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ABSTRACT 
Quantum-dot Cellular Automata (QCA) is a novel 
computing mechanism that can represent binary information 
based on spatial distribution of electron charge configuration 
in chemical molecules. It has the potential to allow for 
circuits and systems with functional densities that are better 
than end of the roadmap CMOS, but also imposes new 
constraints on system designers. In this paper we develop the 
first cell-level placement of QCA circuits, where the given 
circuit is assumed to be partitioned into 4-phase 
asynchronous QCA timing zones. We formulate the QCA 
cell placement in each timing zone as a unidirectional 
geometric embedding of k-layered bipartite graphs. We then 
present an analytical and a stochastic solution for minimizing 
the wire crossings and wire length in these placement 
solutions.  

Categories and Subject Descriptors 
B.7.2 Design Aids [Placement and routing] 

General Terms: Algorithms, Design 

Keywords: quantum cell automata, placement 
 

1. INTRODUCTION 
Nano technology and devices will have revolutionary impact 
on the CAD field. Similarly, CAD research at circuit, logic 
and architectural levels for nano devices can provide 
valuable feedbacks to nano research and illuminate ways for 
developing new nano devices. It is time for CAD researchers 
to play an active role in nano research. One approach to 
computing at the nano-scale is the quantum-dot cellular 
automata (QCA) concept that represents information in a 
binary fashion, but replaces a current switch with a cell 
having a bi-stable charge configuration. QCA devices can be 
realized in metal [2], or with chemical molecules [1]. A 
wealth of experiments have been conducted with metal-dot 
QCA, with individual devices, logic gates, wires, latches, 

and clocked devices [2][3][4], all having been realized. This 
advancement is followed by various recent efforts in 
developing CAD tools for QCA based circuits and systems 
[10][11].  

In this paper we develop the first cell-level placement of 
QCA circuits, where the given circuit is assumed to be 
partitioned into 4-phase asynchronous QCA timing zones 
[13]. We formulate the QCA cell placement in each timing 
zone as a unidirectional geometric embedding of k-layered 
bipartite graphs. We then present an analytical and a 
stochastic solution for minimizing the wire crossings and 
wire length in these placement solutions. Results provide 
designs of circuits and systems that will be used to develop 
computationally interesting designs for chemists who are 
currently preparing to build the patterns and substrates 
required for real QCA circuits.  

 
2. PRELIMINARIES 
2.1. QCA Devices 
A high-level diagram of a “candidate” four-dot metal QCA 
cell appears in Figure 1a [2]. It depicts four quantum dots 
that are positioned to form a square. Exactly two mobile 
electrons are loaded into this cell and can move to different 
quantum dots by means of electron tunneling. Coulombic 
repulsion will cause “classical” models of the electrons to 
occupy only the corners of the QCA cell, resulting in two 
specific polarizations. These polarizations are configurations 
where electrons are as far apart from one another as possible, 
in an energetically minimal position, without escaping the 
confines of the cell. 
 

 
It is also possible to construct QCA cells from individual 

chemical molecules [12]. In contrast to metal-dot cells, the 
small size of molecules (on the order of 1-5 nm) means that 
Coulomb energies are much larger, so room temperature 
operation is possible. At the molecular scale, the coupling 
and electrostatic interaction between molecular devices is on 

Figure 1. (a) generic QCA cell, (b) “molecular” cell
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the electron Volt scale. The thermal energy present at room 
temperature is on the order of 0.025 electron Volts, 
indicating that errors caused by thermal energies of the 
environment in which a molecular QCA cell is operating will 
not cause the cell to propagate the wrong binary information 
[1]. In addition, the power requirements and heat dissipation 
of QCA are low enough that high-density molecular logic 
circuits and memory are feasible. In contrast to lithographic 
device fabrication techniques, which always introduce 
variations in device characteristics, each molecular cell can 
be made exactly identical using chemical synthesis. 
Information about specific molecular QCA implementations 
is readily available in literature [1][5][6], with 2-”dot” (see 
Figure 1b for an example), 3-”dot”, and 4-”dot” 
implementations all under investigation. When considering 
basic cell-to-cell interactions, binary 1s and 0s are physically 
represented by the dipole moments of QCA molecules. 
Dipole moments are formed by the way that charge is 
localized within certain sites of a QCA molecule and how 
that charge can tunnel between these sites [5]. In the 
presence of a strong driver dipole, a larger amount of energy 
is required to excite a cell into a mistake state [6]. 

