
A Graph Based Simplex Method for the Integer Minimum
Perturbation Problem with Sum and Difference Constraints

Alexey Lvov and Fook-Luen Heng
IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598, USA

{lvov@us.ibm.com heng@us.ibm.com}

ABSTRACT
The integer minimum perturbation problem with sum and
difference constraints is stated as follows: minimize f(x) =
a1|x1 − b1|+a2|x2 − b2|+ . . .+an|xn − bn| under constraints

±xi1 ± xj1 ≥ c1,
±xi2 ± xj2 ≥ c2,

...
±xim ± xjm ≥ cm,

where the sign in front of each variable is either ”+” or
”−”, a1, a2, . . . , an ≥ 0 and all variables and constants are
integers.

The minimum perturbation problem [6] arose from lay-
out migration. The sum and difference constraints arose
from the hierarchical nature of the layout. We proposed
and implemented a graph based algorithm to solve this op-
timization problem. Our algorithm consists of two steps.
First find the optimal solution for the non-integer version
of the problem by using a modification of simplex method
which takes advantage of the special form of the constraints
(a graph based simplex method). Then find an integer solu-
tion close to the optimal by solving a 2-SAT problem. The
time complexity of the algorithm is O

�
p(m + n) � , where p

is the number of pivots in the simplex algorithm; note that
the regular simplex method, being applied to this problem,
would require O(pn(m + n)) time.

Our result on production layouts shows that the runtime
scale very well with a O(nlog(n)) scanline algorithm used
to generate the constraints for the layouts. This makes it a
very practical solver for the problem.

Categories and Subject Descriptors
G.1.6 [Optimization]: [Linear Programming, Integer Pro-
gramming]; J.6 [Computer-Aided Engineering]: Comp -
uter-aided design

General Terms
Algorithms, Design.

Keywords
Linear Programming, Optimization, Design Migration.

1. INTRODUCTION
Layout optimization techniques have been studied in the

literature in several contexts. The traditional symbolic lay-
out to physical layout translation takes the form of com-
paction followed by wire-length minimization [8]. In yield
enhancement, some parts of a layout are frozen and wires are
spread apart. In design migration, the problem is formulated
as a minimum perturbation problem [6]. In some specific

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26–28, 2004, Boston, Massachusetts, USA.
Copyright 2001 ACM 1-58113-853-9/04/0004 ...$5.00.

scenarios, such as electromigration reliability enhancement,
a special algorithm is developed to speed up the layout op-
timization process [3]. More recently altPSM compliance
layout is legalized in the same layout optimization frame-
work [5] [9]. All the layout optimization techniques afore-
mentioned use a constraint graph [8] to capture the design
ground rules requirement to ensure the legality of the final
layout. Since all layout units need to conform to the basic
technology unit, e.g. 0.01u for the 90nm technology node,
the layout units are represented as integer units in a layout
system. A valid solution to the layout optimization problem
needs to be an integer solution.

A constraint graph is a directed graph which represents
a set of 2-variable difference constraints. Each directed arc
or each 2-variable diff. constraint xi − xj ≥ dij represents a
distance requirement between two adjacent layout elements.

In the presence of more complex layout constraints, such
as hierarchical constraints and symmetry constraints, a lay-
out will have to be modeled by more general linear constr-
aints. The layout optimization problem then becomes a more
general Integer Linear Programming (ILP) problem [7] [11].

An O(mU) time, where U is the range of integers, al-
gorithm for 2-variable constraints problem is presented in
[2]. This is not suitable for our application since the integer
range in our layout problem is typically in the millions.

A special class of ILP problems which have a small number
of general linear constraints has been investigated in [13]. In
this paper we investigate a graph based solution for another
class of layout ILP problems, the problems which have an
arbitrary set of 2-variable sum and difference constraints.
This class of problems can arise in hierarchical layout (i)
and in layout with symmetry constraints (ii).

i) In practice, large layouts such as cores and large macros
are described hierarchically for clarity and efficiency. Sup-
pose a cell C1 is instantiated through a sequence of transfor-
mations Tn ◦ Tn−1 ◦ . . . ◦ T1, called the instance path of C1.
Cell C1 is transformed in its parent cell C2 by transformation
T1, C2 is transformed in its parent cell C3 by T2 and so on,
Tn is the transformation from the the cell next to the root
(the top cell of the path) to the root. T1, T2, . . . , Tn ∈ G,
where G is the group generated by the symmetry transfor-
mations of the unit square (8 transf.) and all parallel shifts.

