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Abstract 

When a prdgram for the construction of a product by a flexi- 
ble assembly cell is automatically derived from a CAD draw- 
ing, this may give rise to problems. To help the programming 
process additional input by an expert will be very practical. 
In this paper a description is given of how to handle the in- 
put of additional information with a user interface. This user 
interface consists of two parts: an instruction interpreter and 
a dialogue system. With the instruction interpreter the ex- 
pert can give advice on (details of the) the cell program; with 
the dialogue system the programming system itself can ask 
the expert for solutions of problems it encounters. When the 
expert uses the instruction interpreter or communicates with 
the dialogue system, he may use a subset of English, which 
facilitates the communication. 

1 Introduction 

At the Delft University of Technology a project concerning 
the design of a flexible assembly cell is being carried out. 
The cell, consisting of two robots, is to produce small series 
of varying kinds of products. Programming this cell will pro- 
ceed off-line, since for small series production on-line pro- 
gramming is not cost-effective. 

The way a product is to be assembled, is determined based 
on a CAD drawing and data about the capabilities of the cell. 
To obtain a program for the cell, this information is processed 
by several modules, viz. the assembly modeller, the planning 
module, the scheduler and the dispatcher respectively. But 
during this process several problems may occur. First of all 
there are problems like ambiguity when the system cannot 
make a choice between several possibilities, or incomplete- 
ness/unsolvability then the system needs additional infonna- 
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tion to be able to continue the programming process. But 
another important problem is that in a product the number of 
choices the system has, grows exponentially with the number 
of parts. Because of these problems it would be practical to 
have a possibility for additional user input to help and opti- 
mize the programming process. 

To this effect a user interface has been constructed that 
consists of two parts. First there is an instruction interpreter 
that accepts assembly instructions. In this way the program- 
mer can give additional information to the system concem- 
ing problems that he recognizes beforehand. He can also use 
this instruction to give certain adjustment data for the product 
(like the specification of a torque). Secondly, there is a dia- 
logue system where the system itself can ask for additional 
information when this is needed. A global overview of the 
system is given in figure 1. 

In this paper both the instruction interpreter and the di- 
alogue system are described. This is followed by a brief 
overview on the knowledge representation used for both 
modules. The final section contains some concluding re- 
marks. 

2 The instruction interpreter 

The instruction interpreter is meant to give the programmer 
of the flexible assembly cell the opportunity to give certain 
information to the programming system of the cell, like ad- 
justment data, data on product or assembly details or bound- 
ary conditions to the assembly process. To this effect, the 
insunction interpreter obtains a text in a certain “program- 
ming language”. Since it is not cost-effective to have to 
make complex programs for small series production, the lan- 
guage in which the text is written, should be easy. To this 
effect a subset of English was chosen as the “programming 
language”. A text in this sublanguage resembles assembly 
instructions as they come with model construction boxes. 
These assembly instructions are either contained in the CAD 
drawing or in a separate piece of text. 

To program the flexible assembly cell for small series 
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production, existing robot programming languages are un- 
suitable since, tirst of all, these cannot be used directly to 
program a cell consisting of more than one robot and sec- 
ondly to construct a program in most of the languages is 
rather complex, which, as was said before, is not cost- 
effective for small series production (for a comparison be- 
tween fourteen existing robot programming languages see 
[Bonner, 19821). In the literature some natural language 
interfaces for robots can be found as well, see for exam- 
ple IWinograd, 19721, CEvrard, 19831, [Selfridge, 19861 and 
[Kratchanov, 19871. But these are for on-line programming 
of a single robot, which is not practical when small series pro- 
duction is concerned, since it requires taking the robot out of 
production. Besides, working with a single robot sets dif- 
ferent boundary conditions to the programming process than 
working with more than one robot in parallel. 

Working with natural language, one is relatively free in 
one’s choice of words and grammatical constructions. But on 
the other hand working with a subset of language implies a 
restricted vocabulary (with less ambiguities) and a restricted 
grammar. The subset of language used in assembly instruc- 
tions contains several sentence types. 