 

 
 
QCA’s logic functionality will be explained in terms of 

“generic” 4-dot cells. The fundamental QCA logical gate is 
the three-input majority gate. It consists of five cells and 
implements the logical equation AB+BC+AC as shown in 
Figure 2a. Computation is performed by driving the device 
cell to its lowest energy state, which will occur when it 
assumes the polarization of the majority of the three input 
cells. Here, the electrostatic repulsion between the electrons 
in the three input cells, and the electrons in the device cell 
will be at a minimum. As the majority function can be 
reduced to the AND and OR function, and a means for signal 
inversion is possible, QCA’s logic set is functionally 
complete. 

One way of moving data from point A to point B in a 
QCA circuit is with a 90-degree wire (Figure 2b). (The wire 
is called “90-degrees”as the cells from which it is made up 
are oriented at a right angle). The wire is a horizontal row of 
QCA cells and a binary signal propagates from left-to-right 
because of electrostatic interactions between adjacent cells. 
A QCA wire can also be comprised of cells rotated 45-
degrees. Here, as a binary signal propagates down the length 
of the wire, it alternates between a binary 1 and a binary 0 
polarization. 

Finally, QCA wires possess the unique property that they 
are able to cross in the plane without the destruction of the 

value being transmitted on either wire as shown in Figure 2c. 
This property holds only if the QCA wires are of different 
orientations (i.e. a 45-degree wire crossing a 90-degree wire). 
However, it is most important as at present, all layout is 
assumed to be two-dimensional. 

QCA’s clock was first characterized by Lent, et. al. as 
having 4 phases. During the first clock phase (switch), QCA 
cells begin un-polarized with inter-dot potential barriers low. 
During this phase barriers are raised, and the QCA cells 
become polarized according to the state of their drivers (i.e. 
their input cells). It is in this clock phase, that actual 
switching (or computation) occurs. By the end of this clock 
phase, barriers are high enough to suppress any electron 
tunneling and cell states are fixed. During the second clock 
phase (hold), barriers are held high so the outputs of the 
subarray that has just switched can be used as inputs to the 
next stage. In the third clock phase, (release), barriers are 
lowered and cells are allowed to relax to an unpolarized state. 
Finally, during the fourth clock phase (relax), cell barriers 
remain lowered and cells remain in an unpolarized state [7]. 

Individual QCA cells need not be clocked or timed 
separately. However, a physical array of QCA cells can be 
divided into zones that offer the advantage of mutli-phase 
clocking and group pipelining. For each zone, a single 
potential would modulate the inter-dot barriers in all of the 
cells in a given zone. Such a clocking scheme allows one 
zone of QCA cells to perform a certain calculation, have its 
state frozen by the raising of inter-dot barriers, and then have 
the output of that zone act as the input to a successor zone. 

In a molecular implementation of QCA, the four phases 
of a clock signal would most likely take the form of time-
varying but repetitious voltages applied to silicon wires 
embedded underneath some substrate to which QCA cells 
were attached. Every fourth wire would receive the same 
voltage at the same time [8]. Neighboring wires see delayed 
forms of the same signal. The charge and discharge of the 
embedded silicon wires will move the area of activity (i.e. 
computation or data movement) across the molecular layer 
of QCA cells with computation occurring at the “leading 
edge” of the applied electric field. Computation moves 
across the circuit in a continuous “wave” [7]. 
 
