
Tuning Data Replication for Improving Behavior  
of MPSoC Applications 

O. Ozturk, M. Kandemir, M. J. Irwin 
Department of Computer Science and Engineering 

The Pennsylvania State University 
University Park, PA, 16802, USA 

{ozturk, kandemir, mji}@cse.psu.edu 

I. Kolcu 
Computation Department 

UMIST 
Manchester M60 1QD, UK 

ikolcu@umist.ac.uk 
 

ABSTRACT 
Maintaining cache coherence can be very costly for on-chip 
multiprocessors from an energy perspective. Observing this, we 
propose a compiler-directed strategy that replicates array data in 
cache memories of its potential consumer processors at the time 
the data is brought from off-chip memory. The goal is to 
eliminate the energy costs associated with bus snooping without 
negatively impacting overall performance. Our strategy can 
perform a much better job as compared to static replication 
strategies, where each array element is replicated based on the 
same fixed policy. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers, 
optimization. 

General Terms 
Languages, Performance. 

Keywords 
MPSoC, Power Consumption, Data Replication, Cache 
Coherence, Optimizing Compiler. 

1. INTRODUCTION 
As the applications ported into system-on-a-chip (SoC) 
architectures become more and more complex, it is becoming 
extremely important to have sufficient compute power on the 
chip. One way of achieving this is to put multiple processor cores 
in a single chip. This multiprocessor-system-on-a-chip (MPSoC) 
architecture has several advantages over an alternate strategy that 
puts a more powerful and complex processor in the chip. First, 
this architecture is very suitable for array-intensive applications 
from image/video processing domain. Second, since the 
processors in an MPSoC are in general simple (i.e., with no 
speculation/predication logic for example), this architecture is 

also energy efficient. Third, the design of an on-chip 
multiprocessor composed of multiple simple processor cores is 
simpler than that of a complex single processor system [5,8]. This 
simplicity also helps reduce the time spent in verification and 
validation [8]. Fourth, MPSoCs have lower link lengths and 
delays. 

Current trends and future projections in industry also signal a big 
shift towards MPSoC architectures. For example, Sun's new H-
series line of microprocessors will debut in 2005, with one variant 
expected to offer the equivalent of a 32-way symmetric 
multiprocessor system on a chip. Interestingly, the formal 
announcement for this on-chip multiprocessor came just one day 
after IBM announced it would ship in 2004 its Power5, a dual-
core 64-bit server processor running two threads on each die. Intel 
Corporation has also said it will roll out a dual core version of its 
64-bit Itanium processor in 2005. Note that Intel already ships 
dual-threaded 32-bit Pentium4 and Xeon processors that use a 
single core [10]. These trends clearly indicate that future systems 
will invest more and more on MPSoC type of architectures. 

One of the most critical issues in an MPSoC environment is to 
optimize its memory system behavior. This is because making 
frequent off-chip data accesses can both degrade overall 
performance and result in significant power consumption. To 
avoid these, locality of data accesses should be optimized as much 
as possible; that is, most of the time, when a processor requests a 
data item, it should be able to find it in its local cache – this helps 
maximize performance and minimize power consumption.  

In many array-intensive MPSoC applications, on-chip processors 
share some data. For a shared data item (e.g., an array element), 
as far as its location at the time of access is concerned, there are 
three possible scenarios – (1) the item is in the off-chip memory. 
This is the worst case as indicated earlier. (2) the item is in the 
local cache of some other processors (i.e., not the requester). 
While this is better than the first case, accessing a non-local cache 
can consume both execution cycles and power. (3) the item is in 
the local cache of the requester. This is the best possible case. 
Consequently, one of the objectives of an optimizing compiler 
targeting array-intensive MPSoC applications should be 
increasing the local cache hits for the shared data. 