Suppose all the transformations are given and are not al-
lowed to change during the optimization. Let design edges A
and B be parallel and be bound by some distance constraint.
Without loss of generality assume that A, B are vertical and
that the constraint has form XA − XB ≥ d. Note that our
group of transformations G is generated by all ”±t + β”
transformations applied to ”x” and ”y” coordinates inde-
pendently and a single additional transformation of swap-
ping the ”x” and ”y” coordinates. The world (or root) x-
coordinates XA, XB of our edges can be expressed via their
coord. in their leaf cells in the following way (depending on
whether the numbers of ”x-y swaps” in the transformation
paths are even or odd there are four combinations):�
XA

? � =Tn◦Tn−1◦. . .◦T1

�
xA

? � or
�
XA

? � =Tn◦Tn−1◦. . .◦T1

�
?
yA � ,�

XB

? � =Sm◦Sm−1◦. . .◦S1

�
xB

? � or
�
XB

? � =Sm◦Sm−1◦. . .◦S1

�
?
yB � .

This gives one of the following 4 types of constraints ±xA±
xB ≥ const, ±xA ± yB ≥ const, ±yA ± xB ≥ const, ±yA ±
yB ≥ const on the local coord. of A and B in their cells.

67

Therefore, a hierarchical layout optimization problem in
which the translation factors are fixed a priori results in a
2-variable sum and difference constraint problem.

ii) The 2-variable sum constraints also arise in the pres-
ence of symmetry constraints. For example, if two lay-
out objects xi and xj are required to be at equal distance
from a fixed location L, it can be expressed as follows:
xi + xj ≥ 2L, xi + xj ≤ 2L, xi ≤ L, xj ≥ L.

The algorithm we describe in this paper can be used to
solve any linear optimization problem with a convex piecewise-
linear objective function with sum-and-difference 2-variable
constraints (break hyperplanes).

For the purpose of illustration we use the minimum per-
turbation objective.

Our algorithm consists of two steps. At the first step
we find an1 optimal solution xopt to the problem in rational
numbers. This step is described in Sections 2, 3.

Theorem 1.1. Assume that an optimal rational solution
xopt exists. If the convex polyhedron formed by the feasible
rational solutions of integer minimum perturbation problem
P has a non-zero volume then P has a feasible integer solu-
tion xint such that L∞ distance2 ρ∞(xopt, xint) ≤ 1/2 (call
such solution ” 1

2
-near-optimal”).

Proof: We prove this theorem in Section 4. 2

So, a non-degenerate space of feasible rational solutions al-
ways contains a 1

2
-near-optimal solution. Note that the con-

dition of non-degeneracy is important. For example prob-
lem f(x) = |x3|, 1 ≥ x1 + x2 ≥ 1, 0 ≥ x1 − x2 ≥ 0,
x3 + x3 ≥ 1, has optimal rational solution

�
1
2
, 1

2
, 1

2
� , but

does not have any feasible integer solution.
At the second step of the algorithm, given an optimal

rational solution xopt, we find a 1
2
-near-optimal solution.

The process of finding a 1
2
-near-optimal solution reduces to

solving a 2-SAT problem (see Section 4). Note that, unlike
general SAT, 2-SAT belongs to the class of problems solvable
in polynomial time (a nice algorithm for 2-SAT is given, for
example, in [12] pp.184-185 or [1]).

Theorem 1.2. If at least one 1
2
-near-optimal solution

exists, our algorithm always, independently of whether or
not the condition of Theorem 1.1 is satisfied, establishes this
fact and produces a 1

2
-near-optimal solution. Otherwise it

establishes that there is no 1
2
-near-optimal solution.

Proof: We prove this theorem in Section 4. 2

Now Theorem 1.1 and Theorem 1.2 completely describe the
gist of our algorithm.

Though this algorithm does not guarantee that f(xint) is
the minimum possible value of the objective function over
all feasible integer arguments, it far outperforms any algo-
rithm achievable for the general integer linear programming
problem where
• even for a non-degenerate feasible polyhedron an opti-

mal integer solution does not necessarily exists,
• if a solution exists it can be arbitrarily far from any op-

timal rational solution,
• finding even a 1

2
-near-optimal solution xint is NP-hard.

In Section 5 we give analysis of the time complexity of the
algorithm illustrated with a detailed example.

2. A GRAPH REPRESENTATION OF "SUM
AND DIFFERENCE" LINEAR SYSTEMS

Definition 2.1.Call linear system Ax = c a Sum-and-
Difference system if all elements of A,c are integers and the

1Sometimes it can be more then one optimal solution, for
example optimal solutions may form a segment with the
same value of f(x) at each point.
2L∞ norm is the maximum of the absolute values of the
coordinates.

sum of the absolute values of elements in each row of A is
equal to 2. For example

1 1 ◦ ◦ ◦ ◦
−1 ◦ ◦ −1 ◦ ◦
1 ◦ ◦ ◦ 1 ◦
◦ −1 1 ◦ ◦ ◦
◦ ◦ −1 −1 ◦ ◦
◦ ◦ ◦ ◦ ◦ 2

x1

x2

x3

x4

x5

x6

=

4
8
12
16
20
24

.

With each Sum-and-Difference system we associate a graph.
The vertices of the graph correspond to the unknowns of the
system, the edges correspond to the equations. The graph
has two types of edges: red - for equations with one ”1” and
one ”-1” and black - for equations with ”. . .1. . .1. . .” or ”. . .-
1. . .-1. . .”. A black edge can connect a vertex to itself which
corresponds to a single ”2” or ”-2”. The graph is completely
determined by the matrix of the system, it contains some,
but not all, information about the system (see Figure 1).

