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ABSTRACT
Vector reordering is an essential task in testing VLSI sys-
tems because it affects this process from two perspectives:
power consumption and correlation among data. The former
feature is crucial and if not properly controlled during test-
ing, may result in permanent failure of the device-under-test
(DUT). The latter feature is also important because corre-
lation is captured by coding schemes to efficiently compress
test data and ease memory requirements of Automatic-Test-
Equipment (ATE), while reducing the volume of data and
lowering the test application time. Reordering however is
NP-complete. This paper presents an evaluation of differ-
ent heuristic techniques for vector reordering using ISCAS85
and ISCAS89 benchmark circuits in terms of time and qual-
ity. For this application, it is shown that the best heuristic
technique is not the famous Christofides or Lin-Kernighan,
but the Multi-Fragment technique.

Categories and Subject Descriptors: J.6.1 [Computer-
Aided Design]: VLSI Testing
General Terms: Algorithms
Keywords: ATE, SoC, Test Data, Compression, Power
Consumption, Test Vector Ordering

1. INTRODUCTION
Recently, there has been a tremendous growth in the de-

velopment and application of intellectual property (IP) cores
[1]. These cores are provided by third party vendors and are
often shipped with test data so that the core integrator can
apply the data to the design after manufacturing to ensure
its correct operation. As the complexity of these Sea Of
Cores (System On Chip) systems increases, testing has be-
come a significant bottleneck.

During testing, all cores must be tested to ensure that
they work properly; this requires a considerable power con-
sumption which may often be higher than for normal oper-
ation [2]. A higher power consumption (i.e. more energy
is taken from the supply), means that more energy is dissi-
pated through the substrate of the circuit, thus resulting in
an increased heat dissipation which may burn devices. Sev-
eral techniques have been studied to address this problem. A
test generation technique for low power, has been discussed
in [3]. Another approach is based on scheduling so that dur-
ing testing, maximum power consumption is kept under a
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certain threshold to avoid burning the DUT [4]. Previous
works ([5] [6] [7]) have also suggested reordering of test vec-
tors so that the Hamming distance between adjacent vectors
is minimal. They have empirically proved that a minimal
Hamming distance translates into a lower activity, thus re-
ducing the power consumption of the DUT. Additionally,
the volume of test data can also increase rapidly. This in-
crease affects testing: 1) test time increase is proportional
to data volume and 2) the memory requirement of the test
equipment system is also increased. To solve the increasing
volume, many works have suggested to compress test data
[8] [9]. This technique relies on pre-processing vectors by
reordering them (i.e. minimizing the Hamming distance be-
tween adjacent vectors), differentiating each vector with its
successor, and finally applying a coding scheme (e.g. Run-
Length coding) to compress the processed data. Reordering
is an essential task which is needed to address correlation
extraction among test data for compression.

For the above two issues, vector reordering is a critical
task for manufacturing test of VLSI systems. Vector re-
ordering however translates into a traveling salesman prob-
lem (TSP) which is a known NP-complete problem. The
TSP instance for vector reordering is represented by a com-
plete graph with a large number of nodes. Therefore it is es-
sential to find a good heuristic solution in terms of time and
quality. The objective of this work is to evaluate a number
of different heuristic approaches for this problem in terms
of execution time and quality and present one that results
in best overall performance for vector ordering application.
The rest of this paper is organized as follows: In Section 2.
basic concepts and definitions are presented. Section 3. ex-
amines a number of heuristic approaches and presents their
time complexity and quality. Section 4. presents the simu-
lation results for a number of heuristics used in reordering
vectors for a number of benchmarks circuits, followed by
conclusions in Section 5.

2. BASIC DEFINITIONS
Consider a test set for a combinational (or full-scan se-

quential) circuit given by V = {v1, v2, · · · , vn} where |V | =
n. Each vector vi is formed by a fixed ordered set of bits bj ,
i.e. vi = (b1, b2, · · · , bm). The Hamming Distance between
each two vectors vi = (bk) and vj = (ck) is defined as the
number of 1s obtained from the operation vi XOR vj where
XOR is the bitwise XOR operation, i.e.

