
A natural language interface for a flexible assembly cell

Afke van Rijn
Delft University of Technology

P.O.Box 356,260O AJ Delft, The Netherlands
Email: afke@dutirQ.tudelft.nl

Abstract

When a prdgram for the construction of a product by a flexi-
ble assembly cell is automatically derived from a CAD draw-
ing, this may give rise to problems. To help the programming
process additional input by an expert will be very practical.
In this paper a description is given of how to handle the in-
put of additional information with a user interface. This user
interface consists of two parts: an instruction interpreter and
a dialogue system. With the instruction interpreter the ex-
pert can give advice on (details of the) the cell program; with
the dialogue system the programming system itself can ask
the expert for solutions of problems it encounters. When the
expert uses the instruction interpreter or communicates with
the dialogue system, he may use a subset of English, which
facilitates the communication.

1 Introduction

At the Delft University of Technology a project concerning
the design of a flexible assembly cell is being carried out.
The cell, consisting of two robots, is to produce small series
of varying kinds of products. Programming this cell will pro-
ceed off-line, since for small series production on-line pro-
gramming is not cost-effective.

The way a product is to be assembled, is determined based
on a CAD drawing and data about the capabilities of the cell.
To obtain a program for the cell, this information is processed
by several modules, viz. the assembly modeller, the planning
module, the scheduler and the dispatcher respectively. But
during this process several problems may occur. First of all
there are problems like ambiguity when the system cannot
make a choice between several possibilities, or incomplete-
ness/unsolvability then the system needs additional infonna-

Permission to copy without fee ati or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

tion to be able to continue the programming process. But
another important problem is that in a product the number of
choices the system has, grows exponentially with the number
of parts. Because of these problems it would be practical to
have a possibility for additional user input to help and opti-
mize the programming process.

To this effect a user interface has been constructed that
consists of two parts. First there is an instruction interpreter
that accepts assembly instructions. In this way the program-
mer can give additional information to the system concem-
ing problems that he recognizes beforehand. He can also use
this instruction to give certain adjustment data for the product
(like the specification of a torque). Secondly, there is a dia-
logue system where the system itself can ask for additional
information when this is needed. A global overview of the
system is given in figure 1.

In this paper both the instruction interpreter and the di-
alogue system are described. This is followed by a brief
overview on the knowledge representation used for both
modules. The final section contains some concluding re-
marks.

2 The instruction interpreter

The instruction interpreter is meant to give the programmer
of the flexible assembly cell the opportunity to give certain
information to the programming system of the cell, like ad-
justment data, data on product or assembly details or bound-
ary conditions to the assembly process. To this effect, the
insunction interpreter obtains a text in a certain “program-
ming language”. Since it is not cost-effective to have to
make complex programs for small series production, the lan-
guage in which the text is written, should be easy. To this
effect a subset of English was chosen as the “programming
language”. A text in this sublanguage resembles assembly
instructions as they come with model construction boxes.
These assembly instructions are either contained in the CAD
drawing or in a separate piece of text.

To program the flexible assembly cell for small series

0 1990 ACM 089791-372-8/90/0007/1096 $1.50 1096

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98894.99132&domain=pdf&date_stamp=1990-06-01

production, existing robot programming languages are un-
suitable since, tirst of all, these cannot be used directly to
program a cell consisting of more than one robot and sec-
ondly to construct a program in most of the languages is
rather complex, which, as was said before, is not cost-
effective for small series production (for a comparison be-
tween fourteen existing robot programming languages see
[Bonner, 19821). In the literature some natural language
interfaces for robots can be found as well, see for exam-
ple IWinograd, 19721, CEvrard, 19831, [Selfridge, 19861 and
[Kratchanov, 19871. But these are for on-line programming
of a single robot, which is not practical when small series pro-
duction is concerned, since it requires taking the robot out of
production. Besides, working with a single robot sets dif-
ferent boundary conditions to the programming process than
working with more than one robot in parallel.

Working with natural language, one is relatively free in
one’s choice of words and grammatical constructions. But on
the other hand working with a subset of language implies a
restricted vocabulary (with less ambiguities) and a restricted
grammar. The subset of language used in assembly instruc-
tions contains several sentence types.