A naïve way of implementing this idea would be replicating each 
data item in each on-chip cache (when the data item is brought 
from off-chip memory). The obvious problem with this approach 
is that not all data items are shared. Moreover, even the ones that 
are shared are not shared by all on-chip processors.  Replicating 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GLSVLSI’04, April 26-28, 2004, Boston, MA, USA. 
Copyright 2004 ACM 1-58113-853-9/04/0004…$5.00. 
 

170



such unshared or narrowly shared data can reduce effective cache 
capacity available and hurt overall performance. Therefore, for 
each application, there should be some optimal amount of 
replication that gives the best performance and energy behavior.  

One might argue that the right amount of sharing would be 
automatically achieved by a cache coherence protocol that could 
be used for MPSoC (e.g., a MESI-like protocol). However, since 
such a conventional coherence protocol may be very costly to 
maintain (from a power consumption perspective) for an MPSoC 
based architecture, our objective in this study is to eliminate it if it 
is possible to do so. We attempt to achieve this by replicating data 
across the processors (that are likely to share it) when it is brought 
from off-chip memory to the MPSoC. We also attach a tag to the 
cache line indicating in which caches it is replicated. At runtime, 
the processors do not snoop bus activity (this can save significant 
energy). Instead, whenever a write to a shared data occurs, we 
invalidate the copies in the other processors (that share the data in 
question) directly. In this approach, the most important problem is 
to decide the right amount of replication, i.e., when the data is 
brought from off-chip memory to on-chip, we need to decide 
where   (in which caches) to replicate it so that when some other 
processor requires the same data, it does not need to go to the off-
chip memory (note that this saves execution cycles as well as 
energy).  

In this paper, we make two main contributions. First, we discuss 
and evaluate several static strategies that implement different data 
replication algorithms and compare them to a classical coherence-
based mechanism that uses MESI. Our proposed strategies 
outperform the classical coherence-based strategy from an energy 
consumption viewpoint. Note that maintaining coherence is very 
easy in our case since we know exactly which caches share the 
data (this is exactly the set of caches over which the data is 
replicated). However, the proposed strategies are far from being 
optimal, and do not perform well from a performance viewpoint. 
The second contribution of this paper is a compiler-directed 
adaptive data replication algorithm, whereby the set of caches to 
replicate the data over is decided in an adaptive manner, 
considering the (compiler-analyzable) access pattern of the data in 
question.  

Adve et al [1] use an analytical model to compare the 
performance of compiler-directed and directory-based schemes. 
Lim and Yew [6] propose a strategy that enforces cache 
coherence by prefetching the up-to-date data corresponding 
potentially stale references from the main memory. Choi and Yew 
[3] study compiler support for cache coherence in large-scale 
multiprocessor machines. In contrast to these studies, our target 
architecture is a bus-based MPSoC, and our main goal is 
optimizing energy consumption. Note that due to their high 
implementation costs from the energy perspective, these 
techniques and their variants may not be very suitable to be 
employed in an embedded MPSoC based environment. 

We organize this paper as follows. In Section 2, we discuss the 
target architecture we consider in this work. In Section 3, we 
summarize important characteristics of the MESI coherence 
protocol. This is because we compare our techniques against a 
MESI-based architecture. In Section 4, we introduce our static 
strategies. In Section 5, we discuss our adaptive replication 
strategy. Finally, in Section 6, we conclude the paper with a 

summary of our major contributions and a discussion of planned 
future work on this topic. 

2. MPSoC ARCHITECTURE 
In this paper, we focus on the MPSoC architecture shown in 
Figure 1. This architecture contains multiple processors (each 
with its own instruction and data caches), and an inter-processor 
synchronization and clock logic. This is a shared memory 
architecture; that is, all inter-processor communication occurs 
through reading from and writing into the off-chip memory (also 
shown in the figure). A bus-based on-chip interconnect is used to 
perform inter-processor synchronization. Such synchronization is 
necessary for the processors to get synchronized at the beginning 
and end of each loop nest they execute. The processors we 
assume in this study are single-issue, five-stage pipelined 
architectures without any complex branch prediction or data 
speculation/prediction logic. This brings an important side-
advantage in terms of execution time predictability since it is 
easier to predict execution time with simple processors without 
sophisticated prediction/speculation logic (a big plus in real-time 
embedded environments). Also, each processor can operate 
independently from each other, and processors engage in 
synchronization/communication only to maintain data integrity 
during parallel execution.  

