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ABSTRACT 

This paper describes several artificial neural 
network architectures for real time application in incipient 
fault detection of induction machines. The artificial neural 
networks perform the fault detection in real time, based on 
direct measurements from the motor, and no rigorous 
mathematical model of the motor is needed. Different 
approaches used to develop a reliable fault detector are 
presented and compared in this paper. The designed 
networks vary in complexity and accuracy. A high-order 
fault detector neural network is discussed first. Then noise 
considerations are included in more complex fault detector 
models, since noise is an important factor in the design 
and analysis of real time fault detector neural networks. 
Simulation results show that with appropriate designs, 
artificial neural networks perform satisfactorily in real 
time incipient fault detection of induction machines. 

INTRODUCTION 

Rotating machines are manufactured in a wide 
variety of sizes, but small (less than 10 hp) and medium- 
size (less than 100 hp) machines are of particular interest. 
These machines, for economic reasons, receive less 
periodic maintenance and do not have as many protective 
features. The importance of incipient fault detection is 
found in the cost savings which are realized by detecting 
potential machine failures before they occur [l]. 
Presently, machines are required to be protected by devices 
such as circuit breakers or fuses to protect the motor and 
nearby personnel from injury due to a fault, but they give 
no warning of potential faults before they occur. Incipient 
fault detection, on the other hand, allows preventative 
maintenance to be scheduled for machines which might 
not ordinarily be due for service. Incipient fault detection 
may also prevent an extended period of down-time caused 
by extensive machine failure. 
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Though rotating machines arc usually well 
constructed and robust, the possibility of incipient faults 
is inherent due to the stresses involved in the conversion 
of electrical energy to mechanical energy or vice versa. 
An incipient fault within a machine will affect the 
performance of the machine before a failure occurs. 

Due to its wide applications, a single phase, 
medium size induction motor is used in this paper as a 
prototype rotating machine. The concepts developed for 
induction motors can be easily generalized to other 
rotating machines. Two specific faults of single phase 
induction motors, namely turn-to-turn insulation faults 
and bearing wear, have been investigated in [6,7]. A turn- 
to-turn insulation incipient fault in the main winding 
causes the corresponding equivalent turns, N, of the main 
winding to change. Bearing wear of the motor is reflected 
in the damping coefficient B. To determine the most 
suitable motor measurements for detecting incipient 
faults, in terms of easy accessibility, reliability and 
sensitivity, the dynamics of induction motors were 
analyzed. From the analysis, the steady-state current, I, 
and the rotor speed, o, of the motor can be represented by 
a system of nonlinear algebraic equations, f = [fl f21T, 
which are functions of the main winding equivalent turns 
N and the damping coefficient B : 

f(I,w,N,B) = Q. (1) 

For a more dctailcd induction motor dynamics 
derivation and analysis, see [6, 71. Equation (1) dots 
suggest that indications of the condition of the winding 
and bearings can be obtained from the mcasurcmcnts of 
the slator current and rotor speed. Indeed, from analysis, 
the stator current and rotor speed arc found to be very 
sensitive to the changing conditions of the stator winding 
and the bearings. Moreover, the current and speed are 
easily accessible and can be measured accurately. 
Therefore, the stator current and rotor speed were chosen as 
the variables to be measured for the detection of winding 
insulation and bearing faults. 

However, the mapping between (I@) and [ N,B} 
is very complex due to the high degree of nonlinearity of 
Equation (1). In addition, due to the modeling error 
induced and propagated through the mathematical 
derivations, the theoretical solutions of N and B obtained 
by solving Equation (1) may not agree with their actual 
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values. But this complication can be avoided by using 
neural networks, in which case neither complex nonlinear 
equations nor modeling errors would need to be accounted 
for, and no rigorous mathematical modeling of the 
machine is necessary. Besides, measurements can be 
taken directly from the machine itself. Artificial neural 
networks avoid the need for an accurate understanding of 
the system dynamics, which is required in other 
approaches used to estimate the machine parameters to 
indicate the appropriate machine condition [2-53. 

As stated before, the conditions of the main 
winding and bearing are reflected in the numerical values 
of the main winding equivalent turns N and the damping 
coefficient B, respectively. Based on the values of N and 
B, the condition of the motor is then quantified into three 
condition levels, namely good, fair and bad. The resulting 
mapping is 9 : 9X x 32 + Z2, where N and B E % (the 
real number space), and Z = [0.9, 0.5, 0.1) is the 
condition space representing good, fair, and bad 
respectively, according to the condition of the motor [6,7]. 