HD(vi, vj) =
mX

k=1

bk ⊕ ck (1)

The Total Hamming distance of a given ordering (sequence)
is calculated by finding the Hamming distance between each
adjacent pair of vectors starting from the first vector. As-
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Figure 1: Example of graph construction

sume an ordering π of input vectors {1, 2, · · · , n}. The initial
ordering is defined by π(i) = i. The total Hamming distance
for a generic ordering π is given by

THD =

n−1X

i=1

HD(vπ(i), vπ(i+1)) (2)

The reordering problem consists of finding an ordering
of vectors that gives a minimal total Hamming distance.
To solve this problem, a graph is generated by assigning a
vertex to each vector and an edge between each two vertices
(vectors). The fully connected graph is weighted; each edge
weight is equal to the Hamming distance of the connecting
vectors [7] [8]. This graph is undirected because the XOR
operation has the exchange property. Figure 1 shows a graph
constructed for the sample test data.

If a cycle that traverses only once all nodes of this graph
is found, and the sum of its edge weights is minimal over all
possible cycles (minimum Hamiltonian cycle), then the cycle
also finds the optimal order of the test vectors. This corre-
sponds to the traveling salesman problem (TSP) in which a
traveling salesperson visits all cities and returns to the orig-
inal city, with the shortest path. The ordering found from
TSP directly affects the so-called correlation [8] among test
vectors for compression. Since the total Hamming distance
is minimal, and vectors are bitwise XORed, then there are
long runs of 0 appearing in the test data. These long runs
are used to compress the test data by employing a coding
technique, such as Run-Length or Golomb [8] [9].

The ordering found by solving the TSP indirectly affects
power consumption during testing. The application of vec-
tors to a DUT in such an order, triggers minimal activity
on the primary inputs of the circuit; however in general, it
does not guarantee minimal activity over the internal nodes
of the DUT. It has been empirically shown that the ordering
with minimal total Hamming distance also produces efficient
low power manufacturing test [7]. For better results, edge
weights can be set according to the total switching activity
that the application of a vector pair (vi, vj) triggers inside
the chip. This results in two arcs per edge because (vj , vi)
may be different from (vi, vj). As added complexity, for ev-
ery possible combination of vectors, logic simulation of the
circuit is required to obtain the edge weights. This is com-
putationally more expensive compared to the calculation of
the Hamming distances.

Assume that the DUT has a total of N nodes including
primary inputs, internal nodes, and primary outputs. The
switching activity triggered over the DUT when two vectors
(vi, vj) are applied in the same order, is defined as

SA(i, j) =
NX

k=1

(Node(k, vi) ⊕Node(k, vj)) (3)
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Figure 2: Examples of triangular property

where the Node(k, vi) function returns a boolean value for
node k when vector vi is applied. Then, the Total switching
activity for a given ordering π is calculated as:

TSA =
n−1X

i=1

SA(π(i), π(i+ 1)) (4)

In general, the directed graph generated by mapping vec-
tors to vertices and SA() to arcs, is still not a precise model
for measuring the power consumption of a given ordering
π, because different nodes may have different capacitance.
However, it is better than using an undirected graph in
which the edge weights are only represented by the HD()
function.

2.1 Graph Model and Complexity Bounds
In this section, we study the characteristics of the graph

obtained for the reordering problem and discuss several dif-
ferent graph models. This study is useful in analyzing the
complexity and quality of few possible heuristic solutions to
TSP. Consider the minimum tour length for a TSP instance
I and denoted to as Min(I). Additionally, consider the op-
timal solution of a heuristic H with tour length of H(I) for
a TSP instance I . If there is no restriction on I , then the
following theorem holds [10]

Theorem 1. No polynomial time TSP heuristic H can

guarantee H(I)
Min(I)

≤ 2p(n) for any fixed polynomial p(n) and

all instances I 1.

