

Automatic Cell Placement for Quantum-dot Cellular
Automata

Ramprasad Ravichandran†, Nihal Ladiwala‡, Jean Nguyen‡, Mike Niemier†, and Sung Kyu Lim‡

†College of Computing, ‡School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA 30332

{raam@cc, gte568t@prism, jnguyen@ece, mniemier@cc, limsk@ece}.gatech.edu

ABSTRACT
Quantum-dot Cellular Automata (QCA) is a novel
computing mechanism that can represent binary information
based on spatial distribution of electron charge configuration
in chemical molecules. It has the potential to allow for
circuits and systems with functional densities that are better
than end of the roadmap CMOS, but also imposes new
constraints on system designers. In this paper we develop the
first cell-level placement of QCA circuits, where the given
circuit is assumed to be partitioned into 4-phase
asynchronous QCA timing zones. We formulate the QCA
cell placement in each timing zone as a unidirectional
geometric embedding of k-layered bipartite graphs. We then
present an analytical and a stochastic solution for minimizing
the wire crossings and wire length in these placement
solutions.

Categories and Subject Descriptors
B.7.2 Design Aids [Placement and routing]

General Terms: Algorithms, Design

Keywords: quantum cell automata, placement

1. INTRODUCTION
Nano technology and devices will have revolutionary impact
on the CAD field. Similarly, CAD research at circuit, logic
and architectural levels for nano devices can provide
valuable feedbacks to nano research and illuminate ways for
developing new nano devices. It is time for CAD researchers
to play an active role in nano research. One approach to
computing at the nano-scale is the quantum-dot cellular
automata (QCA) concept that represents information in a
binary fashion, but replaces a current switch with a cell
having a bi-stable charge configuration. QCA devices can be
realized in metal [2], or with chemical molecules [1]. A
wealth of experiments have been conducted with metal-dot
QCA, with individual devices, logic gates, wires, latches,

and clocked devices [2][3][4], all having been realized. This
advancement is followed by various recent efforts in
developing CAD tools for QCA based circuits and systems
[10][11].

In this paper we develop the first cell-level placement of
QCA circuits, where the given circuit is assumed to be
partitioned into 4-phase asynchronous QCA timing zones
[13]. We formulate the QCA cell placement in each timing
zone as a unidirectional geometric embedding of k-layered
bipartite graphs. We then present an analytical and a
stochastic solution for minimizing the wire crossings and
wire length in these placement solutions. Results provide
designs of circuits and systems that will be used to develop
computationally interesting designs for chemists who are
currently preparing to build the patterns and substrates
required for real QCA circuits.

2. PRELIMINARIES
2.1. QCA Devices
A high-level diagram of a “candidate” four-dot metal QCA
cell appears in Figure 1a [2]. It depicts four quantum dots
that are positioned to form a square. Exactly two mobile
electrons are loaded into this cell and can move to different
quantum dots by means of electron tunneling. Coulombic
repulsion will cause “classical” models of the electrons to
occupy only the corners of the QCA cell, resulting in two
specific polarizations. These polarizations are configurations
where electrons are as far apart from one another as possible,
in an energetically minimal position, without escaping the
confines of the cell.

It is also possible to construct QCA cells from individual

chemical molecules [12]. In contrast to metal-dot cells, the
small size of molecules (on the order of 1-5 nm) means that
Coulomb energies are much larger, so room temperature
operation is possible. At the molecular scale, the coupling
and electrostatic interaction between molecular devices is on

Figure 1. (a) generic QCA cell, (b) “molecular” cell

Binary 1

cation
+

µµµµ
neutral radical

neutral radical

(Binary 0)

DotElectron

a. (Binary 1) b.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI’04, April 26-28, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-853-9/04/0004...$5.00.