Based on the analysis presented above, a 
corresponding high-order artificial neural network structure 
[6,7,10,11] was designed to output the conditions of the 
winding and the bearings, given the values of the stator 
current and rotor speed as network inputs [6,7]. The 
performance of this network was satisfactorily accurate 
161, yet noise was not taken into consideration. Since the 
detection scheme is for real time application, occasional 
perturbations and measurement noise need to be 
considered, as explained in later sections. 

LAYERED FEED-FORWARD NEURAL 
NETWORK 

The first use of artificial neural nets dates back to 
the 1940’s. Recently, neural nets have become widely 
used in many different areas, such as fault diagnosis 
[6,8,91, system dynamics modeling [121, robotic control 
and many other areas [13,14,15,16,17]. Neural networks 
have been proven to be resistant to input and system 
noises, have learning capability, and can perform in real 
time [13,14,18]. Because of these useful properties, 
neural networks are good candidates for the 
implementation of machine incipient fault detection. 

A special type of neural net, called a layered feed- 
forward neural net, is used in this paper. This network is 
composed of highly interconnected units (neurons) with a 
deterministic, monotonic nonincreasing output function. 
Layered feed-forward neural nets have been successfully 
used in many applications [8,14,15]. These nets have one 
or more layers of hidden neuron units between the input 
and output layers, as shown in Figure 1. An inter-unit 
connection is typically assigned a numeric weight that 
modulates the activation passing through the connection. 

There can be many layers of hidden units, but 
every unit must send its output to layers higher than its 
own and must receive its input from layers lower than its 
own. Such a network is trained by adjusting the 
numerical values of the weights between each unit using 
an algorithm termed “back-propagation” [13,14]. The 
back-propagation algorithm is conceptually a 
generalization of the Least-Mean-Squares algorithm. It 
uses a gradient search technique to minimize a cost 
function equal to the mean square difference between the 
desired and the actual net outputs. The net is trained by 
initially selecting weights and internal thresholds at 
random and then presenting all training data repeatedly. 
Weights are adjusted after every trial using external 
information specifying the correct result, until weights 
converge and the cost function is reduced to an acceptable 
value. An essential component of the algorithm is an 
iterative method that propagates error terms required to 
adapt weights back from nodes in the output layer to 
nodes in lower layers. 

Yl 
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. . . . . 
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Figure 1 : Basic structure of a multi-layer artificial neural 
network 

DIFFERENT INCIPIENT FAULT DETECTOR 
ARCHITECTURES 

For the initial experiments in the design and 
training of the neural network, a precisely controllable 
data source was required. To provide this data source, a 
computer program was developed to simulate the 
dynamics of an induction motor [19,20]. The program is 
able to simulate the motor performance under different 
fault conditions and generate necessary data to train and 
test the designed fault detector neural networks. 

The fault detector neural network was trained 
using a set of 224 data patterns obtained from a detailed 
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numerical simulation of the dynamics of an induction 
motor. The data generated by the simulation covered the 
whole fault range under consideration. The simulation 
included the effects of inductance leakage, magnetic 
saturation, bearing wear, and stator winding insulation 
faults. The motor was assumed to be operating at a 
known constant load condition. 

The weights of the network were trained using 
the popular back-propagation [13,14], pattern-update 
algorithm. The network stopped training when the 
average one-norm error of the whole training set was 
smaller than 0.05, or when the change of the weight value 
of each interconnection between the network layers was 
less than lE-6 [6]. 

The design, analysis, and results of the different 
fault detector models used in this paper will be discussed 
in the following sections. First, the Incipient Fault 
Detector Artificial Neural Network (IFDANN) will be 
presented. Then a slightly more complicated fault detector 
model, namely, the Multiple Sampling Inputs Incipient 
Fault Detector Artificial Neural Network (MS-IFDANN), 
will be discussed. Finally, the Noise Filter Artificial 
Neural Network-Incipient Fault Detector Artificial Neural 
Network (NF-IFDANN) will be presented. The 
performance of each network design will then be analyzed 
and compared. 