An array-based application is executed on our on-chip 
multiprocessor architecture by parallelizing its loop nests. 
Specifically, each loop is parallelized such that its iterations are 
distributed across available processors. An effective 
parallelization strategy should minimize the inter-processor data 
communication and synchronization (i.e., coherence activity 
should be minimized). In other words, ideally, each processor 
should be able to execute independently without synchronization 
or communication. However, in many cases, data dependences 
that occur across loop iterations prevent coherence activity-free 
execution. While in theory we can accommodate any loop-level 
parallelization strategy, in this study we use a data locality-
oriented approach that operates as follows. Given a program, our 
approach handles each loop nest one-by-one. In optimizing a loop 
nest, it first uses loop transformations such as loop permutation, 
iteration space tiling, and scalar replacement, and places the loops 
with high data reuse into innermost position in the nest to the 
extent possible. In doing so, it creates outer loops that are 
dependence-free. After that, the outermost loop that does not 
carry any data dependence is parallelized by distributing its 
iterations across the processors. In distributing loop iterations, 
each processor is assigned a set of successive iterations. It should 
also be observed that such a parallelization strategy is very 

CPU 1

Instruction
Cache 1

Data
Cache 1

Main Memory

CPU 1

Instruction
Cache 1

Data
Cache 1

CPU 1

Instruction
Cache 1

Data
Cache 1

 
Figure 1. The MPSoC architecture considered in this 
study. 

171



suitable from a cache locality perspective as well. The details of 
our parallelization strategy are beyond the scope of this paper. 

3. MESI PROTOCOL 
MESI is an invalidation-based protocol for write-back caches 
used in high-end multiprocessor machines. In this protocol, a 
cache line can be in one of four states: modified (M) or dirty, 
exclusive-clean (E), shared (S), and invalid (I); and each cache 
maintains the state information for all the lines it currently has. 
The state I means that the line is invalid.  M indicates that only 
the cache under consideration has a valid copy of the line, and the 
copy in the main memory is stale. E means that only the cache 
under consideration has a copy of the line, which is the same as 
the corresponding copy in the main memory. Finally, S means 
that potentially two or more processors have this line in their 
caches in an unmodified form. Note that state E helps reduce bus 
traffic for sequential portions of the code where data is not shared. 
More detailed information on MESI protocol can be found 
elsewhere [4]. 

It should be noted that MESI is a snoop-based protocol, which 
means that processors continuously observe the traffic on the bus 
to take appropriate coherence actions. Therefore, as far as energy 
consumption is concerned, there are two major cost components: 
1- snooping the bus for every action consumes energy and 2- 
executing the protocol itself consumes energy. Moshovos et al [7] 
propose a strategy that reduces the energy cost of tag checking in 
a symmetric multiprocessor (SMP) environment. In the rest of this 
paper, we make a case for a compiler-initiated scheme for array-
based applications for which the compiler can statically derive 
accurate data access pattern information for each processor, 
taking into account the parallelization information available for 
each loop nest.  

4. STATIC REPLICATION STRATEGIES 
In this section, we present our static strategies for deciding how to 
replicate data read from off-chip memory. These strategies are 
called static because the replication strategy is fixed throughout 
the execution, and is applied to all data items (array elements) 
uniformly.  

In no-replication scheme (NR), the data is placed only in the 
cache of the processor that requested it; that is, no replication is 
performed. Obviously, one can expect this strategy to be useful 
only when there is very little sharing. In neighborhood replication 
strategy (BR), the data is placed in the requester’s cache as well 
as those of its left and right neighbors (if any). Finally, in all 
replication scheme (AR), the data brought from off-chip memory 
is replicated in all processors in the MPSoC. 