1

3

4

5

6

2

Figure 1: The red-black graph of the sys. in the ex.
”Red” edges are shown by gray dashed lines.

Lemma 2.2. The rows of Sum-and-Difference matrix A
form a basis if and only if each connected component of the
corresponding red-black graph has exactly one elementary cy-
cle3 and each such cycle has an odd number of black edges.

Proof: We omit the proof for the purpose of this ex-
tended abstract. 2

3. FINDING AN OPTIMAL SOLUTION IN
RATIONAL NUMBERS

In this section we present an algorithm for solving the min-
imum perturbation problem in rational numbers. Our algo-
rithm uses a classical linear programming technique called
Simplex Method, described in detail, for example, in [10].
We omit all proofs related to the correctness of Simplex
Method itself and only describe the modification of this
method that applies to the minimum perturbation problem.

Extend the notion of the red-black graph introduced in
the previous section so that the graph contains all the infor-
mation about the problem:

For a ”xi − xj ≥ c0”-type constraint draw a directed
red edge from xj to xi and assign it a (symbolic) weight
”M(”c0” + b − e)” (see Figure 2).

M(15+b−e)
x3−x2 >= 15 3 2

Figure 2: ”b” stands for the beginning of the edge, ”e”
stands for the end of the edge.

For a ”xi+xj ≥ c0”-type constraint draw a black edge be-
tween xi and xj and assign it a (symbolic) weight ”M(”c0”−
x − x)” (see Figure 3).

M(24−x−x)

M(12−x−x)x3+x2 >= 12
2*x3 >= 24

3 2

Figure 3: The two ”x”-es stand for the two ends of the
edge.

3An elementary cycle is a cycle whose vertices
xi1 , xi2 , . . . , xik

are all different (see [4], pp.4-7). Note that,
in particular, two different edges connecting the same pair
of vertices form an elementary cycle.

68

For a ”−xi − xj ≥ c0”-type constraint draw a black edge
between xi and xj and assign it a (symbolic) weight ”M(”c0”+
x + x)”. For an ”ai|xi − bi|” item in the formula for f(x)
draw two black xi-loops and assign them (symbolic) weights
ai”(”2bi” − x − x)” and ai”(” − 2bi” + x + x)”.

We minimize continuous piecewise-linear convex function
f(x) subject to the set of linear constraints

l1(x)
def
= c1 − (±xi1 ± xj1), l1(x) ≤ 0,

l2(x)
def
= c2 − (±xi1 ± xj2), l2(x) ≤ 0,

...

lm(x)
def
= cm − (±xim ± xjm), lm(x) ≤ 0.

For any minimum perturbation problem P that has a feasi-
ble solution, there exist such (large enough) number MP > 0
that minimizing f(x) under the constraints {l1(x) ≤ 0, . . . ,
lm(x) ≤ 0} is equivalent to minimizing a continuous piecewise-

linear convex function g(x)
def
= 2f(x) + Pos(Ml1(x)) + . . . +

Pos(Mlm(x)) under no constraints. Here Pos(t)
def
= max(0, t)

is the ”positive part” function; the coefficient ”2” in front
of ”f(x)” is needed only for convenience of notation. We do
not need to compute M explicitely, it is enough to use the
comparison rule

α1M+β1 > α2M+β2 ↔ (α1 > α2) or (α1 = α2 and β1 > β2).
|t| = Pos(t)+Pos(−t), so g(x) can be completely represented
as a sum of positive parts of linear functions:

g(x) =
n�

i=1

�
Pos(2ai(xi−bi))+Pos(2ai(bi−xi)) � +

m�

i=1

Pos(Mli(x)).

(1)
Our graph (denote it G) represents the problem ”minimize
g(x) under no constraints”. Each edge of G represents one
item in (1). All the break hyperplanes of g(x) are repre-
sented by the edges of G.

Example 3.1. Minimize |x0|+|x1−10|+7|x2−20|+|x3−
30| under the constraints: 2x0 ≥ 0, −2x0 ≥ 0, x2 −x1 ≥ 16,
x3 + x1 ≥ 48, x0 − x2 ≥ −22, x3 − x2 ≥ 16.

The graph representing this problem is shown below.

M(−22+b−e) M(16+b−e) M(48−x−x)

7(40−x−x) 1(60−x−x)1(0−x−x)
M(0−x−x)

M(0+x+x)
1(0+x+x) 7(−40+x+x) 1(−20+x+x) 1(−60+x+x)

1(20−x−x)

M(16+b−e)

0 2 1 3

It remains to apply Simplex Method to the unconstrained
piecewise-linear convex minimization problem represented
by our graph. If a point of minimum of g(x) satisfies the
constraints then it is an optimal rational solution to P. If
some point of minimum of g(x) does not satisfy the con-
straints then P has no feasible rational solutions. (Note
that since g(x) ≥ 0, g(x) always has a point of minimum).