The most important sentence type is an assembly task, An 
assembly task contains information on the part that has to 
be assembled and possibly the parts to which the part has to 
be assembled or the tool to do the assembly with. It must 
be possible to supplement the tool or parts with some argu- 
ments (like a torque for a screwdriver or a male-female con- 
nection between two parts). An example of an assembly task 
is “Screw the screw on the plate using a Phillips screwdriver 
and a torque of 0.5 Nm” or “The screw has to be screwed on 
the plate with a torque of 0.5 Nm”. 

Other sentence types are: 

l a conditional construction that may either indicate con- 
ditions that denote when a task can or cannot be exe- 
cuted (for example “Assemble the lid to the box only if 
the ball is already assembled”), or make it possible to 
use one instruction for several types of a product (for 
example “If the motorbike is of type r, paint it red”); 

l the definition of a subassembly that contains the name 
of the subassembly and the tasks to be executed in or- 
der to construct the subassembly; this information will 
be used to restrict the number of assembly sequences 
(for example “To make a wheel perform the following 
actions . ..“). 

l an iteration which indicates that tasks must be executed 
more than once (for example “Assemble the bolts and 
tighten them to a torque of 0.5 Nm”); 

l a test instruction to specify a test whether aspecific state 
of a part or assembly has been attained, it can be fol- 
lowed by tasks to be executed when the test fails (for 
example “Test the crankshaft for freedom of rotation”); 

a warning instruction to indicate that some specific as- 
sembly tasks have to be executed with extra conditions 
to avoid a normally acceptable but for the tasks un- 
acceptable side effect (for example “Gently insert the 
camshaft into the crankcase taking care not to damage 
the camshaft bearings with the cams”); 

an instruction to indicate an ordering between the as- 
sembly tasks which can be used to restrict the number 
of possible assembly sequences (for example “‘Execute 
the following instructions in the given order” or “As- 
semble the ball before the lid is assembled”). 

Since the instruction interpreter is implemented in Prolog, 
the sentences are represented with Prolog clauses. An assem- 
bly task for example is transformed into the Prolog clause : 

assemble{ partl(Conc-PI, Actent-Pl, [plarg]), 
[pa.rQ(Conc-P2, ActentP2, Ip2argl. 

Kwzl, GagDl. 
[tool(Conc-T, Actent-T, [Targ])] ) 

This clause indicates the part that has to be assembled (part 1) 
and arguments for this part (Plarg-list). A part in a product 
is identified by the concept (Cone-P) and by a unique identi- 
fication, called an “actual entity” (Actent-P). By using actual 
entities it is possible to distinguish between similar occur- 
rences of a part. For example a ‘screw’ may denote many 
actual ‘screw’-s in the product. The actual entity indicates 
the specific ‘screw’ of the product it concerns. Besides this, 
part(s) to which the part has to be assembled may be indicated 
in the list of Part%s; this list may also contain information on 
arguments of the part2 (lY!arg), information on the connec- 
tion between part1 and part2 (Carg) or information on the 
geometry between part 1 and part2 (Garg). The connection 
and geometry arguments always relate to two parts: they are 
binary relations. This is required by the product data model 
that only contains those binary relations between two parts 
that are automatically derived from the CAD drawing. The 
product data model is a sauctural description of the product. 
To integrate the information from the assembly instruction 
in the product data model, the relations derived from the in- 
struction must be binaiy as well. As a last item in the clause 
the tool to perform the assembly with may be indicated and 
also arguments (Targ) for this tool. 

Most of the information of the assembly task is integrated 
in the product data model derived from the CAD drawing 
(connections, geometry, arguments of tools), the rest (tools) 
is communicated directly to the planning module. Of course 
the information contained in the product data model is acces- 
sible to the planning module as well. All information derived 
from the other sentence types, except the iteration instruc- 
tion, goes directly to the planning module. This information 
is represented in clauses and relations between such clauses 
similar to the “assemble’‘-clause. The iteration instruction is 
expanded by the instruction interpreter in such a way that the 
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data on every part or subassembly contained in the iteration 
is connected to that part or subassembly. Only this expansion 
is communicated to the other modules. 