Many TSP instances are representative of real applica-
tions and have the property of Triangularity 2. This means
that the shortest path between two vertices is always the di-
rect edge between the two, i.e. given three arbitrary vertices
vi, vj , vk, the following condition holds [11] [12]: Weight(vi, vj)+
Weight(vj, vk) ≥ Weight(vi, vk). Figure 2 shows examples
of triangular and non triangular graphs. This yields the
following result [13]

Theorem 2. There exists an ε > 0 such that no polyno-

mial time TSP heuristic H can guarantee H(I)
Min(I)

≤ 1+ ε for

all instances I having the triangular property1.

For example, Christofides heuristic [14] (which is discussed
in more detail in the next section) guarantees ε < 0.5. An-
other important class of TSP instances, is referred to as
Euclidean instances in which the vertices are located in a
plane and their distance is described using the so-called l2
norm, i.e., for two vertices i, j located at geometric posi-
tions (xi, yi) and (xj , yj) respectively, the distance is given

1Assuming P �= NP
2Some authors call this, the metric property.
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Figure 3: Relation among triangular, euclidean, and
general TSP instances

by dij =
p

(xi − xj)2 + (yi − yj)2. The Euclidean TSP in-
stances are a subset of the triangular TSP instances, i.e. an
Euclidean TSP instance is a triangular TSP instance, but
not vice versa [11]. This is shown graphically in Figure 3.

The category of TSP for vector reordering by considering
edge weights with the HD function, is characterized in [5] as
follows

Theorem 3. The TSP instance constructed for test vec-
tor reordering (assuming edge weights are established by the
HD() function), is triangular.

The case in which edge weights are set according to the
transitions over all internal nodes using the SA() function
for the power consumption of the DUT, may be either tri-
angular or non triangular, depending upon the delay model
used in the analysis. Under the general delay model, the
graph may not be triangular [5].

3. SOLUTIONS TO THE TSP
Many heuristic criteria are available for solving TSP. Two

classes of heuristics for TSP can be identified as given below
[11]: 1) Tour Construction Heuristics: The heuristic crite-
rion gradually constructs an ordering (possibly for a minimal
tour); 2) Local Search Heuristics: The heuristic criterion
starts by an initial ordering (tour) and gradually refines it
into a new and possibly better ordering. There are a num-
ber of algorithms in each category. Table 1 shows sample
algorithms which fall in each category [11] [12].

Tour Construction Local Search

Nearest-Neighbor 2-Opt
Christofides 3-Opt

Multi-Fragment k-Opt
Nearest-Addition Genetic

Clark-Wright Lin-Kernighan

Table 1: Sample heuristic algorithms and their class

For example, the Nearest-Neighbor [11] approach is in the
class of Tour Construction heuristics in which an ordering
is gradually built by adding edges from the TSP graph. In
this algorithm, the salesperson starts from any city (graph
node), moves to the nearest neighbor city and follows this
rule until it traverses all cities and returns to the initial city.

3.1 Execution Time Complexity
In general, execution time complexity of local search heuris-

tics is worse than that of a tour construction. An analysis
of worst case time complexity of a number of TSP heuristics
is reported in Table 2. n is the number of nodes in the TSP
graph. These results are valid assuming the TSP instance is
triangular [11] [12].

3.2 Tour Quality
In addition to time complexity, another performance mea-

sure is quality. Quality is related to the tour length that

Algorithm Quality Time Complexity

Nearest-Neighbor 0.5(�log2n� + 1) O(n2)

Multi-Fragment 0.5(�log2n� + 1) O(n2log(n))

Clark-Wright �log2n� + 1 O(n2log(n))

Christofides 1.5 O(n3)

Nearest-Addition 2 O(n2)

Table 2: Worst case quality and execution time com-
plexity of TSP heuristics

the heuristic produces. The heuristic tour length is always
greater than or equal to the minimum tour length, hence
quality is defined as the length ratio between the heuristic
tour and the minimum tour. The quality of the algorithms
for TSP is summarized in Table 2 [11] [12].

