwaukee, Wisconsin 53201

ABSTRACT

A novel technique that applies the neural-network learn-
ing strategy of back-propagation to recognize seman-
tically incorrect rules is presented. When the rule
strengths of most rules are semantically correct, semanti-
cally incorrect rules can be recognized if their strengths
are weakened or change signs after training with cor-
rect samples. In each training cycle, the discrepancies in
the belief values of goal hypotheses are propagated back-
ward and the strengths of rules responsible for such dis-
crepancies are modified appropriately. A function called
consistent-shift is defined for measuring the shift of a
rule strength in the direction consistent with the strength
assigned before training and is a critical component of
this technique. The viability of this technique has been
demonstrated in a practical domain.

1 Introduction

One important issue in designing a knowledge-based sys-
tem is the management of uncertainty. Among the
schemes that have been developed for this purpose, the
probability and CF (certainty factor) are most widely
used. While a knowledge-based system primarily con-
ducts symbolic reasoning, uncertainty is often handled
numerically. A question often raised is how to assign rule
strengths (CF’s). If we view the rule base as a network
and rule strengths as connection weights, it is possible
to apply neural-network learning strategies such as back-
propagation to assign or adjust rule strengths. It seems
that a neural-network learning strategy alone is inade-
quate for determining rule strengths because it only seeks
locally optimum behavior. Rule strengths generated in
this way may not carry the desired semantics.

Permission to copy without fee all or part of this material is granted
provided tbat the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Asociation for Computing Machinery. To copy other-
wise, or to republish, requires a fw and/or specifK: permission.

However, it may be a good idea to apply such St&e-
gies to refine the knowledge base which for the most
part is sound. The complexity analysis of knowledge-
base refinement can be found in [7] and [8]. This paper
presents the approach of knowledge base refinement us-
ing the back-propagation strategy.

2 Back-Propalgation in Inference
Networks

It has been known that a rule-based system (knowledge
represented in rules) can be transformed into a.n infer-
ence network where each connection corresponds to a.
rule, and each node corresponds to a premise or the eon-
elusion of a rule. Reasoning in such systems is a process
of propagating and combining multiple pieces of evidence
through the inference network until final conclusions are
reached. Uncertainty is often handled by adopting the
certainty factor (CF) or the probabilistic schemes which
associate each fact with a number called belief value. An
important part of reasoning tasks is to determine the be-
lief values of predefined final hypotheses given the belief
values of observed evidence. The network of a,n infer-
ence system through which belief values of evidences 01
hypotheses are propagated and combined is ca.lled beltcf
netwark. Correspondence in structural and behavioral
aspects exists between neural networks and belief net,-
works. For instance, the summation function in neural
networks corresponds to the function for combining cer-
tainty factors in MYCIN-like systems. The thresholding
function in neural networks corresponds to predica.tes
such as SAME (in MYCIN-like systems) which cuts off
any certainty value below .2. Fu [5] described a.n ap-
proach that maps a rule-based system such as MYCIN
[l] into a neural architecture.

When a rule-based system makes error, a key issue is
how to identify and correct rules responsible for these
errors. An error can be defined as the disagreement be-

@ 1990 ACM 089791-372-8/90/0007/1013 $1.50 1013

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98894.99114&domain=pdf&date_stamp=1990-06-01

tween the belief value generated by the system and that
indicated by a knowledge source assumed to be correct
(e.g., an expert) with respect to some fact. The prob-
lem of identifying the sources of errors is known as the
blame assignment problem. TEIRESIAS [2] is the typ-
ical work. It maintains the integrity of the knowledge
base by interacting with experts. However, as the size
of the knowledge base grows, it becomes difficult for hu-
man experts to consider all possible interactions among
knowledge in a coherent and consistent way. TMS [3] re-
solves inconsistency by altering a minimal set of beliefs,
but it lacks the notion of uncertainty in the method it-
self.

Back-propagation [6] is a powerful technique to train
the neural network. It is a recursive heuristic which prop-
agates backwards errors from a node to all nodes pointing
to that node, and modifies the weights of connections
leading into nodes with errors. This technique is just
a kind of gradient-descent technique which minimizes a
given criterion function iteratively. If we define the cri-
terion to be the difference (or the square of the differ-
ence) between the desired and the actual belief values of
goal hypotheses, we can modify the strengths of rules in-
ferring these hypotheses by the back-propagation proce-
dure. However, there are important differences between
the knowledge-based network and the neural network.
The former is often much more sparse than the latter
since many connections have no psychological meanings.
In addition, rule strengths in the knowledge-based net-
work before training can be estimated from a knowledge
source, whereas in the neural network, weights are ran-
domized before training. These differences explain why
the knowledge-based network can be kept from some an-
noying problems that are encountered by the neural net-
work. The sparseness of the knowledge-based network
and knowledge-based decomposition of a network into
a number of independent networks can help escape the
problem of combinatorics. The knowledge-based assign-
ment of rule strengths before training can facilitate con-
vergence to a desired result.