While NR, BR, and AR provide slight energy improvements over 
the conventional strategy, they are not extremely successful in 
reducing energy consumption. In order to support this conclusion, 
we experiment with an optimal scheme, which, using an oracle, 
determines the best replication strategy each time a data is to be 
brought from off-chip memory to the MPSoC.  This optimal 
strategy performs much better than the static strategies in terms of 
both energy saving and execution cycle improvement, which 
indicates one can potentially do much better than the static 
strategies. The next section discusses a compiler-based adaptive 
replication strategy along this direction. It should be noticed that 
the purpose of any adaptive strategy should be tuning the degree 

of replication according to the degree of sharing for as many array 
elements as possible. 

5. COMPILER-BASED DATA 
REPLICATION 
The static replication strategies do not perform very well, mainly 
because of two reasons. First, for the best energy consumption 
behavior, different data items (array elements) demand different 
replication strategies. This is to be expected since different data 
may exhibit very different sharing behavior. For example, while a 
data item might be highly shared (and could thus benefit from 
replication over all processors), for some other data item it might 
be sufficient to replicate it in only two neighboring processors. 
The second drawback of the static schemes is that the required 
replication behavior of the same data item may change in 
different phases of the execution of the same application. These 
two factors, combined, prevent the static schemes from achieving 
the best energy consumption behavior. These factors also indicate 
that an adaptive scheme that tunes the replication policy 
according to data access pattern (i.e., customizes replication for 
each data item) can potentially be very successful in practice.  

The adaptive strategy proposed in this work is based on compiler 
analysis and takes advantage of locality of data references; that is, 
at a given time, most of data references accumulate in a specific 
memory region. In addition, it also exploits parallelization 
information that is available after the loop nests in the application 
are parallelized. For example, consider the following nested loop 
(written in a pseudo-language) that accesses three different arrays: 

for i = 1..n 
for j = 1..m 

x[i][j] = y[j][i] + z[j] 
 

Assuming that only the outer loop is parallelized in this nest, it is 
easy to see that none of the elements of arrays x and y is shared, 
whereas all the elements of array z are shared by all processors 
used to execute the nest. Therefore, in this loop nest, an array 
element has a degree of sharing of either 1 (for x and y) or 8 (for 
z). Consequently, ideally, we should replicate an array element 
either in all processors or in no processor at all. Now, let us 
consider the following loop that accesses a single array: 

for i = 2..n-1 
x[i] = (x[i-1] + x[i+1])/2 
 

Assuming again that this loop is parallelized over all the 
processors and each processor executes a number of consecutive 
(loop) iterations, one can see that some elements of the array x are 
shared by neighboring processors, whereas some other elements 
are not shared at all. 

It is to be noted that an optimizing compiler can analyze a given 
array-based code and for each (static) array operation (read or 
write) decide whether the data accessed through it are shared or 
not. Moreover, it can also determine (estimate) the number of 
processors that will share it at runtime. In other words, the 
compiler is in a very good position to determine the degree of 
sharing for array-based data. Then, based on the degree of 
sharing, it can set the degree of replication accordingly. However, 
it should also be noticed that a static array operation accesses (in 
general) multiple array elements and there might be cases where 

172



these array elements exhibit different degrees of sharing. 
Therefore, an important question now is how frequently such 
cases occur (note that it does not occur in the above code 
examples). Fortunately, for most applications, such cases do not 
appear frequently. Specifically, the average value (cross all 
applications) of the percentage of the time a static array reference 
accesses data that exhibit different degrees of sharing is around 
2.26%. Consequently, there is not much danger in assuming that 
each static array access exhibit uniform sharing pattern 
throughout the execution. 