The most important sentence type is an assembly task, An
assembly task contains information on the part that has to
be assembled and possibly the parts to which the part has to
be assembled or the tool to do the assembly with. It must
be possible to supplement the tool or parts with some argu-
ments (like a torque for a screwdriver or a male-female con-
nection between two parts). An example of an assembly task
is “Screw the screw on the plate using a Phillips screwdriver
and a torque of 0.5 Nm” or “The screw has to be screwed on
the plate with a torque of 0.5 Nm”.

Other sentence types are:

l a conditional construction that may either indicate con-
ditions that denote when a task can or cannot be exe-
cuted (for example “Assemble the lid to the box only if
the ball is already assembled”), or make it possible to
use one instruction for several types of a product (for
example “If the motorbike is of type r, paint it red”);

l the definition of a subassembly that contains the name
of the subassembly and the tasks to be executed in or-
der to construct the subassembly; this information will
be used to restrict the number of assembly sequences
(for example “To make a wheel perform the following
actions . ..“).

l an iteration which indicates that tasks must be executed
more than once (for example “Assemble the bolts and
tighten them to a torque of 0.5 Nm”);

l a test instruction to specify a test whether aspecific state
of a part or assembly has been attained, it can be fol-
lowed by tasks to be executed when the test fails (for
example “Test the crankshaft for freedom of rotation”);

a warning instruction to indicate that some specific as-
sembly tasks have to be executed with extra conditions
to avoid a normally acceptable but for the tasks un-
acceptable side effect (for example “Gently insert the
camshaft into the crankcase taking care not to damage
the camshaft bearings with the cams”);

an instruction to indicate an ordering between the as-
sembly tasks which can be used to restrict the number
of possible assembly sequences (for example “‘Execute
the following instructions in the given order” or “As-
semble the ball before the lid is assembled”).

Since the instruction interpreter is implemented in Prolog,
the sentences are represented with Prolog clauses. An assem-
bly task for example is transformed into the Prolog clause :

assemble{ partl(Conc-PI, Actent-Pl, [plarg]),
[pa.rQ(Conc-P2, ActentP2, Ip2argl.

Kwzl, GagDl.
[tool(Conc-T, Actent-T, [Targ])])

This clause indicates the part that has to be assembled (part 1)
and arguments for this part (Plarg-list). A part in a product
is identified by the concept (Cone-P) and by a unique identi-
fication, called an “actual entity” (Actent-P). By using actual
entities it is possible to distinguish between similar occur-
rences of a part. For example a ‘screw’ may denote many
actual ‘screw’-s in the product. The actual entity indicates
the specific ‘screw’ of the product it concerns. Besides this,
part(s) to which the part has to be assembled may be indicated
in the list of Part%s; this list may also contain information on
arguments of the part2 (lY!arg), information on the connec-
tion between part1 and part2 (Carg) or information on the
geometry between part 1 and part2 (Garg). The connection
and geometry arguments always relate to two parts: they are
binary relations. This is required by the product data model
that only contains those binary relations between two parts
that are automatically derived from the CAD drawing. The
product data model is a sauctural description of the product.
To integrate the information from the assembly instruction
in the product data model, the relations derived from the in-
struction must be binaiy as well. As a last item in the clause
the tool to perform the assembly with may be indicated and
also arguments (Targ) for this tool.

Most of the information of the assembly task is integrated
in the product data model derived from the CAD drawing
(connections, geometry, arguments of tools), the rest (tools)
is communicated directly to the planning module. Of course
the information contained in the product data model is acces-
sible to the planning module as well. All information derived
from the other sentence types, except the iteration instruc-
tion, goes directly to the planning module. This information
is represented in clauses and relations between such clauses
similar to the “assemble’‘-clause. The iteration instruction is
expanded by the instruction interpreter in such a way that the

1097

data on every part or subassembly contained in the iteration
is connected to that part or subassembly. Only this expansion
is communicated to the other modules.

3 The dialogue system

The dialogue system serves to solve problems occurring in
the modules of the programming system of the assembly cell.
Several of the classes of problems that occur were already
mentioned; for controlling the process these were ambigu-
ity, incompleteness and unsolvability and for optimizing the
process they were requests for advice for example concem-
ing assembly sequences. But another problem may arise,
namely contradiction; most of the time this will be caused by
user input that contradicts data that is derived automatically
by the system. Solving problems with dialogue will also be
very useful for the exception handler. Exception handling is
done on-line, which implies that on-line dialogue may be
conducted as well.