Call a set of n break hyperplanes which normal vectors are
linearly independent a basic set. By Lemma 2.2 a subgraph
B of G represents a basic set if and only if each connected
component of B has exactly one elementary cycle and each
such cycle has an odd number of black edges4. A point x is
said to be basic if it is a point of intersection for some basic
set of hyperplanes (different basic sets can define the same
basic point). g(x) always has a point of minimum, so by the
fundamental theorem of linear programming (see [10], p.19)
g(x) always has a basic point of minimum.

Let B be a basic set, and e ∈ B be some hyperplane in
this set. The process of removing e from B and substituting
it by some other hyperplane e′ so that (B\e) ∪ e′ is a new
basic set is called a pivot.

The general simplex method can be briefly described as
follows (see [10] pp. 30-84 for details): We start at some
4We will use this statement in Section 5.

initial basic set and keep doing pivots according to some
pivoting strategy until the stopping criterion is satisfied. The
last visited basic point is a minimum of g(x).

Assumption 3.2.(The non-degeneracy assumption) We
can always assume that no n + 1 break hyperplanes inter-
sect at one point, or in other words, that each basic point is
defined by exactly one basic set.

Proof: Any minimum perturbation problem (or even
more generally, any linear convex minimization problem)
with a degeneracy can be reduced to a non-degenerate prob-
lem by the small perturbation method (see [10] p. 78). This
method does not require knowing in advance whether or not
the problem has a degeneracy. Also it does not require any
extra computation until we actually hit a degenerate basic
point during the pivoting process. The amount of computa-
tion needed to resolve an order-k degeneracy does not exceed
the amount of computation needed to make k pivots. 2

It remains to specify the initial basic set, the pivoting strat-
egy and the stopping criterion for the graph based simplex
method.

• The initial basic set:

Since we minimize g(x) under no constraints, any basic point
is a feasible basic point. So it is enough to pick any set of n
break hyperplanes with linearly independent normal vectors.
If such set does not exists we always can add n ”remote”
hyperplanes defined by 2x1 ≥ −W, 2x2 ≥ −W, . . . , 2xn ≥
−W , where W is some very large number.

• The pivoting strategy:

We use the greedy pivoting strategy. Let xold be the basic
point defined by the basic set B = {e1, e2, . . . , en}.

find the outgoing edge:
for each ei ∈ {e1, e2, . . . , en} do {
Consider line Li defined by B\ei. xold ∈ Li.
Compute the derivative of g(x) at xold along Li in both directions.

/* This can be done in amort. O((m + n)/n) time, see Sect. 5. */

if xold is a local minimum of g(x) on Li continue;
else {

ei is the edge to leave the old basic set. Remember it: e
def
= ei;

L
def
= Li; d

def
= [a direction along L in which g(x) strictly decreases];

break the cycle and goto find the incoming edge;
}

}
return (”Can not pivot. STOP.”);

find the incoming edge:
Move along the line L in the direction d to the next break hyperplane e′.

– or, saying the same in more detail –
Parameterize the line L with t.
The labels on all edges become linear functions of t.
Iterate through all edges e′j of the graph which complement
B\e to a basic set, i.e. which have a non-zero coef. at t.
Find the edge (i.e. the break hyperplane) e′ that intersects L
in the (basic) point xnew closest to xold in the direction d.
/* For this we must solve O(m + n) linear equations
in t and find the closest to 0 in the direction d root. */

Pivot to the new basic point xnew defined by (B\e)∪e′. See
Section 5 for a detailed example of using this strategy.

• The stopping criterion:

Stop at the basic point xold and output it as a minimum of
g(x) if we can not make a pivot according to the pivoting
strategy above.

69

4. FINDING A 1
2
-NEAR-OPT. SOLUTION

Call t ∈ R a semi-integer number if t − btc = 1/2.
Lemma 4.1. All coordinates of a basic point are either

integer or semi-integer. (We omit the proof of this Lemma.)
Recall Theorem 1.1 from Section 1.

Theorem 1.1 (reformulated) Let the convex polyhedron
formed by the feasible rational solutions of an integer mini-
mum perturbation problem P have a non-zero volume. Then
for any basic optimal rational solution xopt there exists an
(integer) 1

2
-near-optimal solution.

Proof: By Lemma 4.1 the coordinates of xopt are
either integer or semi-integer. Denote the integer coordi-
nates by ν1, ν2, . . . , νk and the semi-integer coordinates by
ξ1, ξ2, . . . , ξl. After some permutation of the coordinates
xopt = (ν1, ν2, . . . , νk, ξ1, ξ2, . . . , ξl). We must prove that
there exists such point xint = (ν1, ν2, . . . , νk, z1, z2, . . . , zl)
that z1 = ξ1 ± 1/2, z2 = ξ2 ± 1/2, . . . , zl = ξl ± 1/2 (2)
and xint satisfies all the constraints of P. We use induction
on l.