332

the electron Volt scale. The thermal energy present at room
temperature is on the order of 0.025 electron Volts,
indicating that errors caused by thermal energies of the
environment in which a molecular QCA cell is operating will
not cause the cell to propagate the wrong binary information
[1]. In addition, the power requirements and heat dissipation
of QCA are low enough that high-density molecular logic
circuits and memory are feasible. In contrast to lithographic
device fabrication techniques, which always introduce
variations in device characteristics, each molecular cell can
be made exactly identical using chemical synthesis.
Information about specific molecular QCA implementations
is readily available in literature [1][5][6], with 2-”dot” (see
Figure 1b for an example), 3-”dot”, and 4-”dot”
implementations all under investigation. When considering
basic cell-to-cell interactions, binary 1s and 0s are physically
represented by the dipole moments of QCA molecules.
Dipole moments are formed by the way that charge is
localized within certain sites of a QCA molecule and how
that charge can tunnel between these sites [5]. In the
presence of a strong driver dipole, a larger amount of energy
is required to excite a cell into a mistake state [6].

QCA’s logic functionality will be explained in terms of

“generic” 4-dot cells. The fundamental QCA logical gate is
the three-input majority gate. It consists of five cells and
implements the logical equation AB+BC+AC as shown in
Figure 2a. Computation is performed by driving the device
cell to its lowest energy state, which will occur when it
assumes the polarization of the majority of the three input
cells. Here, the electrostatic repulsion between the electrons
in the three input cells, and the electrons in the device cell
will be at a minimum. As the majority function can be
reduced to the AND and OR function, and a means for signal
inversion is possible, QCA’s logic set is functionally
complete.

One way of moving data from point A to point B in a
QCA circuit is with a 90-degree wire (Figure 2b). (The wire
is called “90-degrees”as the cells from which it is made up
are oriented at a right angle). The wire is a horizontal row of
QCA cells and a binary signal propagates from left-to-right
because of electrostatic interactions between adjacent cells.
A QCA wire can also be comprised of cells rotated 45-
degrees. Here, as a binary signal propagates down the length
of the wire, it alternates between a binary 1 and a binary 0
polarization.

Finally, QCA wires possess the unique property that they
are able to cross in the plane without the destruction of the

value being transmitted on either wire as shown in Figure 2c.
This property holds only if the QCA wires are of different
orientations (i.e. a 45-degree wire crossing a 90-degree wire).
However, it is most important as at present, all layout is
assumed to be two-dimensional.

QCA’s clock was first characterized by Lent, et. al. as
having 4 phases. During the first clock phase (switch), QCA
cells begin un-polarized with inter-dot potential barriers low.
During this phase barriers are raised, and the QCA cells
become polarized according to the state of their drivers (i.e.
their input cells). It is in this clock phase, that actual
switching (or computation) occurs. By the end of this clock
phase, barriers are high enough to suppress any electron
tunneling and cell states are fixed. During the second clock
phase (hold), barriers are held high so the outputs of the
subarray that has just switched can be used as inputs to the
next stage. In the third clock phase, (release), barriers are
lowered and cells are allowed to relax to an unpolarized state.
Finally, during the fourth clock phase (relax), cell barriers
remain lowered and cells remain in an unpolarized state [7].

Individual QCA cells need not be clocked or timed
separately. However, a physical array of QCA cells can be
divided into zones that offer the advantage of mutli-phase
clocking and group pipelining. For each zone, a single
potential would modulate the inter-dot barriers in all of the
cells in a given zone. Such a clocking scheme allows one
zone of QCA cells to perform a certain calculation, have its
state frozen by the raising of inter-dot barriers, and then have
the output of that zone act as the input to a successor zone.

In a molecular implementation of QCA, the four phases
of a clock signal would most likely take the form of time-
varying but repetitious voltages applied to silicon wires
embedded underneath some substrate to which QCA cells
were attached. Every fourth wire would receive the same
voltage at the same time [8]. Neighboring wires see delayed
forms of the same signal. The charge and discharge of the
embedded silicon wires will move the area of activity (i.e.
computation or data movement) across the molecular layer
of QCA cells with computation occurring at the “leading
edge” of the applied electric field. Computation moves
across the circuit in a continuous “wave” [7].