For example, the Nearest-Neighbor heuristic algorithm
[11] for a TSP of 1000 nodes, guarantees that the heuristic
solution length is less than or equal to 0.5(
log21000� + 1)
or 0.5(
9.966� + 1) = 5 times the minimum tour length.
No better guarantee is possible. The best tour construction
heuristic, which was proposed by Christofides [14], guaran-
tees a worst-case tour length of 1.5 times the minimum tour
length. The importance of Christofides algorithm is that
quality is independent of the number of nodes. Together,
these two measures (time and quality) can lead to a fair
comparison among heuristics.

4. EVALUATING HEURISTIC CRITERIA
We have considered two well known heuristics, one from

the class of tour construction and one from the class of lo-
cal search algorithms. The first heuristic is Christofides,
which has been used for vector ordering to reduce power con-
sumption [5]. The second heuristic is Lin-Kernighan which
has been used in [15] for vector ordering in data compres-
sion. Additionally, we have considered a number of heuris-
tics including Nearest-Addition, Nearest-Neighbor, Clark-
Wright3, and Multi-Fragment [11] [12]. We have created
a triangular graph model for the vector set of each of the
ISCAS85 and (full-scan version) ISCAS89 circuits, and gen-
erated fully-specified vectors using HITEC [16].

The GNU TSP solver program (tsp-solve) was compiled
in an Alpha workstation. Two heuristics (Nearest-Neighbor
and Multi-Fragment) were also implemented in C. The first
was not implemented in the GNU TSP solver; the second
was implemented for checking the results of the Multi-Fragment
heuristic with the TSP solver. The original source code of
the TSP solver does not cover instances with n > 2400, so
we have modified the code to fix this limit and allow bench-
mark circuit s38417 to be examined.

The graph model of each benchmark circuit was provided
to the TSP solver and the C program to find the execution
time and quality of the solution. Table 3 shows the results.
The results for the Nearest-Neighbor heuristic are from the
C program and not the TSP solver. There are two sets
of results for the Multi-Fragment heuristic; one is from the
C implementation (Multi-Fragment2), and one is from the
TSP solver (Multi-Fragment1). The quality in the table is
measured in terms of minimal tour length obtained by the
heuristic divided by the lower bound of the tour length (if
the problem is solved using a relaxed integer linear program-
ming). This is valid because it is not possible to obtain the
optimum tour and follow the definition of quality (presented

3Also called Savings heuristic.
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Nodes Nearest-Neighbor Multi-Fragment1 Multi-Fragment2 Christofides Clark-Wright Nearest-Addition Lin-Kernighan
Circuit Time Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time Quality

c1355 198 1.17s 1.91 0.05s 1.02 0.05s 1.02 0.13s 1.24 0.05s 1.26 0.03s 1.06 57s 1.00
c1908 138 0.45s 1.71 0.02s 1.03 0.02s 1.02 0.03s 1.16 0.02s 1.28 0.00s 1.08 15s 1.00
c2670 102 1.11s 1.19 0.01s 1.01 0.01s 1.01 0.02s 1.06 0.01s 1.08 0.00s 1.02 0.00s 1.00
c3540 350 4.99s 1.87 0.18s 1.02 0.14s 1.03 0.28s 1.19 0.18s 1.26 0.14s 1.06 170s 1.00
c432 100 0.22s 1.54 0.01s 1.02 0.01s 1.02 0.01s 1.15 0.01s 1.19 0.00s 1.07 17s 1.00
c499 184 0.99s 1.73 0.04s 1.02 0.04s 1.02 0.07s 1.21 0.05s 1.23 0.02s 1.06 32s 1.00
c5315 248 5.6s 1.53 0.10s 1.01 0.08s 1.01 0.13s 1.14 0.10s 1.11 0.08s 1.03 53s 1.00
c7552 452 23s 1.70 0.35s 1.01 0.27s 1.01 0.66s 1.17 0.37s 1.12 0.59s 1.04 195s 1.00
c6288 48 0.05s 1.41 0.00s 1.02 0.00s 1.02 0.00s 1.14 0.00s 1.16 0.00s 1.06 1s 1.00
c880 128 0.57s 1.49 0.02s 1.02 0.02s 1.02 0.03s 1.13 0.03s 1.19 0.01s 1.03 8s 1.00