When a problem in a module occurs, a request for dialogue
stating the problem and information required to be able to
solve the problem, has to be “sent” to the dialogue system
by that module. The dialogue system translates the problem
into a question to the user. The dialogue may be supported
with a graphical interface. The dialogue may only be initiated
by the system and the user answering the question should bc
an expert in the problem domain and should also be helpful
to the system. Of course being engaged in a dialogue, the
initiative may change, This means that the user will be able to
ask additional information concerning the problem from the
system before answering the question. In the sequel only the
control of this dialogue will be discussed and not the analysis
and generation of language.

When dialogue systems are studied many of them use one
or more aspects from speech act theory [Searle, 19691. In
speech act theory a distinction is made in the forces of speech
acts:

I. locutionary force: the utterance of words

2. propositional force: the content of the speech act

3. illocutionary force: the form of the speech act (question,
statement, . . .)

4. perlocutionary force: the effect of the speech act on the
listener

The locutionary force is the least interesting one. The per-
locutionary force is the hardest to model, since it depends on
the situation of the speaker and listener. Both are not con-
sidered further in the dialogue system. But in the dialogue
system a distinction will be made similar to the distinction
between the illocutionary force and propositional force. The
illocutionary force is used in structuring the dialogue. The
propositional force represents the meaning of the speech acts.

When dialogue is studied in an assembly environment,
a set of speech acts that are used can be constructed, as
for example greeting, question, answer, . . . To determine the
speech act represented in a sentence, a set of features of the
sentence is constructed, that enables the system to recognize
the speech act. This causes some problems when indirect
speech acts are used. Indirect speech acts are sentences that
literally mean one thing but are used in another way. For ex-
ample, “Can you tell me the time” is a yes/no question when
interpreted literally, but in most contexts this sentence is a re-
quest for the right time. Interpretation of indirect speech acts
has been a subject of much research in speech act theory; it
will not be considered further in this paper.

To structure the dialogue, a transition network may be
used, as [Bruce, 19861 does. When a transition network is
used, the system speech act is determined, based on previous
speech acts, while the user speech act must be recognized
based on previous speech acts. The user is in principle free
to perform any speech act he wants, as long as he does not
change the topic of the discourse. To control this dialogue
the system performs the speech act of which the illocution-
ary force is indicated at the transition of the network. When
a user performs a speech act, the system has to proceed to the
next state in the network according to the illocutionary force
of the speech act performed by the user. Thus, the structural
function of a speech act in the dialogue, consists of two parts:

1. the illocutionary force of the speech act

2. the position of the speech act in the dialogue (structured
by a transition network)

But, when questions and answers arc considered, this mech-
anism is not satisfactory. With these question and answer
speech acts, the meaning of the speech act is of much impor-
tance and must be processed by the dialogue control system.
The meaning of other speech acts (like greeting) is of less im-
portance and will not be remembered by the dialogue system.
The only way these other speech acts influence the dialogue
system is that they give rise to a transition in the transition
network.

To be able to control the question and answer speech acts,
a subdivision has been made in the kinds of questions that
occur. These are:

1. multiple choice question: in a multiple choice question
it is asked which of a distinct set of possible answers is
the right answer,

2. open question: in an open question new information is
wanted.

To represent the meaning of these speech acts a logical lan-
guage has been defined, in which both of these question
speech acts are representable. Both the open question and the
multiple choice question will be represented with a lambda

1098

formula, the multiple choice question needs an additional
select-function. Some examples of the representation of a
question with this language, are:

(ax : screw)[uttach(x,pratl)]
that reprusents the question “Which screw must be
attached to platel”;

(ax : screw)(Ay : attach)[y(X,~lutel)]
that represents the question “Which screw must be
attached to plate1 with what kind of connection”;

(Ax : screw)[urrach(x,~futl)~
x = sefect(screwl+w-ew2)]
that represents the question “Must screw1 or
screw2 be attached to p&et?“.