2.2. Motivation for QCA CAD Research
One might argue that it would be premature to perform any
systems-level study of an emergent device while the physical
characteristics of a device continue to evolve. However, it is
important to note that many emergent, nano-scale devices are
targeted for computational systems – and to date, most
system-level studies have been proposed by physical
scientists, and usually end with a demonstration of a
functionally complete logic set or a simple adder. Useful and
efficient computation will involve much more than this, and,
in general, it is important to provide scientists with a better
idea of how their devices should function. This coupling can
only lead to an accelerated development of functional and
interesting systems at the nano-scale. More specifically, with

(a) (b) (c)
input

input

input output

device Coulombic interactions

Signal propagation

45-deg.

90-deg.
wire

wire

direction

Figure 2. (a) Majority gate, (b) 90o wire, (c) wire crossing

333

QCA, chemists are currently preparing to test the self-
assembly process and its building blocks described in
Section 2. Thus, our work can help provide the chemists
with computationally interesting patterns – the real and
eventual desired end result.

3. QCA CELL PLACEMENT
3.1. Problem Formulation
QCA placement is divided into three steps: zone partitioning,
zone placement, and cell placement. The purpose of zone
partitioning is to decompose an input circuit such that a
single potential modulates the inner-dot barriers in all of the
QCA cells that are grouped within a clocking zone. Unless
QCA cells are grouped into zones to provide zone-level
clock signals, each individual QCA cell will need to be
clocked. The wiring required to clock each cell individually
would easily overwhelm the simplicity won by the inherent
local interconnectivity of QCA architecture. However,
because the delay of the biggest partition also determines the
overall clock period, the size of each partition must also be
determined carefully. In addition, four-phase clocking
imposes a strict constraint on how to perform partitioning.
The zone placement step takes as input a set of zones – with
each zone assigned a clocking label obtained from zone
partitioning. The output of zone placement is the best
possible layout for arranging the zones on a two dimensional
chip area. Finally, cell placement visits each zone to
determine the location of each individual logic QCA cell—a
cell used to build majority gates. Our prior work [13]
includes zone partitioning and placement, and the focus of
this work is on QCA cell placement.

The input to the cell placement is zone placement result,
where all logic/wire blocks at the same clocking level are
placed in the same row. Then the output of cell placement is
an arrangement of QCA cells in each logic block such that
the wire length, wire crossing, and congestion are minimized
while satisfying the timing, area, signal direction, terminal
constraints as well as QCA specific design rules. The
reconvergent path problem does not exist in cell
placement—it is perfectly fine to have unbalanced
reconvergent path lengths among the logic gates in each
logic block. The reason is that correct output values will
eventually be available at the output terminals in each block
if the clock period is longer than the maximum path delay in
each block. We determine the clock period based on the
maximum path delay among all logic/wire blocks, so the
reconvergent path problem does not exist anymore.

However, the following set of constraints exists during
QCA cell placement: (i) timing constraint: signal
propagation delay from the beginning to the end of the zone
should be kept under the clock period computed from zone
partitioning (maximum zone delay), (ii) area constraint: the
placement area/dimension for each logic block is fixed, (iii)
terminal constraint: the IO terminals are located on the top
and bottom boundaries of each logic block, (iv) signal
direction constraint: the signal flow among the logic QCA

cells needs to be unidirectional—from the input to the output
boundary for each zone, and (v) design rules: we enforce
various layout rules for QCA circuits including
minimum/maximum cell/wire spacing and wire length,
allowable cell off-centeredness and rotation, circuit densities,
power dissipation, etc. The area and terminal constraints are
inherited from zone partitioning and zone placement results.
Each zone may have multiple inputs and multiple outputs,
which requires that the topological ordering must match
between the input and output of neighboring zones. The
signal direction is caused by QCA’s clocking scheme, where
an electric field E created by underlying CMOS wire is
propagating in uni-directionally within each block. Thus, cell
placement needs to be done in such a way to propagate the
logic outputs in the same direction as E.