INCIPIENT FAULT DETECTOR ARTIFICIAL 
NEURAL NETWORK MODEL (IFDANN) 

As discussed previously, the stator current, I. and 
the rotor speed, o, of the motor are the variables to be 
measured in order to determine the condition of the main 
winding equivalent turns, N, and the damping coefficient, 
B, which in turn will indicate if incipient faults exist 
within the motor in question. It has been shown that, by 
expanding the input space from two dimensions (I, o) to 
five dimensions (I, o, 12, tu2, I*w), the accuracy of the 
Incipient Fault Detector Artificial Neural Network 
(IFDANN) is increased [6], Ieading to the design of high- 
order neural networks [6,11]. It has also been shown that 
the more hidden nodes are used, the better the performance 
of the fault detector neural network [6]. As shown in 
Figure 2, the original IFDANN used in this paper was 
designed to include 5 input nodes {I, o, 12, w2, I*o), 8 
hidden nodes, and 2 output nodes (conditions of N and B, 
respectively). Assuming ideal, non-noisy measurements, 
the average performance of such a fault detector is 98.8 % 
accurate for the prediction of the condition of N and 99.1 
% accurate for B. These results are satisfactory for most 
fault detection purposes. 

sigmoid neurons 

sigmoid neurons 

I 0 

Figure 2 : Configuration of the original model of the 
high-order fault detector neural network 

However, despite the satisfactory performance of 
this fault detector for ideal, non-noisy measurements, in 
real time applications motor measurements are likely to 
be contaminated with noise. Therefore, methods to make 
the fault detector neural network resistant to noise are 
considered and analyzed in the following sections, leading 
to the design of more complex fault detector neural 
network models. 

MULTIPLE SAMPLING-INPUTS INCIPIENT 
FAULT DETECTOR ARTIFICIAL NEURAL 
NETWORK MODEL (MS-IFDANN) 

Artificial neural networks have been widely used 
partly because of their multi-input parallel processing 
capability. A large number of input variables can be 
simultaneously fed to a multi-input neural network. 
Despite the increase in the number of input nodes, the 
computation time of the network remains the same 
because neural nets perform parallel processing. That is, 
all the neuron computations within one layer are 
computed simultaneously, so that the computation time 
of the network depends only on the number of layers 
present in the network and not on the number of nodes or 
neurons per layer. Thus, increasing the number of input 
nodes does not affect the neural network processing speed. 
Taking advantage of this parallel processing capability, 
the Multiple Sampling-Inputs Incipient Fault Detector 
model (MS-IFDANN) was designed. 

Suppose that measurements are taken every 
sampling time At, and that the measurements at time i are 
represented as z(ti). By letting y(ti) = [I o I2 m2 I*olT 
be the actual value of the signals to be measured and x(ti) 
be the corresponding measurement noise, the measurement 
z(ti) on y(Q) becomes 

Z(G) = Y(G) + Y(G). 

Note that the values of I and o are direct 
measurements from the motor, while the values of 12, 
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a2, and I*w are calculated from I and KI during real time 
fault detection. Without loss of generality and for 
simplicity of notation, we assume that the five input 
variables (I, o, 12, m2, I*o) are all direct motor 
measurements. 

The measurement noise is assumed to be i.i.d. 
Gaussian white noise with the following statistical 
properties : 

EMtill =Q Vi 
E (y(ti) y(tj)T) = & S(ti - tj) V ij 

COVMti) Y(tj)Tl = 0 V ij 

where 6 represents the Kronecker delta function; & is a 
diagonal matrix representing the noise variance matrix of 
v; E (.) represents the expectation value, and Cov (.) 
represents the covariance matrix. With the motor problem 
under consideration, the sampling time is chosen such that 
y(t) is a “slowly” time-varying signal (compared to the 
sampling time used). By letting zy be the fastest time 
constant of y(t), then zy c< n At, and all signal values 
within a sampling widow can be well approximated by a 
constant yk, i.e. y(ti) = yk for k I i I k-ncl. 

The input layer of the MS-IFDANN model is 
basically an expansion from the input measurements at 
time tk to n consecutive measurement at times tk, tk-1, 
.., tken+l, obtained with the aid of a tapped-delay line. 
The sampled input signal is applied to a string of delay 
boxes, each delaying the signal by one sampling period. 
At any given instance of time, n sets of input 
measurements (where n is the sampling window size) are 
fed to the MS-IFDANN. Figure 3 shows an overview 
diagram of the MS-JFDANN model. The hidden layer and 
output layer structures remain the same as discussed 
before. 