3 The dialogue system 

The dialogue system serves to solve problems occurring in 
the modules of the programming system of the assembly cell. 
Several of the classes of problems that occur were already 
mentioned; for controlling the process these were ambigu- 
ity, incompleteness and unsolvability and for optimizing the 
process they were requests for advice for example concem- 
ing assembly sequences. But another problem may arise, 
namely contradiction; most of the time this will be caused by 
user input that contradicts data that is derived automatically 
by the system. Solving problems with dialogue will also be 
very useful for the exception handler. Exception handling is 
done on-line, which implies that on-line dialogue may be 
conducted as well. 

When a problem in a module occurs, a request for dialogue 
stating the problem and information required to be able to 
solve the problem, has to be “sent” to the dialogue system 
by that module. The dialogue system translates the problem 
into a question to the user. The dialogue may be supported 
with a graphical interface. The dialogue may only be initiated 
by the system and the user answering the question should bc 
an expert in the problem domain and should also be helpful 
to the system. Of course being engaged in a dialogue, the 
initiative may change, This means that the user will be able to 
ask additional information concerning the problem from the 
system before answering the question. In the sequel only the 
control of this dialogue will be discussed and not the analysis 
and generation of language. 

When dialogue systems are studied many of them use one 
or more aspects from speech act theory [Searle, 19691. In 
speech act theory a distinction is made in the forces of speech 
acts: 

I. locutionary force: the utterance of words 

2. propositional force: the content of the speech act 

3. illocutionary force: the form of the speech act (question, 
statement, . . . ) 

4. perlocutionary force: the effect of the speech act on the 
listener 

The locutionary force is the least interesting one. The per- 
locutionary force is the hardest to model, since it depends on 
the situation of the speaker and listener. Both are not con- 
sidered further in the dialogue system. But in the dialogue 
system a distinction will be made similar to the distinction 
between the illocutionary force and propositional force. The 
illocutionary force is used in structuring the dialogue. The 
propositional force represents the meaning of the speech acts. 

When dialogue is studied in an assembly environment, 
a set of speech acts that are used can be constructed, as 
for example greeting, question, answer, . . . To determine the 
speech act represented in a sentence, a set of features of the 
sentence is constructed, that enables the system to recognize 
the speech act. This causes some problems when indirect 
speech acts are used. Indirect speech acts are sentences that 
literally mean one thing but are used in another way. For ex- 
ample, “Can you tell me the time” is a yes/no question when 
interpreted literally, but in most contexts this sentence is a re- 
quest for the right time. Interpretation of indirect speech acts 
has been a subject of much research in speech act theory; it 
will not be considered further in this paper. 

To structure the dialogue, a transition network may be 
used, as [Bruce, 19861 does. When a transition network is 
used, the system speech act is determined, based on previous 
speech acts, while the user speech act must be recognized 
based on previous speech acts. The user is in principle free 
to perform any speech act he wants, as long as he does not 
change the topic of the discourse. To control this dialogue 
the system performs the speech act of which the illocution- 
ary force is indicated at the transition of the network. When 
a user performs a speech act, the system has to proceed to the 
next state in the network according to the illocutionary force 
of the speech act performed by the user. Thus, the structural 
function of a speech act in the dialogue, consists of two parts: 

1. the illocutionary force of the speech act 

2. the position of the speech act in the dialogue (structured 
by a transition network) 

But, when questions and answers arc considered, this mech- 
anism is not satisfactory. With these question and answer 
speech acts, the meaning of the speech act is of much impor- 
tance and must be processed by the dialogue control system. 
The meaning of other speech acts (like greeting) is of less im- 
portance and will not be remembered by the dialogue system. 
The only way these other speech acts influence the dialogue 
system is that they give rise to a transition in the transition 
network. 