On a given trial, the network generates an output vec-
tor given the input vector of the training instance. The
discrepancy obtained by subtracting the network’s from
the desired output vector serves as the basis for adjust-
ing the strengths of connections involved. The adapted
back-propagation rule is formulated as follows:

AWji = rDj(aOj/aI$i) (1)

where

Dj =Tj-Oj,

Here, semadically incorrect rules refer to those rules that
are inconsistent with the semantics defined by the de-
sired local or global inference behavior of the system.
Such rules result from inadvertence or misconception of
knowledge engineers or experts and may cause the sys-
tem to reach incorrect conclusions. System performance AWji is the weight adjustment of the connection from

input node i to output node j, r is a trial-independent can usually be improved by removing these rules.

learning rate, Dj is the discrepancy between the desired
belief value (q) and the network’s belief value (Oj) a.t
node j, and the term dOj/dWji is the derivative of Oj
with respect to Wji. According to this rule, the magni-
tude of weight adjustment is proportional to the product
of the discrepancy and the derivative above.

A multi-layered network involves at least three levels:
one level of input units, one level of output units, a.nd
one or more levels of hidden units. Learning in a. multi-
layered network is more difficult because the beha.vior
of hidden units is not directly observable. Modifying the
weights of connections pointing to a hidden unit requires
the knowledge of the discrepancy between the network’s
and the desired belief value at the hidden unit. However,
the desired values at hidden units are not given. The
discrepancy at a hidden unit can be derived from t.he
discrepancies at output units which receive a.ctivat.ion
from the hidden unit [6] Th is is a recursive definition
in which the error at a hidden unit is alwa,ys derived
from errors at the next higher level. Hence, errors are
propagated backwards.

In addition, the network’s belief value at a hidden Itnit,
can be obtained by propagating the belief values at input
units recursively and combining these values properly
until the hidden unit is reached.

The mathematical requirement for applying ba.ckprop-
agation is that the relationship between the output a.nd
the input of a node is determined by a differentia.ble func-
tion. One apparent difficulty with the use of the back-
propagation procedure in symbolic inference networks is
that combining belief values in most cases involves such
logic functions as logic AND and logic OR. To handle be-
lief values, logic AND returns the minimum of its a.rgu-
ments, while logic OR returns the maximum. Since these
logic functions are not differentiable in the whole do-
main, backpropagation cannot be applied directly. This
problem can be solved if we view backpropa.gation a.s
performing hill-climbing search rather than gradient cle-
scent search. Because of space limitation, this approaclt
will not be described here. Interested readers can refel
to [5].

3 Recognition of Semantically
Incorrect Rules

1014

Semantically incorrect rules are classified into three
types. In the first type, a rule has a positive CF but
its premise actually disconfirms its action. In the second
type, a rule has a negative CF but its premise actually
confirms its action. In the third type, a rule has a posi-
tive or negative CF but its premise neither confirms nor
disconfirms its action.

Although semantically incorrect rules can often be dis-
covered by scrutinizing the rule base or by running on
test cases, it is not always an easy task especially when
the rule base is large. A technique that allows one to
recognize this kind of rules will be useful in the course
of knowledge engineering.

Suppose a system has reached an equilibrium. If the
system loses the equilibrium because of some perturba-
tion and then reaches another equilibrium again, the new
equilibrium will usually be close to the old one unless the
perturbation is great. Furthermore, if we assume that
the system equilibrium depends on a number of vari-
ables, the variables under greater perturbation will be
subject to greater changes than those under smaller per-
turbation so that the new equilibrium can be attained
faster and be closer to the old one. This intuition also
a.pplies to the following argument. Suppose we have a
neural network that has been trained to converge to a
stable state. If we deliberately change the weights of
a small number of connections and then train the net-
work again with the same set of samples, we can expect
that the network will be restored to the state close to
the previous state and those perturbed connections will
have greater changes in weights than unperturbed ones.