The appropriate answers are represented similarly.
As was said before, to structure the dialogue for questions

and answers, the transition network is not enough. A sequent
system has been defined, which is able to handle the process-
ing of the meanings of questions and answers. This sequent
system is an augmentation of the transition network: the net-
work can (and will) be easily represented in the sequent sys-
tem. A state in the transition network will become a sequent
and a state transition will become a sequent transition. In this
way the structure of the dialogue will be represented with the
sequent system. To be able to handle the question and answer
speech acts, an additional mechanism is constructed consist-
ing of two stacks, one for the questions of the user and one
for the questions of the system.

The sequent system is a four-tuple <Z&fi,Y>, in which
Z and Y are the stack of the system questions and the user
questions respectively; 17is the party whose turn it is and A
is the speech act of the most recent party. A is of the form
A(@ in which A is the illocutionary force of the speech act
and # is the meaning of the speech act if A is a question or
an answer. Whenever a question is asked, this question is put
on top of the appropriate stack, when an answer is given the
stacks are changed according to the answer given. Usually
this will only change the question on top of the appropriate
stack, but it is possible to change other questions as well.
Processing the answer may give rise to new questions if a
question is not completely answered, otherwise the question
is removed from the stack. The dialogue is finished when
both the system stack and user stack are empty.

To describe the working of the sequent system, a set of
sequent transitions is defined. These describe when a tran-
sition (that may be conditional) from sequent to sequent is
allowed. In this way the dialogue is structured and the stacks
are changed according to the meanings of questions and an-
swers. Some examples of sequents and sequent transitions
are:

1. The sequent that represents the first question (always
asked by the system) will be:

si = +Wre~,Q(~),o>

2.

3.

The sequent transition representing the processing of an
answer of the user on the stacks will be:

As can be seen both stacks may be changed according
to the answer of the user.

A conditional sequent transition representing the termi-
nation of the question and answering dialogue when the
stack of user questions is empty and the stack of system
questions only contains a totally answered question, wiIl
be:

t-type(#) *(<[W&%0> --) Sf)
in which t-type is a function that determines if the ques-
tion # is totally instantiated (of type t), and sf denotes a
sequent that starts the terminating dialogue.

A formal description of both the logical language and the se-
quent system can be found in [van der Leeuw, 19901.

4 The internal representation

For the internal representation of both the sentences analyzed
by the instruction interpreter and the sentences analyzed and
generated by the dialogue system, conceptual dependency
graphs [van Rijn, 1989b] are used. “Conceptual dependency
graphs”is a formalized and generalized version of conceptual
dependency theory [Schank, 19751. Conceptual dependency
graphs are very similar to conceptual graphs [Sowa, 19841.
For a comparison see [van Rijn, 1989al. The knowledge rep-
resentation obtained is a high level knowledge representation
independent of the actually chosen concepts. The question
whether this representation corresponds in any sense with hu-
man usage and similar psychological issues is of no concern
tous.

This representation was chosen, because the programming
system uses different knowledge representations for the var-
ious programming modules. The representation that is used
for the dialogue system in the assembly environment, should
function as a kind of interlingua between the user and the var-
ious modules of the cell, each with its own knowledge repre-
sentation. Each of these knowledge representations is based
on concepts and relations between concepts. The user inter-
face needs a knowledge representation that can handle both
the assembly knowledge contained in the modules it com-
municates with and “linguistic” knowledge to communicate
with the user.

Also, when the representation is used to represent the as-
sembly instruction, it should store from that instruction the
concepts and relations between concepts.

The objects needed in the knowledge representation are
concepts and relations between concepts, the possibility to
introduce new concepts in the world (necessary for the defi-
nition of subassemblies), the use of actual entities (to denote

1099

a specific part in a product) and the possibility to establish
relations between networks of concepts (to be able to repre-
sent the more complex sentence types). Since most of these
objects were present in the conceptual dependency theory,
this theory was chosen as a basis for the representation “con-
ceptual dependency graphs”. It was changed according to
the needs for use of the representation in an assembly envi-
ronment. But, conceptual dependency graphs is a high level
representation independent of the concepts chosen. The rep-
resentation can be filled in in the way Schank does or in a way
suitable for the assembly application. The representation can
be used easily for diverse application areas.

In the knowledge representation, concepts are ordered in
unlabelled, acyclic, directed graphs. A concept is an instan-
tiation of another concept if there exists a directed path be-
tween the concepts. Concepts may have actual entities, that
are objects unique in the world under consideration. Con-
ceptual categories form a partition on the set of concepts.
Furthermore between conceptual categories a restricted set
of conceptual relations may exist. This whole is called the
concept structure.