To be able to control the question and answer speech acts, 
a subdivision has been made in the kinds of questions that 
occur. These are: 

1. multiple choice question: in a multiple choice question 
it is asked which of a distinct set of possible answers is 
the right answer, 

2. open question: in an open question new information is 
wanted. 

To represent the meaning of these speech acts a logical lan- 
guage has been defined, in which both of these question 
speech acts are representable. Both the open question and the 
multiple choice question will be represented with a lambda 
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formula, the multiple choice question needs an additional 
select-function. Some examples of the representation of a 
question with this language, are: 

(ax : screw)[uttach(x,pratl)] 
that reprusents the question “Which screw must be 
attached to platel”; 

(ax : screw)(Ay : attach)[y(X,~lutel)] 
that represents the question “Which screw must be 
attached to plate1 with what kind of connection”; 

(Ax : screw)[urrach(x,~futl)~ 
x = sefect(screwl+w-ew2)] 
that represents the question “Must screw1 or 
screw2 be attached to p&et?“. 

The appropriate answers are represented similarly. 
As was said before, to structure the dialogue for questions 

and answers, the transition network is not enough. A sequent 
system has been defined, which is able to handle the process- 
ing of the meanings of questions and answers. This sequent 
system is an augmentation of the transition network: the net- 
work can (and will) be easily represented in the sequent sys- 
tem. A state in the transition network will become a sequent 
and a state transition will become a sequent transition. In this 
way the structure of the dialogue will be represented with the 
sequent system. To be able to handle the question and answer 
speech acts, an additional mechanism is constructed consist- 
ing of two stacks, one for the questions of the user and one 
for the questions of the system. 

The sequent system is a four-tuple <Z&fi,Y>, in which 
Z and Y are the stack of the system questions and the user 
questions respectively; 17is the party whose turn it is and A 
is the speech act of the most recent party. A is of the form 
A(@ in which A is the illocutionary force of the speech act 
and # is the meaning of the speech act if A is a question or 
an answer. Whenever a question is asked, this question is put 
on top of the appropriate stack, when an answer is given the 
stacks are changed according to the answer given. Usually 
this will only change the question on top of the appropriate 
stack, but it is possible to change other questions as well. 
Processing the answer may give rise to new questions if a 
question is not completely answered, otherwise the question 
is removed from the stack. The dialogue is finished when 
both the system stack and user stack are empty. 

To describe the working of the sequent system, a set of 
sequent transitions is defined. These describe when a tran- 
sition (that may be conditional) from sequent to sequent is 
allowed. In this way the dialogue is structured and the stacks 
are changed according to the meanings of questions and an- 
swers. Some examples of sequents and sequent transitions 
are: 

1. The sequent that represents the first question (always 
asked by the system) will be: 

si = +Wre~,Q(~),o> 

2. 

3. 

The sequent transition representing the processing of an 
answer of the user on the stacks will be: 

As can be seen both stacks may be changed according 
to the answer of the user. 

A conditional sequent transition representing the termi- 
nation of the question and answering dialogue when the 
stack of user questions is empty and the stack of system 
questions only contains a totally answered question, wiIl 
be: 

t-type(#) *(<[W&%0> --) Sf) 
in which t-type is a function that determines if the ques- 
tion # is totally instantiated (of type t), and sf denotes a 
sequent that starts the terminating dialogue. 

A formal description of both the logical language and the se- 
quent system can be found in [van der Leeuw, 19901. 

4 The internal representation 

For the internal representation of both the sentences analyzed 
by the instruction interpreter and the sentences analyzed and 
generated by the dialogue system, conceptual dependency 
graphs [van Rijn, 1989b] are used. “Conceptual dependency 
graphs”is a formalized and generalized version of conceptual 
dependency theory [Schank, 19751. Conceptual dependency 
graphs are very similar to conceptual graphs [Sowa, 19841. 
For a comparison see [van Rijn, 1989al. The knowledge rep- 
resentation obtained is a high level knowledge representation 
independent of the actually chosen concepts. The question 
whether this representation corresponds in any sense with hu- 
man usage and similar psychological issues is of no concern 
tous. 