ZOk) z(t 1 . . . z (t 
k-l 

) 
k-n+1 

tapped-delay 
line 

hidden 
layer 

output 

B layer 

Figure 3. Overview diagram of the Multiple Sampling- 
inputs Incipient Fault Detector Artificial Neural Network 

model (MS-IFDANN) 

This scheme increases the robustness of the fault 
detector neural network to noisy inputs because the 
condition of the motor is now determined based not only 
on the current measurements but also on the past n-l 
measurements. The noise effect of each measurement fed 

to the detector is suppressed by the multiple inputs of the 
neural network. 

Figures 4 and 5 show the accuracy of the fault 
detector under different noise levels and for different 
numbers of multiple sampling inputs. Note that all the 
data used are normalized between 0 and 1. The noisy data 
were Gaussian white noise with a variance value of 0.5. 
The noise level indicates the fraction of the Gaussian 
white noise that was added to the actual motor 
measurements in the fault detection simulation. Also 
note that the MS-IFDANN model with 5 inputs is 
actually the IFDANN model discussed in the previous 
section. 

As expected, the fault detector neural network 
yields greater accuracy as the size of the sampling window 
increases, even for large noise levels. That is, the 
robustness of IFDANN increases as more past 
measurements are included in the inputs of the fault 
detector. The more inputs to the fault detector, the less 
susceptible it becomes to increasing noise levels. 

100 

76 

- -N, 25 inputs ---N, 50 inputs 
70 I . . , . I . . I . . I . I 

0 0.1 0.2 0.3 0.4 0.5 
noise level 

Figure 4 : Accuracy of the MS-IFDANN model, as a 
function of the number of inputs, for the detection of the 

condition of N under different noise levels 

100 

0 0.1 0.2 0.3 0.4 OS 
noise level 

Figure 5 : Accuracy of the MS-IFDANN model, as a 
function of the number of inputs, for the detection of the 

condition of B under different noise levels 
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&=A 
2 Z(tk-i+l), 

n i=l MODULAR FAULT DETECTOR ARTIFICIAL 
NEURAL NETWORK MODEL 

The trend of artificial neural network applications 
is toward the design of neural network modules that 
perform specific tasks. For certain applications, a user 
can combine several neural networks, each with a specific 
task or function, to meet the needs of the application. In 
this paper, the modularized fault detector neural network 
(NF-IFDANN) to be considered is composed of two parts: 
a Noise Filter Artificial Neural Network (NFANN), and an 
Incipient Fault Detector Artificial Neural Network 
(IFDANN). Under the new scheme, real time 
measurements are collected and fed to NFANN to filter out 
the noise that may be present in the measurements. Then 
the filtered data, i.e., the outputs of NFANN, are fed to 
IFDANN for incipient fauh detection. As before, the 
IFDANN of the modularized fault detector model is the 
high-order neural network, with 5 inputs (I, 0, 12, a2, 
I*co), 8 hidden nodes, and 2 outputs (conditions of N and 
B , respectively) designed in [6]. 

Figure 6 presents an overview of the filter- 
detector network structure, where n(t) is the measurement 
noise; i(t) and w(t) are the real time measurements of rms 
current and average rotor speed of the motor respectively; 
if(t) and q(t) are the filtered versions of i(t) and o(t), and 
Nc and Bc indicate the conditions of stator winding and 
bearings respectively. 

n(t) 

, w grnu ;g& “~~..-&..’ 

Measurements Filtered Machine 
Measurements Conditions 

Figure 6 : Block diagram of the modularized NF-IFDANN 
fault detector model 

A moving measurement average noise filtering 
scheme is implemented in an artificial neural network 
structure and used in the NFANN module. By letting the 
sampling window size be n, then the k-th sampling 
window Zk contains the measurements 

zk = ( Z(tk), Z&-l), . . . , Z(tk-n+l) 1. 

is then the output of NFANN, which in turn is the input 
to IFDANN. The measurement noise remaining at the 
output of NFANN can still be shown to be Gaussian 
white with variance reduced by a factor of l/n2 [7]. 
Figure 7 shows a diagram of the structure of NFANN. 