3.2
In
sign
ma
obt
uni
gat
the
alg
ver
any

-
I
I

I
-

334

NSERT-FT(G,V)
F (V is not EMPTY)
 W = V.POP();
 K = W.OUTDEGREE;
 N = 0;
 INSERT = FALSE;
 WHILE(N < K)
 If(W.CHILD(N).LEVEL>W.LEVEL+1)
 INSERT = TRUE; BREAK;
 N = N+1;
 IF(INSERT)
 L = NEW GATE;
 L.SET_LEVEL(W.LEVEL + 1);
 L.SETPARENT(W);
 W.SETCHILD(L);
 G.ADDVERTEX(L);
 V.ADD(L);
 WHILE(N<K AND K>0)
 If(W.CHILD(N).LEVEL>W.LEVEL+1)
 W.CHILD(N).REMOVEPARENT(W);
 W.CHILD(N).ADDPARENT(L);
 L.ADDCHILD(W.CHILD(N));
 W.REMOVECHILD(W.CHILD(N));
 N = N–1;
 K = K–1;
 N = N+1;
NSERT-FT(G,V);

Figure 3: Feedthrough Insertion Algorithm

 Construction of K-layer Bipartite Graphs
order to satisfy the relative ordering and to satisfy the
al direction constraint, the original graph G(V,E) is

pped into a k-layered bipartite graph G’(V’,E’) which is
ained by insertion of feed-through gates, where V’ is the
on of the original vertex set V and the set of feed-through
es, and E’ is the corresponding edge set. Figure 3 gives
 pseudo-code for the recursive feed-through insertion
orithm. In this algorithm, we traverse through every
tex in the vertex set of the graph. For a given vertex, if
 of the outgoing edges terminate at a vertex with

topological order more than one level apart, a new feed-
through vertex is added to the vertex set. The parent of the
feed-through is set to the current vertex, and all children of
the current vertex which have a topological order difference
of more than one is set as the children of the feed-through.
We do not need to specifically worry about the exact level
difference between the feed-through and the child nodes,
since this feed-through insertion is a recursive process. This
algorithm runs in O(ΚV’), where Κ is the degree of the graph
vertex υ’ of the graph G’. Figure 4a shows the graph before
feed-through insertion and Figure 4b shows the graph after
feed-through insertion. A trivial result of this stage is that all
short paths have a set of feed-throughs between the last
logical gate in the path and last row.

3.3 Row-folding Algorithm
After the feed-through insertion stage, some rows in G’ may
have more gates than the average number of gates per row.
The row with the largest number of gates defines the width
of the entire zone, and hence the width of the global column
that the zone belongs to. This increases the circuit area by a
huge factor. Hence, rows with a large number of cells are
folded into two or more rows. This is done by inserting feed-
through gates in place of the logic gates and moving the
gates to the next row. Row-folding decreases the width of the
row since feed-throughs have a lower width than the gate it
replaces. A gate, γ is moved into the next existing row if it
belongs to the row that needs to be folded and all paths that γ
belongs to contain at least one feed-through with a higher
topological order than γ. The reason for the feed-through
condition is that γ, along with all gates between γ and the
feed-through can be pushed to a higher row, and the feed-
through can be deleted without violating the topological
ordering constraint. Figure 5 shows the pseudo-code for
testing if a gate can be moved into an existing row. The
algorithm returns true if a node can be moved, and false if a
new row has to be inserted. If this feed-through criterion is
not met, and the row containing γ has to be folded, then a
new row is inserted and γ is moved into that row.

The number of gates that need to be moved from a row
that needs folding to a new row is given by the following
trivial calculation. Let η be the number of gates that need to
be moved to the next row. Let µ be the original number of

gates in the row, and let M be the maximum number of gates
allowed in a row. Further, let α be the ratio of the width of a
feed-through to the width of the gate. Since width of a gate is
always greater than the width of a feed-through, α < 1. For
every gate that is moved to a new row, a feed-through has to
be inserted in its original place. Hence, after moving η to the
next row, the width of the original row will now be µ–η+αη
= M, so η = (µ–M)/(1–α). This calculation is repeated for the
next row if η is itself greater than the constraint M. The
principal reason for increasing the height of a zone rather
than increasing the width of the zone is that the width of
global column that the zone belongs to is much smaller than
height of the column since the aspect ratio of the entire
circuit layout is close to unity.