This representation was chosen, because the programming 
system uses different knowledge representations for the var- 
ious programming modules. The representation that is used 
for the dialogue system in the assembly environment, should 
function as a kind of interlingua between the user and the var- 
ious modules of the cell, each with its own knowledge repre- 
sentation. Each of these knowledge representations is based 
on concepts and relations between concepts. The user inter- 
face needs a knowledge representation that can handle both 
the assembly knowledge contained in the modules it com- 
municates with and “linguistic” knowledge to communicate 
with the user. 

Also, when the representation is used to represent the as- 
sembly instruction, it should store from that instruction the 
concepts and relations between concepts. 

The objects needed in the knowledge representation are 
concepts and relations between concepts, the possibility to 
introduce new concepts in the world (necessary for the defi- 
nition of subassemblies), the use of actual entities (to denote 
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a specific part in a product) and the possibility to establish 
relations between networks of concepts (to be able to repre- 
sent the more complex sentence types). Since most of these 
objects were present in the conceptual dependency theory, 
this theory was chosen as a basis for the representation “con- 
ceptual dependency graphs”. It was changed according to 
the needs for use of the representation in an assembly envi- 
ronment. But, conceptual dependency graphs is a high level 
representation independent of the concepts chosen. The rep- 
resentation can be filled in in the way Schank does or in a way 
suitable for the assembly application. The representation can 
be used easily for diverse application areas. 

In the knowledge representation, concepts are ordered in 
unlabelled, acyclic, directed graphs. A concept is an instan- 
tiation of another concept if there exists a directed path be- 
tween the concepts. Concepts may have actual entities, that 
are objects unique in the world under consideration. Con- 
ceptual categories form a partition on the set of concepts. 
Furthermore between conceptual categories a restricted set 
of conceptual relations may exist. This whole is called the 
concept structure. 

ExampIe 1 When TOOL is considered as a conceptual 
category consisting of the set of tools {normal screw- 
driver, Phillips screwdriver, screwdriver, hammer, fastener, 
gripper). A concept ordering for this conceptual category 
may be: 

(normal screwdriver, Phillips screwdriver}=screwdriver 
{screwdriver, hammer}=fastener 

(with {a, b}= c meaning that a E c and b E c). 
Thus, a normal screwdriver is an instantiation of a fartenet. 

Simple conceptual dependency graphs are directed graphs 
with nodes that carry three labels, namely a conceptual cat- 
egory, a finite set of concepts belonging to this category and 
an actual entity belonging to each of these concepts and with 
labelled arcs relating two or more nodes. Simple conceptual 
dependency graphs represent simple sentences. 

Example 2 To represent an assembly instruction for a spe- 
cifrc product, the main conceptual categories are ACT, 
PART and TOOL. The most important ACT for assembly is 
‘MOUNT’ representing the primitive assembly task of the 
robot. The conceptual categories PART and TOOL contain 
the a?fferent parts timi tools. Tools or parts may be instanti- 
ated with an actual entity. The simple conceptual dependency 
graph presented below, represents the sentence “Assemble 
the Phillipsscrew”. 

x fl=PART y fi=ACT z fl=TOOL 
f2={Phill.screw} f2={MOUNT} fz={sdriver} 
f3= item005 fj=impossible f3=tool5 

The nodes are connected to one another with labelled arcs, 
representing the “‘assemble” relation (between node x and 

node y) and the “tool” relation (between node y and node 
z). Each ofthenodeshasthree labels: 

1. fi represents the conceptual category to which the node 
belongs; 

2. f2 represents the finite set of concepts; 

3. fs represents the actual entity; it has the value “impos- 
sible” if the conceptual category given by fi does not 
allow actual entities. 