Our compiler-initiated adaptive data replication strategy works as 
follows. The compiler first analyzes the code to be optimized and, 
for each array reference, identifies the type of data reuse. Also, 
for each array in the code, the compiler determines the set of 
elements that will be accessed (at runtime) by each processor. In 
our compiler implementation of the adaptive strategy, we take 
into account parallelization and data reuse information. More 
specifically, assuming that Ψi and Ψj represent the set of 
iterations that will be executed by two processors i and j (this is 
derived from the parallelization information), these two 
processors share an array element ω if and only if there are at 
least two loop iteration points λi ∈ Ψi  and λj ∈ Ψj such that both 
these iterations access ω. Therefore, the set of array elements 
(from array x) that are shared by i and j can be expressed as: 

Ξ (i,j,x) = {ω | ∃  λi ∈ Ψi  and ∃ λj ∈ Ψj  such that 
Ζx,i(λi) = Ζx,j(λj)}, 

where Zx,i(λi) and Zx,j(λj) give the array element accessed by 
iterations λi and λj, respectively, using an array reference. In our 
current implementation, we use the Omega Library [9] to 
enumerate/count the elements in this set, and we do this for every 
array in the code and every processor pairs i and j. The Omega 
Library is a set of C++ classes for manipulating integer tuple 
relations and sets. It is used in compiler research for dependence 
analysis, program transformations, generating code from 
transformations, and detecting redundant synchronization. 

6. CONCLUSIONS AND FUTURE WORK 
This paper presented several alternate strategies for managing 
data sharing in on-chip multiprocessors. Due to low power 
requirements, it may not be very efficient to employ a full MESI–
like protocol in MPSoC-based environments. Our compiler-based 
adaptive strategy captures data sharing much better than the static 
strategies, which fix degree of replication for each array element 
at the same value. Our future work involves developing pure 
hardware-based adaptive replication strategies and comparing 
them with the compiler-based strategy. Work is also underway in 

modifying the MESI protocol itself to make it more energy 
efficient. 

7. REFERENCES 
[1] S. V. Adve, V. S. Adve, M. D. Hill, and M. K. Vernon. 

Comparison of hardware and software cache coherence 
schemes. In Proc. 18th Annual International Symposium on 
Computer Architecture, pp. 298-308, May 1991. 

[2] CACTI 3.0. http://research.compaq.com/wrl/ people/ 
jouppi/CACTI.html  

[3] L. Choi and P. C.  Yew. Compiler analysis for cache 
coherence: inter-procedural array data-flow analysis and its 
impact on cache performance. IEEE Transactions on Parallel 
and Distributed Systems, Vol. 11, No. 9, Sept 2000, pp. 879-
896.  

[4] D. E. Culler and J. P. Singh. Parallel computer architecture: a 
hardware-software approach. Morgan Kaufmann, 1999. 

[5] V. Krishnan and J. Torrellas. A chip multiprocessor 
architecture with speculative multi-threading. IEEE 
Transactions on Computers, Special Issue on Multi-threaded 
Architecture, September 1999.   

[6] H. B. Lim and  P. C.  Yew.  Maintaining  cache  coherence 
through compiler-directed data prefetching. Journal of 
Parallel and Distributed Computing, Vol 53, No. 2, pp. 144-
173, September 1998.  

[7]  A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary. 
JETTY: snoop filtering for reduced energy consumption in 
SMP servers. In Proc. Symposium on High-Performance 
Computer Architecture, January 2001.  

[8] B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluating 
alternatives for a multiprocessor microprocessor. In Proc. the 
23rd Intl. Symposium on Computer Architecture, pp. 66--77, 
Philadelphia, PA, 1996.  

[9] W. Pugh. Counting Solutions to Presburger Formulas: How 
and Why. In Proc. the ACM SIGPLAN Conference on 
Programming Language Design, 1994. 

[10] http://www.siliconstrategies.com/story/OEG20030225S0031 

 

 

173


	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index