This a.rgument can be further extended. Suppose we
a.dd some connections to a neural network that has al-
ready arrived at an equilibrium and assign weights to
these added connectionsin such a way that incorrect out-
put vectors are generated. Thus, these connections as a
whole are semantically incorrect. Then, if we train the
network with correct samples, the weights of the added
connections will be modified in the direction of minimiz-
ing their effect. What happens is that the weights will
go toward zero and even cross zero during training.

Recall that three types of semantically incorrect rules
have been defined. Consider the connection pointing
from node A to node B. If the activation at node A
is positively correlated with that at node B in the statis-
tical sense, then a negative weight is semantically incor-
rect. Likewise, if the activation at node A is negatively
correlated with that at node 8, then a positive weight
is semantically incorrect. Thirdly, when the activation
at node A is uncorrelated with that at node B, a signifi-
cant nonzero weight either positive or negative is seman-
tically incorrect. Suppose we train the neural network
with correct samples. In the first two cases, the weight

is expected ta first shift toward zero and then cross zero;
in the third case, the weight is expected to gradually
approach zero.

The notion of consistent shift for connection weights
is introduced as follows. If the absolute magnitude of a
weight after training is greater than or equa.1 to tJlat of
the weight before training and their signs are the same,
then the weight shift is said to be semantically consist,ent.
with the weight before training; otherwise the shift is
inconsistent. The function consistent-shifl is defined by

{

wa - wb ifwb > 0
consistent-shift = Wij - w, if Wb < 0

IWa-wbl if?.&,=0

where wa and wb denote the weights after a.nd before
training respectively. With this definition, a. shift. of
weight is consistent if consistent-shift is grea.ter t.han OI
equal to zero; else it is inconsistent.

While semantically incorrect rules will genera.lly not,
experience consistent weight shift by training with cor-
rect samples, the weight shift of semantica.lly correct
rules is not always consistent. If the weight a.ssignetl
to a semantically correct rule before training is overly
high, inconsistent weight shift may be observed after
training. However, if the weight before training is suffi-
ciently accurate, the degree of inconsistent shift ca.nnot
be great. Moreover, when semantically correct rules a.re
mixed with some incorrect rules, the weights of correct
rules will often be reinforced consistently to mit,igate the
effect of incorrect rules. Therefore, under such circum-
stance, the chance and the degree of inconsistent shiCt
for semantically correct rules will be even smaller. In
practice, a weight shift is regarded as inconsistent only
if the corresponding value of the function cons&en&shifl
is less than a predetermined negative threshold. In the
experiments conducted, -.2 was used as the threshold.
Besides, because of the reinforcement in the weights of
correct rules, the weights of incorrect rules do not nec-
essarily move across or approach zero by tra.ining.

When inconsistent weight shift is observed, the corre-
sponding weight before training is considered as seman-
tically incorrect. However, an important assumption is
that the network is trained with an initial sta.te where
the weights of most connections are semantically correct,
rather than randomly chosen and are not overly high. If
initial weights are randomly chosen, it makes no sense Lo
state whether a shift is consistent with the initial assign-
ment or not. Furthermore, since the back-propa.ga.tion
rule is just a gradient-descent algorithm seeking a lo-
cal optimum, random weights before training will most,
likely lead to post-training weights that are dissocia.ted
from the semantics normally embedded in correspond-
ing rules. Hence, it is essential that most of rules are

1015

semanticahy correct so that learning can be constrained
properly.

The procedure for recognizing semantically incorrect
rules is given below:

step 1. Train the network derived from a rule base
using the back-propagation procedure.

step 2. Compute the value of the function
consistent-shift for each rule after training.

step 9. If the value of consistent-shift is less than a
predetermined negative threshold, then put the rule
associated with its CF before training in the set of
semantically incorrect rules.

The output can further be examined by human experts.
The procedure applies to a collection of rules and is not
affected by the order of rule acquisition.

When training samples are not described by interme-
diate concepts (which is often the case), a procedure
based on sample statistics is not feasible for debugging
intermediate rules. In the above procedure, the back-
propagation heuristic allows the derivation of local errors
manifested at hidden nodes from global errors at output
nodes and is therefore important for detecting semanti-
cally incorrect rules involving intermediate concepts.