The base step: For l = 2 the statement of the theorem is
an obvious two-dimensional geometry statement.

The inductive step: The first k coordinates of xint are
fixed. Substitute their values to the constraints of P. The
constraints of P become constraints on z1, z2, . . . , zl (those
constraints of P which have two ”ν” disappear, those which
have one ”ν” become one variable constraints, just multiply
them by two to bring to the Sum-and-Difference form):

s11zi1 + s12zj1 ≥ u1,

s21zi2 + s22zj2 ≥ u2, here s11, . . . , sp1, s12, . . . , sp2

... are either 1 or − 1. (3)

sp1zip + sp2zjp ≥ up,
These constraints still have Sum-and-Difference form and
point (ξ1, ξ2, . . . , ξl) satisfies them. The set of the possible
” 1

2
-near” to (ξ1, ξ2, . . . , ξl) integer values for (z1, z2, . . . , zl)

consists of the vertices of the l-dimensional axis-parallel unit
cube C centered at (ξ1, ξ2, . . . , ξl). For each inequality s∗1zi∗+
s∗2zj∗ ≥ u∗

• either s∗1ξi∗ + s∗2ξj∗ = u∗, i.e. the break hyperplane
passes through the center of C

• or s∗1ξi∗ + s∗2ξj∗ ≥ u∗ + 1, i.e. all the vertices of C
belong to the feasible half-space.

Thus the intersection D of cube C with the feasible polyhe-
dron is an intersection of C and a number of half-spaces pass-
ing through the center of C. Since the feasible polyhedron
is convex and has a non-zero volume, the l-dimensional vol-
ume of D is also non-zero. So, intersection of D with one of
the hyperfaces F of cube C has a non-zero l−1-dimensional
volume. Without loss of generality assume that F is defined
by equation z1 = ξ1 + 1/2. The system of inequalities (3),
being restricted to F , remains a Sum-and-Difference type
system of z2, z3, . . . , zl. Note that any Sum-and-Difference
type half-space which break hyperplane passes through the
center of C and which intersection with F has a non-zero
l − 1-dimensional volume contains the center of F . So, the
center of face F is a feasible point for the system (3) re-
stricted to F . By the induction hypothesis one of the ver-
tices v of F satisfies (3). Thus xint = (ν1, ν2, . . . , νk, < v >)
is a 1

2
-near-opt. solution. 2

Theorem 1.1 shows that a 1
2
-near-optimal solution exists

in almost all cases when there exists an optimal rational
solution. The only exception are the cases when the rational
feasible space is degenerate. This exception is inevitable: fix
one coordinate of the rational feasible space to a non-integer
number, say 1 ≥ 2x1 ≥ 1. The rational feasible space is non-
empty and even n−1 - dimensional, but it does not contain
any integer point.

Note that the proof of Theorem 1.1 substantially uses the
special form of the constraints. The theorem does not hold
for the general integer linear programming problem.

Next we prove Theorem 1.2 and show how to find a 1
2
-

near-opt. solution. We need to find a combination of signs
in (2) such that (z1, . . . , zl) satisfies (3). Denote statement
”zi = ξi + 1/2” by wi. Then ¬wi is the statement ”zi =
ξi− 1/2”. For each inequality s∗1zi∗+ s∗2zj∗≥u∗ of (3)

• either s∗1ξi∗ + s∗2ξj∗ = u∗; in that case the inequal-
ity is equivalent to the disjunction of two statements:
s∗1wi∗ ∨ s∗2wj∗ . Call such an inequality tight. Here
”1 · w∗” denotes the statement ”w∗” and ”(−1) · w∗”
denotes the statement ”¬w∗”.

• or s∗1ξi∗ + s∗2ξj∗ ≥ u∗ + 1; in that case the inequality
is true for any values of w1, . . . , wl.

Thus system (3) is equivalent to 2-SAT problem (4).�
s∗1wi∗∨s∗2wj∗ � ∧ �

s∗1wi∗∨s∗2wj∗ � ∧. . .∧
�
s∗1wi∗∨s∗2wj∗ � . (4)

Each disjunction cluster corresponds to one tight inequality of (3).

We omit complex subscripts and just put ”*” instead of them.

In other words there exists a 1
2
-near-optimal solution xint

if and only if there exists a truth assignment for w1, . . . , wl

which satisfies (4). If such a truth assignment exists, it
defines the coordinates of xint. Theorem 1.2 is proved.
It remains to solve the 2-SAT problem (4). This can be
done in linear time of the number of disjunction clusters in
(4) which is O(m + n). A linear time algorithm for 2-SAT
is described, for example, in [1].

5. THE TIME COMPLEXITY
In this section we prove that the time complexity of our

algorithm is O
�
p(m + n) � , where p is the number of pivots

in Step 1 of the algorithm. As it was shown in Section 4,
Step 2 of the algorithm requires only O(m + n) time. So,
it remains to prove that the pivoting strategy, given at the
end of Section 3, takes O(m + n) time per pivot.