ExampIe 1 When TOOL is considered as a conceptual
category consisting of the set of tools {normal screw-
driver, Phillips screwdriver, screwdriver, hammer, fastener,
gripper). A concept ordering for this conceptual category
may be:

(normal screwdriver, Phillips screwdriver}=screwdriver
{screwdriver, hammer}=fastener

(with {a, b}= c meaning that a E c and b E c).
Thus, a normal screwdriver is an instantiation of a fartenet.

Simple conceptual dependency graphs are directed graphs
with nodes that carry three labels, namely a conceptual cat-
egory, a finite set of concepts belonging to this category and
an actual entity belonging to each of these concepts and with
labelled arcs relating two or more nodes. Simple conceptual
dependency graphs represent simple sentences.

Example 2 To represent an assembly instruction for a spe-
cifrc product, the main conceptual categories are ACT,
PART and TOOL. The most important ACT for assembly is
‘MOUNT’ representing the primitive assembly task of the
robot. The conceptual categories PART and TOOL contain
the a?fferent parts timi tools. Tools or parts may be instanti-
ated with an actual entity. The simple conceptual dependency
graph presented below, represents the sentence “Assemble
the Phillipsscrew”.

x fl=PART y fi=ACT z fl=TOOL
f2={Phill.screw} f2={MOUNT} fz={sdriver}
f3= item005 fj=impossible f3=tool5

The nodes are connected to one another with labelled arcs,
representing the “‘assemble” relation (between node x and

node y) and the “tool” relation (between node y and node
z). Each ofthenodeshasthree labels:

1. fi represents the conceptual category to which the node
belongs;

2. f2 represents the finite set of concepts;

3. fs represents the actual entity; it has the value “impos-
sible” if the conceptual category given by fi does not
allow actual entities.

%o simple conceptual dependency graphs or a simple
conceptual dependency graph and a concept may be re-
lated to form a conceptual dependency graph. Two concep-
tual dependency graphs or a conceptual dependency graph
and a concept may again be related to form a more com-
plex conceptual dependency graph. Conceptual dependency
graphs are labelled similarly to simple conceptual depen-
dency graphs. In this way it is possible to introduce new
concepts in the world, which is necessary in assembly when
a subassembly is defined.

Example 3 An example of a conceptual dependency graph
representing the sentence “Assemble the egg cautiously” is

q =m ” wam q

v F1=CDG x fl=PART y fi=ACT
F2= fi=C~~l f2={MOUNT}
F3= f3=itemOl fJ=impossible

c fl=DA
f~={cautious}
fs=impossible

Node v has three labels similar to nodes of simple con-
ceptual dependency graphs, but only FI has a value: the
dummy value “CDG” . This labeling of conceptual depen-
dency graphs is done to be able to introduce new concepts
in the world. As a new conceptual category (node c) DA is
used denoting a default argument.

To be able to distinguish between conceptual dependency
graphs that may have a meaning in the world and those that
have not, a subclass of conceptual dependency graphs is
introduced, called the well-formed conceptual dependency
graphs. Well-formed conceptual dependency graphs are
those conceptual dependency graphs that may be derived
from the lexicon. To this purpose each lexicon entry of a
word contains besides the transformation of the word into a
concept a required context of the concept. This required con-
text is specified as a (simple) conceptual dependency graph.
Well-formed conceptual dependency graphs are obtained by
unification of required contexts contained in lexicon entries.

1100

To use this high level representation in an assembly envi-
ronment, the concept structure must be filled in and the lex-
icon must be constructed according to the application. As-
sembly knowledge is contained in the lexicon entries. For
example the lexicon entry of a normal screw could contain
the information that it should be assembled with a normal
screwdriver (and thus not with a Phillips screwdriver!) or
the entry of a Phillips screw size 5 that it should be assem-
bled with a screwdriver size 5. The appealing thing of the use
of unification to obtain well-formed conceptual dependency
graphs is that the representation of a sentence like “The nor-
mal screw should be assembled with a screwdriver size 5”
contains the information that it concerns the assembly of a
normal screw size 5 with a normal screwdriver size 5.