3.4. W
At the
QCA
is to o
crossin
an ana
baryce
simula
analyt
is a st
wire c

To
throug
the col
runs in
the fir
length
update
cannot
topolo
within
positio
subseq
K is th

Wi
adjace

-
C
I

I

R
K
I
W

R
-

(a) (b)

Figure 4. Before and after feed-through insertion.
Shaded nodes indicate feed-throughs.

335

HECK_FT(G,W)
F(W IS A FEEDTHROUGH)
 RETURN TRUE;
F(W.LEVEL = G.MAX_LEVEL)
 RETURN FALSE;
ETVAL = TRUE;
 = W.OUTDEGREE;
 = 0;
HILE(RETVAL & I<K)
 RETVAL = CHECK_FT(G,W.CHILD(I));
 I = I+1;
ETURN RETVAL;

ire length and Wire Crossing Minimization
 end of the row-folding algorithm, we have a legal
circuit. The next stage in the cell placement algorithm
ptimize this layout to minimize the number of wire
gs and net wire length. We investigated and compared
lytical solution with a stochastic solution. We used the
nter heuristic [9] for the analytical solution and
ted annealing for the stochastic algorithm. The
ical method only considers wire crossings since there
rong correlation between wire length and number of
rossings.
 compute the net wire length in a circuit we traverse
h every vertex and accumulate the difference between
umn numbers of the vertex and all of its children. This
 O(N), where N is the number of vertices. But, during
st calculation, we store the sum of all outgoing wire
s in every vertex. This enables us to incrementally
 if the position of only one node changes. A node
 change its row number since at this stage the
gical level is fixed. If a node changes its position
 a level, then it is enough to calculate the difference in
n with respect to its neighbors alone. Hence,
uent wire length calculation is reduced to O(K) where
e node’s vertex degree.
re crossing computation can be done with either the
ncy list or matrix, depending on the sparseness of the

Figure 5. Row folding algorithm

graph. We used the adjacency matrix to compute the number
of wire crossings in a graph. In a graph, there is a wire
crossing between two layers v and u if vi talks to uj and vx
talks to uy, where i, j, x, and y denote the relative positional
ordering in the nodes, and either, i<x<j<y or i<x<y<j or
x<i<y<j or x<i<j<y without loss of generality. In terms of
an adjacency matrix, this can be regarded as if either the
point (i,j) is in the lower left sub-matrix of (x,y) or vice versa,
there is a crosstalk. Hence, our solution is to count the
number of such occurrences. If this counting is done
unintelligently, it can be in the order of O(n4). Our algorithm
to compute the number of wire crossings runs in O(n2).

Figure 6 shown and example of wire crossing

computation. The graph in Figure 6a can be represented by
the adjacency matrix shown in Figure 6b. The number of
crossings in the diagram is 3. This can be obtained from the
matrix by adding the product of every matrix element and
the sum of its left lower matrix elements. i.e. the number of
crossings = Σ(Aij×ΣΣAxy), where i+1<x<n and 1<y<j–1. This
formula gives a good intuition of the process but is
computationally very expensive. We illustrate our method of
calculating the same result. First we take the row-wise sum
of all entries. Then we compute the column-wise sum.
Finally, we multiply all the entries in the matrix with its
lower-left neighbor’s value and the sum of these products
gives us the number of crossings. Then, we traverse through
the original matrix and multiply every element with the
element corresponding to its lower-left neighbor in the above
matrix O(n2). i.e. A1×(-) + A2×(B´´1´´) + B3×(C´´2´´) +
C1×(-) + D2×(-) = 3. In the simulated annealing process,
when we swap two nodes in G”, it is identical to swapping
the corresponding rows in the above matrices. Hence, it is
enough if we just update the values of the rows in between
the two rows that are being swapped. The pseudo-code for
this incremental algorithm is given in Figure 7.