s1196 378 4.91s 2.19 0.19s 1.02 0.17s 1.01 0.33s 1.21 0.19s 1.32 0.13s 1.10 166s 1.00
s13207 1196 525.57s 2.83 3.10s 1.02 3.18s 1.02 6.86s 1.36 6.86s 1.17 25.63s 1.05 1338s 1.00
s15850 1216 487.27s 2.71 3.13s 1.02 3.08s 1.02 7.04s 1.32 6.83s 1.16 24.07s 1.05 1441s 1.00
s35932 104 8.47s 1.34 0.02s 1.01 0.02s 1.01 0.02s 1.12 0.02s 1.07 0.01s 1.10 0.00s 1.00
s38417 2712 6562.21s 3.92 19.85s 1.03 20.33s 1.03 43.91s 1.41 46.10s 1.26 181.49s 1.12 32357s 1.00
s38584 2072 3275.16s 3.59 8.58s 1.01 10.97s 1.02 28.75s 1.36 30.86s 1.23 135.44s 1.09 9917s 1.00
s5378 590 43.38s 1.90 0.62s 1.01 0.50s 1.01 1.11s 1.21 0.69s 1.15 1.58s 1.04 157s 1.00
s9234 1110 199.77s 2.16 2.21s 1.01 2.45s 1.01 6.05s 1.24 4.57s 1.11 13.39s 1.03 1966s 1.00

Table 3: Comparing different heuristics for time and quality

in Section 3.2).

Heuristic Average Quality Average time

Nearest-Neighbor 2.04 619s
Multi-Fragment1 1.02 2.14s
Multi-Fragment2 1.02 2.30s

Christofides 1.21 5.30s
Clark-Wright 1.19 5.39s

Nearest-Addition 1.07 21.26s
Lin-Kernighan 1.00 2661s

Table 4: Average quality and time of heuristics

The Multi-Fragment heuristic4 performs very close to the
minimal tour with a very short execution time. For qual-
ity, the Multi-Fragment heuristic performs better than all,
but one heuristic, i.e. Lin-Kernighan. However, the timing
comparison between the Multi-Fragment and Lin-Kernighan
heuristics shows that the Multi-Fragment execution time is
significantly smaller than that of Lin-Kernighan. Table 4
shows the average execution time and quality of each heuris-
tic over the 18 circuits of Table 3. The Multi-Fragment
heuristic starts by sorting all edges in the TSP graph in as-
cending order of length. A minimal tour is then constructed
by selecting safe edges in the order. An edge is safe if by
adding it to the current constructed tour, it does not create
a loop of length less than n (where n is the number of nodes)
and does not create a node of degree 3 (the degree of a node
is the number of edges incident upon it).

5. CONCLUSION
An experimental evaluation of test vector ordering heuris-

tics has been presented using quality and execution time
as figures of merit. It has been shown that the Multi-
Fragment heuristic performs better than Christofides and
Lin-Kernighan heuristics in terms of time using realistic
benchmark vector sets. The Multi-Fragment heuristic also
outperforms the Christofides heuristic in terms of quality
and achieves performance very close to Lin-Kernighan. We
recommend ordering algorithms to use the Multi-Fragment
heuristic for near-minimal ordered sets of vectors that re-
sult in both reduced power consumption and enhanced data
compression ratio.

4Also called Greedy heuristic.
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