The ”bottleneck” of the pivoting strategy is the computa-
tion of the derivatives of g(x) in both directions along each
of the n lines L1, . . . , Ln, defined by B\e1, . . . , B\en. The
computation of each such pair of derivatives separately re-
quires O(m + n) time. However, next we show that in fact
the computation of all the n pairs of derivatives requires just
O(m + n) time too. In other words, the amortized cost of
one execution of the body of the cycle in the pivoting strat-
egy is O((m + n)/n). Thus we establish the upper bound
of O

�
p(m + n) � on the time complexity of our algorithm.

In parallel we provide a detailed example of doing a pivot
according to our pivoting strategy.

Consider the basic point xold defined by the basic set
B = {e1, e2, . . . , en}. Without loss of generality we assume
that the subgraph B ⊂ G has just one connected component.
According to Lemma 2.2 it consists of an elementary cycle
with an odd number of black edges and a number of trees,
rooted at the vertices of the cycle. See example on Figure 4.

Rewrite ”find the outgoing edge” part of the pivoting strat-
egy in a more specific manner:
for each edge, starting at the leafs of the trees, moving to-
wards the cycle and finally going in some fixed direction5

through the edges of the cycle do {
Remove the equation corresponding to the current edge (note
that it represents one of the n break hyperplanes which define
the old basic point).
This creates a line passing through the old basic point.
This line conveniently parameterizes like it is shown below:

3(87−x−x) = 0

=t

3(87−x−x) = 3t

For the current edge we have two possible directions of

5Call this direction positive. On all figures in this section
the positive direction is counterclockwise.

70

3(7+b−e)=15

3(87−x−x)=01(
7+

b−
e)

=0

1(84−x−x)=9

2(6+b−e)=0

2(
0+

b−
e)

=
76

2(
30

−
x−

x)
=

−
48

5(8+b−e)=0

1(50−x−x)=0

1(39−x−x)=−19 1(
43

−x
−x

)=
0

4(
40

−x
−x

)=
−1

2

2(11+b−e)=−82(
38

−x−
x)

=0 3(7+b−e)=0 4(
−16

+x+
x)

=0

x9x8

x7

x6
x5

x4

x3

x2

x1

4648

41

35

27

8

23

15

8
The "old" basic point:

46
48
41
35
27
23
15
8
8

x_old =

g(x) = 100.

The objective function
g(x) is the sum of the positive parts

of linear functions which label each edge.

Note that the contribution of all basic
edges (shown by bold lines) is 0.

(the "Pos(...)" notation is omitted on the graph).

Note that the contribution of all non−basic
edges with negative values is 0;

Figure 4: This graph represents the problem: mini-
mize g(x)=Pos

�
4(−16+x1+x2) � +. . .+Pos

�
3(7+x9−x8) �

under no constraints; each item corresponds to one
edge of the graph. The current basic feasible solu-
tion is the point xold defined by the system of linear
equations corresponding to the bold edges. As be-
fore, ”red” edges are shown by gray dashed lines.

pivot: t + 0 and t − 0.
The objective function g(x) becomes g(t) (for the current edge).

To simplify notation denote dg(t)
d(t−0)

and dg(t)
d(t+0)

by d− and

d+ respectively.
Compute d− and d+. Depending on the type of the
current edge, do this in one of the three different ways
described later in this section.
Exactly one of the following three cases takes place: {
case: d+ < 0 direction t + 0 only is beneficial;
case: d− > 0 direction t − 0 only is beneficial;
case: d− ≤ 0 ≤ d+ there is no beneficial direction for
the current edge;
/* Call a direction ”beneficial” if g(x) strictly decreases
along it. */

}
}
• When walking through the edges of the trees, we only

care that when we get to a new edge all its children are
already processed. Any tree walking strategy with this
property can be used.

• After all the tree edges are processed, we pick an arbi-
trary edge of the cycle (say, the one that has the least
address in the memory, or just a random one) and a di-
rection of moving along the cycle, call it positive. Start-
ing with this first edge move in the positive direction.

The three ways of computing d− and d+ depending on
the type of the current edge are as follows:

i) The current edge is a tree edge.
Use formula (5).

d− = c

��
�

all wi

qihi −
�

all vi

si · (dvi−) �� ; d+ = (d−)+a. (5)

It expresses the d− and d+ of the current edge via d− of its
children (see Figure 5). The correctness of this formula can
be checked by direct computation. The number of items
in (5) for one edge is ≤ the number of edges adjacent to
its ”leafward” vertex. Thus the total number of operations
needed to process all the tree edges of B is bounded from
above by 2 · [the number of edges of G], i.e. is O(m + n).
Figure 6a illustrates step ”i)” of our example.

*(
 ..

. s
 ..

.)

q(... h ...)

a(
 ..

. c
 ..

.)

c, s, h can take values 1 or −1 only.
Denote the (previously computed) values of
"d−" for v1, v2, ..., v* by dv1−, dv2−, ..., dv*−.