3.5. Optimization Engine
A widely used method for minimizing wire crossings in a
graph [9] is to map the graph into a k-layer bipartite graph.
The vertices within a layer are then permuted to minimize
wire crossings. This method maps well to this problem as we
need to only consider the latter part of the problem (since the
clocking constraint yields us the k-layer bipartite graph). Still,
even in a two-layer graph, minimizing wire-crossings is NP-
hard. Amongst many heuristics proposed to solve the one-
sided crossing minimization, the barycenter heuristic [9] has
been found to be the best heuristic in the general case for this
class of problems. Therefore, an analytical wire crossing
minimization method based on the barycenter algorithm was
implemented.

ch
ra
m
im
ta
th
ap
cr
m
ill
nu
qu
ro
te
w
fi
le
w
w
ra
cr

A B C D

1 2 3

 1 2 3
A 1 1 0
B 0 0 1
C 1 0 0
D 0 1 0

 1’ 2’ 3’
A’ 1 2 2
B’ 0 0 1
C’ 1 1 1
D’ 0 1 1

 1’’ 2’’ 3’’
A’’ 2 4 5
B’’ 1 2 3
C’’ 1 2 2
D’’ 0 1 1

(b) (a)

(d) (c)

Figure 6. Illustration of wire crossing computation. (a)
given graph, (b) initial adjacency matrix, (c) row-wise

sum, (d) column-wise sum.

336

CALCXROWS(R1, R2, MATRIX)
IF(R2<R1)
 RETURN CALCXROWS(R2,R1,MATRIX);
LET SUM = POS = NEG = DIFF = j = 0;
WHILE(J < NumRows)
 TEMP = DIFF;
 I = R2-1;
 WHILE(I > R1)
 SUM = SUM + MATRIX[I][j]*(POS–NEG);
 DIFF = DIFF + MATRIX[i][j];
 I = I + 1;
 SUM = SUM – MATRIX[R1][j]*(TEMP+NEG);
 SUM = SUM + MATRIX[R2][j]*(TEMP+POS);
 POS = POS + MATRIX[i][j];
 NEG = NEG + MATRIX[R2][j];
RETURN SUM;

Figure 7. Incremental wire-crossing computation.

 In simulated annealing, a move is done by randomly
oosing a level in the graph and then swapping two
ndomly chosen gates [g1, g2] in that level in order to
inimize the total wire length and wire crossing. In our
plementation, the initial calculation of the wire length

kes O(n) and updating wire crossing takes O(n2) where n is
e number of nodes in a layer of the bipartite graph. In our
proach, we initially compute the wire length and wire
ossing and incrementally update these values after each
ove so that the update can be done much faster as
ustrated above. This speedup allows us to explore a greater
mber of candidate solutions, and as a result, obtain better
ality solutions. We set the initial temperature such that
ughly 50% of the bad moves were accepted. The final
mperature was chosen such that less than 5% of the moves
ere accepted. We used three different cost functions. The
rst cost function only optimized based on the net wire
ngth. The second cost function evaluated the number of
ire crossings, while the last cost function looked at a
eighted combination of both. The weights used were the
tio between the wirelength and the number of wire
ossings obtained in the analytical solution.

4. EXPERIMENTAL RESULTS
Our algorithms were implemented in C++/STL, compiled
with gcc v2.96 run on Pentium III 746 MHz machine. The
benchmark set consists of six circuits from ISCAS89 and
two circuits from ITC99 suites due to the availability of
signal flow information. We performed cell placement for
these circuits based on QCA’s structure and building blocks.
There was an average of around 100±10 gates per partition
in each of the circuits. Table 1 shows our cell placement
results where we report net wire length and number of wire
crossings for the circuits using our analytical solution and all
three flavors of our simulated annealing algorithm. We
further tried simulated annealing from analytical start, and
the results were identical to analytical solution. We observe
in general that analytical solution is better than all three
flavors of the Simulated Annealing methods, except in terms
of wire length in the case of the weighted Simulated
Annealing process. But, the tradeoff in wire crossings makes
the analytical solution more viable, since wire crossings pose
a bigger barrier than wire length in QCA architecture.