NFANN 

Figure 7 : Structure of the Noise Filter Artificial Neural 
Network (NFANN) 

NF-IFDANN was tested with simulated real time 
induction motor measurements, with random Gaussian 
measurement noise (as used in the MS-IFDANN model) 
included in the testing data. The performance of the NF- 
IFDANN architecture is shown in Figures 8 and 9. 
Simulation results show that, in general, the larger the 
size of the sampling window, the better the performance 
of the NF-IFDANN fault detector, similar to the results 
obtained from the MS-IFDANN model. 

An interesting observation from the simulation 
results is the fact that, for the detection of the condition of 
N, small-level noise added to the actual motor 
measurements slightly increases the accuracy of the 
network (Figure 8). The authors of the paper suspect that 
this behavior is caused by the discretization of the output 
values of the training data, which might have induced 
uncertainties at the boundary fault conditions. Thus, a 
little random Gaussian noise actually helps the network to 
better detect boundary conditions in some cases. A more 
detailed analysis on the effects of the random Gaussian 
noise on the fault detector accuracy will be performed in 
the near future. 

The n sets of consecutive measurements, zk, zk-1, . . . . zk- 
n+l$ are fed to NFANN simultaneously after, they are 
collected with the aid of a tapped-delay line. The average 
value zk, defined as 
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76 - -N, samples=1 - - N, samples=2 

_ - N, samples=5 ----N, samples=10 

70 , 
0 0.1 0.2 0.3 0.4 0.5 

noise. level 

Figure 8 : Accuracy of the NF-IFDANN model, as a 
function of sampling window size, for the detection of the 

condition of N under different noise levels 

100 ( 

84 - -B,samples=l - -B, samples=2 

- - B,samples=5 ----B, samples=10 _ 

80 , , , , , , 
0 0.1 0.2 0.3 0.4 0.5 

noise level 

Figure 9 : Accuracy of the NF-IFDANN model, as a 
function of the sampling window size, for the detection of 

the condition of B under different noise levels 

COMPARISONS AND FUTURE RESEARCH 

Figure 10 shows a comparison of the accuracy 
achieved by both the MS-IFDANN and NF-IFDANN fault 
detector architectures under different noise levels, when 
equivalent inputs are used, namely, 50 inputs for MS- 
IFDANN and a sampling window size of 10 for NF- 
IFDANN. Simulation results show that the original 
IFDANN model can be modified to yield satisfactory 
results even under very noisy environments, with an 
average accuracy of 91% for the prediction of the condition 
of N and 95% for B, at a noise level of 0.5. It can be 
observed that MS-IFDANN yields higher accuracy for the 
prediction of the condition of B, while NF-IFDANN 
performs better for the prediction of the condition of N. It 
can also be observed that for large noise levels, the 
accuracy of predicting the condition of N is always lower 
than that of the condition of B for both fault detectors, 

98 

92 
_ -N, MS-JFDANh’ 

go 1 - -N,NF-IFDANN ----B, NF-IFDANN 

cl 0.1 0.2 0.3 0.4 0.5 
noise level 

Figure 10 : Comparison of the accuracy between the MS- 
IFDANN and NF-IFDANN models under different noise 

levels 

Even though the performance of NF-IFDANN is 
similar to that of MS-IFDANN, NF-IFDANN is a more 
flexible model and can be modified easily to meet the 
user’s needs due to its modularity. The authors of this 
paper are currently searching for methods to improve the 
performance of NF-IFDANN, and further results will be 
reported in the future, along with a more rigorous analysis 
of the different fault detector structures discussed in this 
Paper. 

CONCLUSION 

This paper develops a real time application of 
artificial neural networks for incipient fault detection of 
induction machines. The fault detector neural network 
performs the detection based on direct measurements from 
the motor, avoiding the complication of nonlinear 
equations and modeling errors. It has been shown that 
with some additions and modifications of the conventional 
layered feed-forward neural,network, satisfactory results 
can be obtained from the designed fault detector neural 
networks discussed in this paper. For real time 
applications, noise effects were considered, and structurally 
simple and satisfactorily accurate fault detector neural 
networks were designed. Satisfactory results show a 
promising future for the use of artificial neural networks 
for incipient fault detection in rotating machines. 
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