... edges "v1", "v2", ...,"v*"

"h" − coef. of this var.

all non−basic edges with positive values:
"w1", "w2", ...,"w*" (loops count twice)

of this var.
"c" − coef. the current edge

"s" − coef.
of this var.

Figure 5: Explanation of notation for Formula (5).

ii) The current edge is the first cycle edge.
In this case we have to spend O(m + n) time for just one
edge. Parameterize the first cycle edge with t (see the de-
scription of ”find the outgoing edge” part in this section).
The basic edges define a Sum-and-Difference linear system
with parameter t. Solve it in respect to t, this takes O(m +
n) time. Now the value of each vertex is a linear func-
tion of t (see Figure 6b) and g(L(t)) has form Pos(at) +
each item corresponds to one non−basic edge of the graph� ��� �
Pos(α1t + β1) + Pos(α2t + β2) + . . . + Pos(α∗t + β∗), where
a is the coefficient outside the parenthesis of the first cycle
edge.

d− =
�

i such that βi>0

αi. d+ = (d−) + a.

iii) The current edge is a cycle edge other than the first
one.
Use formula (6).

d− = c

��
−r · (dz−) +

�

all wi

qihi −
�

all vi

si · (dvi−) �� ;

d+ = (d−) + a. (6)
It expresses the d− and d+ of the current edge via d−

*(... r ...)

a(
 ..

. c
 ..

.)

q(... h ...)

*(
 ..

. s
 ..

.)

"c" − coef.
of this var.

"r" − coef.
of this var.

"h" − coef. of this var.

edges "v1", "v2", ...,"v*"

of this var.
"s" − coef.

all non−basic edges with

...,"w*" (loops count twice)
positive values "w1", "w2",

...

this edge by dz−.
denote "d−" of

by dv1−, dv2−, ..., dv*−.
values of "d−" for v1, v2, ..., v*
Denote the (previously computed)
c, s, h, r can take values 1 or −1 only.

the current edge

Figure 7: Explanation of notation for Formula (6).
of the basic edges adjacent to its negative-direction ver-
tex (see Figure 7). The correctness of this formula can be
checked by direct computation. The number of items in
(6) for one edge is ≤ the number of edges adjacent to its
negative-direction vertex. Thus the total number of opera-
tions needed to process the cycle edges of B is bounded from
above by 2 · [the number of edges of G], i.e. is O(m + n).
Figure 6c illustrates step ”iii)” of our example.

For each of the groups of edges ”i)”, ”ii)”, ”iii)” the total
runtime is O(m + n). Thus the time compl. of ”find the
outgoing edge” part of the pivoting strategy is O(m+n) and
the time complexity of the whole algorithm is O

�
p(m+n) � .

To complete our example, execute the remaining part
- ”find the incoming edge” (the O(m + n) runtime upper
bound is obvious for this part). In the previous, ”find the -
outgoing edge”, part any edge with a beneficial direction (i.e.
with either d− < 0 or d+ > 0) can be picked as the outgoing

71

(dz−) = 6

a=5
c=1

edge "w1"

h1=−1

q1=1

r=−1

2(
38

−x−
x)

=0 3(7+b−e)=0 4(
−16

+x+
x)

=0

2(11+b−e)=−8

1(50−x−x)=0

5(8+b−e)=0

1(
43

−x
−x

)=
0

4(
40

−x
−x

)=
−1

2

2(6+b−e)=0

2(
0+

b−
e)

=
76

2(
30

−
x−

x)
=

−
48

1(84−x−x)=9

3(87−x−x)=0

3(7+b−e)=15

1(39−x−x)=−19

1(
7+

b−
e)

=0

−54

−2

9

6

−54

−2 −2

9

−54
d+ = (d−) + a = 7.

d− = 2+1+3 = 6.

c)b)a)

3(7+b−e)=15
(dv1−) = −5

edge "v1"

3(87−x−x)=01(
7+

b−
e)

=0

1(84−x−x)=9

s2=1

edge "v2"

(dv2−) = 4

s1=−1

c=−1

a=2

2(
30

−
x−

x)
=

−
48

2(
0+

b−
e)

=
76

2(6+b−e)=0

5(8+b−e)=0

1(50−x−x)=0

1(39−x−x)=−19 1(
43

−x
−x

)=
0

4(
40

−x
−x

)=
−1

24(
−16

+x+
x)

=0

3(7+b−e)=0

2(11+b−e)=−82(
38

−x−
x)

=0

4648

41

35

27

8

15
8

23

3(87−x−x)=0

3(7+b−e)=3t+15

2(
38

−x−
x)

=0

2(11+b−e)=2t−8

3(7+b−e)=0 4(
−16

+x+
x)

=0

4(
40

−x
−x

)=
4t

−1
2

1(
43

−x
−x

)=
0

1(39−x−x)=t−19

1(50−x−x)=t

5(8+b−e)=0

2(6+b−e)=0

2(
0+

b−
e)