Example 1

A rule base is given which involves five binary-valued
features, three intermediate hypotheses and three final
hypotheses. Assume that the three final hypotheses are
mutually exclusive but the three intermediate hypothe-
ses are not. The training samples are displayed in Table
1. The rule base consisting of Rule-BOO1 . . Rule-BOO15
shown in Figure 1 can classify or diagnose these samples
correctly. To make sure that the strength of each rule
in this rule base is proposely assigned, the rule base was
trained with the samples; the resulting weights are shown
under the category “Before training” in Table 2. In the
next step, six rules were added including Rule-BOO16 . .
Rule-BOO21 (see Figure 1) to the rule base. The weights
assigned to the six rules are also shown under the cat-
egory “Before training” in Table 2. These added rules
are semantically inconsistent with the training samples
since only 10 out of 20 samples are classified correctly
using the new rule base.

The network derived from the rule base composed of
Rule-BOO1 . . Rule-BOO21 was then trained with the sam-
ples. The resulting weights upon convergence (at cycle
3000) were recorded and are shown under the category
“After training” in Table 2. The value of the function
consistent-shift was computed for each rule and is also
included in Table 2. Assume that the threshold for de-
termining semantically incorrect rules is -.2. All the six

Table 1: Training samples

El Ez ~73 E4 Es Cl C2 C3
no no yes no no yes no no
no no yes no yes yes no no
no yes no no yes yes no no
no yes no yes yes no no Yes
no yes yes no no no yes no
no yes yes no yes yes no no
no yes yes yes no no yes no
yes no no no no no no 5-s
yes no no no yes no no yes
yes no no yes no no no yes
yes no no yes yes no no yes
yes no yes no no yes no no
yes no yes no yes yes no no
yes no yes yes yes no no yes
yes yes no no yes yes no no
yes yes no yes yes no no yes
yes yes yes no no no yes no
yes yes yes no yes yes no no
yes yes yes yes no no yes no
yes yes yes yes yes yes no no

Rule-BOOl: Ml - Cr
Rule-B002: MS - Cl
Rule-B003: Ml - (5’2
Rule-B004: M2 + C,
Rule-B005: M2 - C3
Rule-B006: M3 - C3
Rule-B007: E2 - MI
Rule-B008: E3 - Ml
Rule-B009: Eq - Ml
Rule-BOOlO: El - Mz
Rule-B0011: E2 - M2
Rule-B0012: E3 - Mz
Rule-B0013: E2 - MS
Rule-B0014: &‘a + MS
Rule-B0015: ES - MS

Rule-B0016: Mz - Cl
Rule-B0017: MS - Cz
Rule-B0018: MI - C’s
Rule-B0019: El - Ml
Rule-B0020: E5 -+ M2
Rule-B0021: E3 -----t M3

Figure 1: Inference rules

1016

Table 2: Rule strengths before and after training

Rule name Before After Consistent-shift
Rule-BOO1 .95 0.05
Rule-BOO2
Rule-BOO3
Rule-BOO4
Rule-BOO5
Rule-BOO6
Rule-BOO7
Rule-BOO8
Rule-BOO9
Rule-BOO10
Rule-BOO11
Rule-BOO12
Rule-BOO13
Rule-BOO14
Rule-BOO15

-. 9 0
.7 2

-.85 o-.-o5
.8 .l

-.85 .15
23 0
.a .l

:65 7 0.05 .3

.3 0
-.35 -.15
-75 -0.05

-:s, 3 0.07 0

Rule-BOO16
Rule-BOO17
Rule-BOO18
Rule-BOO19
Rule-BOO20
Rule-BOO21

.9
-. 9
.9

-. 8
.7

-. 7
-8
.7
-. 4
.6
.3
-. 5
.a
-. 3
-. 6

.7
-. 6
.5
.4

-. 6
.5

.18 -.52
-.65 0.05

:;5 6 -1.1 -.25
-.38 -.22
.18 -.32

added rules except Rule-BOO17 can be recognized as se-
mantically incorrect. After excluding the five recognized
rules, the misclassification rate becomes 3/20 with an
improvement of lo/20 - 3/20 = 7/20. The failure to rec-
ognize Rule-BOO17 as incorrect can be ascribed to the
uncertainty involved in this example. Rule-BOO3 with
consistent-shift = -.2 is very close to being recognized as
an incorrect rule. From Figure 1 and Table 2, we see that
Rule-BOO1 and Rule-BOO3 are inconsistent in the sense
that Cr and C2 are mutually exclusive. Thus, it is rea-
sonable to believe that either Rule-BOO1 or Rule-BOO3 is
semantically incorrect. From the consistent-shift, Rule-
BOO3 should be the incorrect one. If Rule-BOO3 is re-
moved from the original rule base including Rule-BOO1 . .
Rule-B0015, the remaining rules can still classify all the
samples correctly.