One interesting note is that when comparing amongst the
three flavors of simulated annealing we find that simulated
annealing with wire crossing minimization alone has the best
wire crossing number, but surprisingly, in terms of wire
length, the simulated annealing procedure with wire length
alone as the cost function is not as good as the simulated
annealing procedure which optimizes both wire length and
wire crossing. We speculate that this behavior is because
lower number of wire crossings has a strong influence on
wire length, but smaller wire length does not necessarily
dictate lower number of crossings in our circuits.

5. CONCLUSIONS
In this paper, we presented the first QCA cell placement
algorithm. We are currently working on wire routing and

node duplication for QCA circuits. A better picture of the
QCA circuit design could be painted if we compare the
results from QCA placement to the placement of a CMOS
circuit with the same functionality, and our ongoing work
focuses on this issue as well.

6. REFERENCES
[1] M. Lieberman et al, Quantum-dot cellular automata at a molecular

scale. Annals of the New York Academy of Science, p225-239, 2002.
[2] I. Amlani et al, Demonstation of a func. quantum-dot cellular automata

cell. J. Vac. Sci. Technol. B, 16 (1998), 3795-3799.
[3] I. Amlani et al, Digital logic gate using quantum-dot cellular automata.

Science, 284 (1999), 289-291.
[4] R. Kummamuru et al, Power gain in a quantum-dot cellular automata

latch. Applied Physics Letters, 81(2002), 1332-1334.
[5] Mathews C.K., van Holde K.E., and Ahren K.G. Biochemistry. Add.

Wesley Longman, San Francisco, 2000.
[6] Lent C.S., Isaksen B., and Lieberman M. Molecular Quantum-dot

Cellular Automata. J. Am. Chem. Soc., 125, (2003), 1056-1063.
[7] Tougaw P.D. and Lent C.S. Logical devices implemented using

quantum cellular automata. J. of Applied Physics, 75 (1994), 1818.
[8] Hennessy K. and Lent C.S. Clocking of molecular quantum-dot

cellular automata. Journal of Vacuum Science and Technology B,
19,5(Sept-Oct 2001), 1752-1755.

[9] Sugiyama K., Tagawa S., and Toda M. Methods for Visual
Understanding of Hierarchical System Structures. IEEE Trans. Syst.
Man,. Cybern., SMC-11 (1981), 109-125.

[10] Gergel N., Craft S., and Lach J. Modeling QCA for Area Minimization
in Logic Synthesis. Great Lakes Symposium on VLSI, (2003), 60-63.

[11] Gary Bernstein, “Quantum-dot Cellular Automata: Computing by
Polarized Systems”, Proc. Design Automation Conference, 2003.

[12] C.S. Lent, “Molecular Electronics: Bypassing the Transistor
Paradigm”, Science, Vol 288, pp 1597-1599, 2000.

[13] Jean Nguyen, Ramprasad Ravichandran, Sung Kyu Lim, and Mike
Niemier, “Global Placement for Quantum-dot Cellular Automata
based Circuits”, Georgia Tech, GIT-CERCS-03-20, October 2003.

Table 1. Cell placement results. We report wirelength (wl) and wire crossing (wc) for
both analytical and Simulated Annealing based methods.

 Analytical SA+WL SA+WC SA+WL+WC

ckts wl wc wl wc wl wc wl wc
b14 5586 1238 28680 23430 54510 3740 5113 4948
b15 9571 1667 23580 40400 69030 7420 8017 8947

s13207 3119 548 14060 15530 30610 1450 3250 1982
s15850 3507 634 18610 22130 42700 2140 3919 2978
s38417 9414 1195 45830 48400 80240 7320 9819 9929
s38584 19582 4017 59220 75590 140130 9820 20101 33122
s5378 1199 156 6280 6690 13600 730 1344 841
s9234 2170 205 10720 11540 23290 980 1640 2159
Ave 4192 741 16980 19950 38950 2740 3880 6878

Ratio 1.00 1.00 4.05 26.9 9.29 3.69 0.92 9.27
runtime 180 604 11280 12901

337

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