5 Conclusion

It is very practical to use a user interface to support the au-
tomatic derivation of a cell program for a specific product
from a CAD drawing. In the system described this user in-
terface consists of two parts: first an instruction interpreter
to give the programmer of the cell the opportunity to help
and optimize the programming process on problems that he
foresees in advance and second a dialogue system to let the
programmer solve problems that the system encounters dur-
ing the programming process. A parser for the instruction
interpreter has been constructed. This parser is implemented
in Prolog, since Prolog is very suitable where unification is
concerned. Due to the limited grammar, the parser accepts
only sentences with one main verb and possibly one or more
auxiliary verbs. At this moment sentences with subclauses
are not accepted. The lexicon is still rather small (about a
hundred words). Both the lexicon and the grammar will be
extended in the future to enable the instruction interpreter to
accept a larger number of sentences.

At this moment, only the assembly tasks, the subassem-
bly indication and the order instruction can be handled by
the programming system. The planning module is not yet
capable to process the other sentence types.

Currently we are working on the dialogue system. The
dialogue control of questions and answers has already been
implemented. The formalism which is used in handling these
speech acts can be easily extended to control the other dia-
logue structures likewise. The rest of the dialogue system (in-
cluding the analysis and the generation of natural language)
is still under construction. A small prototype of a genera-
tor of language from conceptual dependency graphs has been
constructed.

The use of conceptual dependency graphs seems to be very
practical for an assembly environment. The graphs are very
suitable to represent texts of a restricted domain. The rep-
resentation can be filled with the concepts, conceptual cate-
gories and conceptual relations that one needs for any specific

domain.

References
[Bonner, 19821 S. BOMer, K.G. Shin; A comparative study

of robot languages; IEEE Computer, pp. 82-96. 1982.

[Bruce, 19861 B.C. Bruce; Generation as a social act; in:
B J. Grosz, K. Sparck Jones, B.L. WebbeG Readings in
natural language processing; Morgan Kaufman Pub-
lishers, 1986.

[Evrard, 19831 F. Evrard, H. Farreny, H. Prade; A flexi-
ble interface for understanding task-oriented uncon-
strained natural language; Comp. and Art. Inteli., vol.
2, nr. 6, pp. 497-51,1983.

[Kratchanov, 19871 K. Kratchanov, I. Stanev; A rule-based
system for fuzzy natural language control; In: I. Plan-
der; Art@&1 intelligence and information control sys-
tems of robots; Elsevier, 1987.

[van der Leeuw, 19901 J. van der Leeuw, A.M.C. van Rijn,
R. Sommerhalder; Dialogue handling; T.U. Delft, Re-
ports of the Faculty of Techn. Mathematics and Infor-
matics, forthcoming.

[van Rijn, 1989a] A.M.C. van Rijn; Conceptual dependency
graphs, Proceedings of theFourth Annual Workshop on
Conceptual Structures; Detroit, August 1989.

[van Rijn, 1989b] A.M.C. van Rijn; Conceptual depen-
dency theory and robot programming; T.U. Delft, Re-
ports of the Faculty of Techn. Mathematics and Infor-
matics, nr. 89-20.

[Schank, 1975) R.C. Schank; Conceptual igormation pro-
cessing; North Holland, 1975.

[Searle, 19691 JR. Searle; Speech acts; Cambridge, 1969.

[Selfridge, 19861 M. Selfridge, W. Vannoy; A natural lan-
guage interface to a robot assembly system; IEEEJour-
nalof robotics and automation, vol. RA-2, w. 3,pp.l67-
171.

[Sowa, 19841 J.F. Sowa; Conceptt& slruchtres; Addison
Wesley, 1984.

[Winograd, 19721 T. Winograd; Understanding natural lan-
guage; Academic Press, 1972.

1101

assembly assembly * *

modeller modeller . .

+ I
product product

data data
model model

I

planning .

module . I

I 7

scheduling
module

4 I

dispatching
module

J-
.

L

J

--a

v

CAD system 4

,

instruction
interpreter

-

f -

c
physical

cell

Figure 1: Assembly cell programming system

1102

f
+

knowledge sources > /
-

dynamic

user model

dialogue
history

-I static

lexicon

grammar

c parsing
sentence *

dialogue
rules

\

cell

r cl data

-@if)
1 t

4 generation
sentence

& information

Figure 2: Dialogue system

1103