=
2t

+
76

2(
30

−
x−

x)
=

−
48

1(84−x−x)=t+9

1(
7+

b−
e)

=0

=t

x7

23

15

8

8

35

27

41

48 46

23−t/2

41−t/2

48−t/2 46+t/2

35−t/2

8+t/2

15+t/2

8−t/2

27−t/2

Figure 6: a) d− = c
���

∅
qihi −

�
2
i=1 si · (dvi−) � = 9. c) d− = c

�
−r · (dz−) +

�
1
i=1 qihi −

�
∅
si · (dvi−) � = 5.

edge. In the greedy strategy we would pick the first edge for
which we determined that it has a beneficial direction. But,
since in this example we computed d− and d+ for all edges,
we can choose between several edges; pick the one shown on
Figure 8a.

Parameterize the outgoing edge with t (i.e., as before, de-
note the value of the expression in parenthesis on the edge
label by t). d− = 9, d+ = (d−) + a = 11, t − 0 is the ben-
eficial direction. The value of each vertex becomes a linear
function of t. Each non-basic edge gives a linear equation of
t. Some of them have roots. Actually such an equation has
a root if and only if the (candidate to be the incoming) edge
that gives this equation satisfies Lemma 2.2. In our example
the roots are: t1 = −38, t2 = −24, t3 = −9, t4 = −2.5.
The closest to 0 in the beneficial direction (i.e. the greatest
negative) root is t = −2.5. So, the incoming edge is the one
shown on Figure 8b.

d− = −5

d− = 5

d−
 =

 4

d−
 =

 −
2

d− = 6

d− = 6

d−
 =

 4

b)a)

x_new =
35
27
23

8
8

15

43.5
50.5
43.5

The "new" basic point:

g(x) = 77.5

d− = 9

d−
 =

 −
6

Figure 8: Find the incoming edge.

6. CONCLUSION
This algorithm is implemented by the authors in C++. In

our implementation we have used a more advanced pivoting
strategy than just plain greedy pivots. We pick the steepest
gradient direction and follow it until we reach a local mini-
mum of the objective function. The hierarchical constraints
are created by a typical O

�
nlog(n)) scanline algorithm from

a production layout system. We ran our solver for several hi-
erarchical layout examples and the run time scale very well
with the runtime of the constraint creation using a scan-
line. This makes it a very practical hierarchical solver. The
runtime is shown below:
Layout #Vars #Constraints Scanline (s) Solver (s)
dq0ffs 11030 34140 9.71 8.79
nibble 90157 283682 73.74 178.24
reg64 103231 303399 79.59 111.41

The layout examples are production layouts with artifitial
design rule violations introduced. The hierarchical layout
nibble has 3 levels of hierarchy and 90k shape edges. The
resulting layouts are free of violations.

7. REFERENCES
[1] B. Aspvall, M. F. Plass, and R. E. Tarjan. A

linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing
Letters, 8(3):121–123, March 1979.

[2] R. Bar-Yehuda and D. Rawitz. Efficient algorithms for
integer programs with two variables per constraint.
Algorithmica, pages 29:595–609, 2001.

[3] Z. Chen and F. L. Heng. A fast minimum layout
perturbation algorithm for electromigration reliability
enhancement. In Proc. of International Symposium on
DFT in VLSI Systems, pages 56–63, 1998.

[4] N. Christofides. Graph Theory: An Algorithmic
Approach. Academic Press Inc., 111 Fifth Avenue,
New York NY 10003, 1978.

[5] F. Heng, L. Liebmann, and J. Lund. Application of
automated design migration to alternating phase
shifted mask. In Proc. of ISPD, pages 38–43, 2001.

[6] F.-L. Heng, Z. Chen, and G. E. Tellez. A vlsi artwork
legalization technique based on a new criterion of
minimum layout perturbation. In Proc. of the 1997
International Symposium on Physical Design, pages
116–121, 1997.

[7] J. Lee and D. Tang. Himalayas - a hierarchical
compaction system with a minimized constraint set. In
Proc. of ICCAD, pages 150–157, 1992.

[8] Y. Z. Liao and C. K. Wong. An algorithm to compact
a vlsi symbolic layout with mixed constraints. In Proc.
of DAC, pages 107–112, 1983.

[9] L. Liebmann and F. Heng. Optimized phase shift
migration. US Patent #6083275, July 2000.

[10] D. G. Luenberger. Linear and Nonlinear
Programming. Addison-Wesley Publ. Company, 1984.

[11] D. Marple. A hierarchy preserving hierarchical
compactor. In Proc. of 27th Design Automation
Conference, pages 375–381, 1990.

[12] C. Papadimitriou. Computational Complexity.
Addison-Wesley Publishing Company, 1994.

[13] L. Y. Wang and Y. T. Lai. Graph theory based
simplex algorithm for vlsi layout spacing problems
with multiple variable constraints. IEEE Transactions
on CAD, pages 967–979, August 2001.

72

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