4 Results on a Practical Domain

The back-propagation procedure has been experimented
with in the domain of diagnosing jaundice. To handle
the problem due to logic conjunction, the first approach,
called approach I, uses approximate differentiable func-
tions, whereas the second approach, called approach II,

Table 3: The number of incorrect rules with consistent-
shift greater than -.2 (called index A) and the number
of correct rules with consistent-shift less than -.2 (called
index B) after applying the back-propagation technique
under approach I and II.

Incorrect
rule no.

1
2
3
4
5
6
7
8
9
10

-I- Approach I I Annroach II
Index- A Index B Index A Index R

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 2 0 0
0 2 0 0
1 2 0 0
1 3 1 1
2 4 1 1
3 4 2 2

uses hill-climbing search (see [5]). The algorithms were
implemented in COMMONLISP.

A rule base, derived from JAUNDICE [4], contained
50 rules, 5 diseases, 5 intermediate hypotheses, and 15
clinical attributes. This rule base was transformed into
a four-layered network with 5 output units, 28 hidden
units, and 15 input units.

Ten experiments were carried out. In ea.41 csperi-
ment, a small number of incorrect rules (the definit.ion
was given earlier) were added in the network described
above. In order to evaluate how good errors ca.n be prop-
agated to hidden layers, most of the incorrect rules added
were connected with hidden units in each experiment.

Twenty instances were used as training sa.mples. All
these instances can be diagnosed correctly with the 50
rules and were collected from the JAUNDICE case li-
brary where cases were obtained from the Stanford Riled-
ical Center. The frequencies of the five diseases were
equal.

As shown in Table 3, approach I had more false detcc-
tions than approach II. A correct rule sometimes csperi-
enced a significant inconsistent shift of the weight a.fkr
the procedure because of its interaction with incorrect
rules. Fortunately, when this was the case, the correct
rule was often decided to be kept because its removal
would worsen the system performance. If an incorrect
rule contributes to the error observed, it will generally
be identihed; otherwise, it may not be detected. This
is the limitation of the back-propagation learning tech-
nique .

1017

5 Conclusion

A physical system at an equilibrium will tend to main-
tain that equilibrium when undergoing small perturba-
tion: Likewise, when a neural network is moved away
from an established optimum state, it will tend to re-
store (relax toward) that state. This observation is the
rationale behind the approach presented in this paper.

By semi-qualitatively reasoning with the shift of rule
weights after training with correct samples, semantically
incorrect rules can be recognized. This technique is par-
ticularly useful for debugging intermediate rules when
we only have samples that are not described by any in-
termediate concepts. However, it is important to point
out that the sparseness of the knowledge-based network
and knowledge-based decomposition of a network into a
number of independent networks can alleviate the prob-
lem of combinatorics (difficulty in scaling up) that often
arises in the neural-network approach. In addition, there
must be adequate initial knowledge to make the process
less random and more predictable.

References

1. Buchanan, B.G. and Shortliffe, E.H., Rule-Based
Expert Systems, Addison-Wesley, Massachusetts,
1984.

2. Davis, R., Application of meta-level knowledge to
the construction, maintenance, and use of large
knowledge base, Ph.D. thesis, Computer Science
Dept., Stanford U., 1976.

3. Doyle, J., A truth maintenance system, Artificial
Intelligence, 12(3), 1979, 231-272.

4. Fu, L.M., Learning object-level and meta-level
knowledge in expert systems, Ph.D. thesis, Stanford
u., 1985.

5. Fu, Li-Min, Integration of neural heuristics into
knowledge-based inference, Connection Science,
l(3), 1989, 327-342.

6. Rumelhart, D.E., Hinton, G.E. and Williams, R.J.,
Learning internal representation by error propaga-
tion, In Parallel Distributed Processing: Explo-
rations in the Microstructures of Cognition, MIT
press, Cambridge, 1986.

7.

8.

Valtorta, M., Some results on the complexity
of knowledge-base refinement, in Proceedings of
IWML-6, Morgan Kaufmann, 1989,326-331.

Wilkins, D.C. and Buchanan, B.G., On debugging
rule sets when reasoning under uncertainty, in Pro-
ceedings of AAAI-86, Philadelphia, 1986, 448-454.

1018