%o simple conceptual dependency graphs or a simple 
conceptual dependency graph and a concept may be re- 
lated to form a conceptual dependency graph. Two concep- 
tual dependency graphs or a conceptual dependency graph 
and a concept may again be related to form a more com- 
plex conceptual dependency graph. Conceptual dependency 
graphs are labelled similarly to simple conceptual depen- 
dency graphs. In this way it is possible to introduce new 
concepts in the world, which is necessary in assembly when 
a subassembly is defined. 

Example 3 An example of a conceptual dependency graph 
representing the sentence “Assemble the egg cautiously” is 

q =m ” wam q 

v F1=CDG x fl=PART y fi=ACT 
F2= fi=C~~l f2={MOUNT} 
F3= f3=itemOl fJ=impossible 

c fl=DA 
f~={cautious} 
fs=impossible 

Node v has three labels similar to nodes of simple con- 
ceptual dependency graphs, but only FI has a value: the 
dummy value “CDG” . This labeling of conceptual depen- 
dency graphs is done to be able to introduce new concepts 
in the world. As a new conceptual category (node c) DA is 
used denoting a default argument. 

To be able to distinguish between conceptual dependency 
graphs that may have a meaning in the world and those that 
have not, a subclass of conceptual dependency graphs is 
introduced, called the well-formed conceptual dependency 
graphs. Well-formed conceptual dependency graphs are 
those conceptual dependency graphs that may be derived 
from the lexicon. To this purpose each lexicon entry of a 
word contains besides the transformation of the word into a 
concept a required context of the concept. This required con- 
text is specified as a (simple) conceptual dependency graph. 
Well-formed conceptual dependency graphs are obtained by 
unification of required contexts contained in lexicon entries. 
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To use this high level representation in an assembly envi- 
ronment, the concept structure must be filled in and the lex- 
icon must be constructed according to the application. As- 
sembly knowledge is contained in the lexicon entries. For 
example the lexicon entry of a normal screw could contain 
the information that it should be assembled with a normal 
screwdriver (and thus not with a Phillips screwdriver!) or 
the entry of a Phillips screw size 5 that it should be assem- 
bled with a screwdriver size 5. The appealing thing of the use 
of unification to obtain well-formed conceptual dependency 
graphs is that the representation of a sentence like “The nor- 
mal screw should be assembled with a screwdriver size 5” 
contains the information that it concerns the assembly of a 
normal screw size 5 with a normal screwdriver size 5. 

5 Conclusion 

It is very practical to use a user interface to support the au- 
tomatic derivation of a cell program for a specific product 
from a CAD drawing. In the system described this user in- 
terface consists of two parts: first an instruction interpreter 
to give the programmer of the cell the opportunity to help 
and optimize the programming process on problems that he 
foresees in advance and second a dialogue system to let the 
programmer solve problems that the system encounters dur- 
ing the programming process. A parser for the instruction 
interpreter has been constructed. This parser is implemented 
in Prolog, since Prolog is very suitable where unification is 
concerned. Due to the limited grammar, the parser accepts 
only sentences with one main verb and possibly one or more 
auxiliary verbs. At this moment sentences with subclauses 
are not accepted. The lexicon is still rather small (about a 
hundred words). Both the lexicon and the grammar will be 
extended in the future to enable the instruction interpreter to 
accept a larger number of sentences. 

At this moment, only the assembly tasks, the subassem- 
bly indication and the order instruction can be handled by 
the programming system. The planning module is not yet 
capable to process the other sentence types. 

Currently we are working on the dialogue system. The 
dialogue control of questions and answers has already been 
implemented. The formalism which is used in handling these 
speech acts can be easily extended to control the other dia- 
logue structures likewise. The rest of the dialogue system (in- 
cluding the analysis and the generation of natural language) 
is still under construction. A small prototype of a genera- 
tor of language from conceptual dependency graphs has been 
constructed. 

The use of conceptual dependency graphs seems to be very 
practical for an assembly environment. The graphs are very 
suitable to represent texts of a restricted domain. The rep- 
resentation can be filled with the concepts, conceptual cate- 
gories and conceptual relations that one needs for any specific 

domain. 
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