2.2. Motivation for QCA CAD Research 
One might argue that it would be premature to perform any 
systems-level study of an emergent device while the physical 
characteristics of a device continue to evolve. However, it is 
important to note that many emergent, nano-scale devices are 
targeted for computational systems – and to date, most 
system-level studies have been proposed by physical 
scientists, and usually end with a demonstration of a 
functionally complete logic set or a simple adder. Useful and 
efficient computation will involve much more than this, and, 
in general, it is important to provide scientists with a better 
idea of how their devices should function. This coupling can 
only lead to an accelerated development of functional and 
interesting systems at the nano-scale. More specifically, with 
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QCA, chemists are currently preparing to test the self-
assembly process and its building blocks described in 
Section 2. Thus, our work can help provide the chemists 
with computationally interesting patterns – the real and 
eventual desired end result. 

 
3. QCA CELL PLACEMENT 
3.1. Problem Formulation 
QCA placement is divided into three steps: zone partitioning, 
zone placement, and cell placement. The purpose of zone 
partitioning is to decompose an input circuit such that a 
single potential modulates the inner-dot barriers in all of the 
QCA cells that are grouped within a clocking zone. Unless 
QCA cells are grouped into zones to provide zone-level 
clock signals, each individual QCA cell will need to be 
clocked. The wiring required to clock each cell individually 
would easily overwhelm the simplicity won by the inherent 
local interconnectivity of QCA architecture. However, 
because the delay of the biggest partition also determines the 
overall clock period, the size of each partition must also be 
determined carefully. In addition, four-phase clocking 
imposes a strict constraint on how to perform partitioning. 
The zone placement step takes as input a set of zones – with 
each zone assigned a clocking label obtained from zone 
partitioning. The output of zone placement is the best 
possible layout for arranging the zones on a two dimensional 
chip area. Finally, cell placement visits each zone to 
determine the location of each individual logic QCA cell—a 
cell used to build majority gates. Our prior work [13] 
includes zone partitioning and placement, and the focus of 
this work is on QCA cell placement. 

The input to the cell placement is zone placement result, 
where all logic/wire blocks at the same clocking level are 
placed in the same row. Then the output of cell placement is 
an arrangement of QCA cells in each logic block such that 
the wire length, wire crossing, and congestion are minimized 
while satisfying the timing, area, signal direction, terminal 
constraints as well as QCA specific design rules. The 
reconvergent path problem does not exist in cell 
placement—it is perfectly fine to have unbalanced 
reconvergent path lengths among the logic gates in each 
logic block. The reason is that correct output values will 
eventually be available at the output terminals in each block 
if the clock period is longer than the maximum path delay in 
each block. We determine the clock period based on the 
maximum path delay among all logic/wire blocks, so the 
reconvergent path problem does not exist anymore. 

However, the following set of constraints exists during 
QCA cell placement: (i) timing constraint: signal 
propagation delay from the beginning to the end of the zone 
should be kept under the clock period computed from zone 
partitioning (maximum zone delay), (ii) area constraint: the 
placement area/dimension for each logic block is fixed, (iii) 
terminal constraint: the IO terminals are located on the top 
and bottom boundaries of each logic block, (iv) signal 
direction constraint: the signal flow among the logic QCA 

cells needs to be unidirectional—from the input to the output 
boundary for each zone, and (v) design rules: we enforce 
various layout rules for QCA circuits including 
minimum/maximum cell/wire spacing and wire length, 
allowable cell off-centeredness and rotation, circuit densities, 
power dissipation, etc. The area and terminal constraints are 
inherited from zone partitioning and zone placement results. 
Each zone may have multiple inputs and multiple outputs, 
which requires that the topological ordering must match 
between the input and output of neighboring zones. The 
signal direction is caused by QCA’s clocking scheme, where 
an electric field E created by underlying CMOS wire is 
propagating in uni-directionally within each block. Thus, cell 
placement needs to be done in such a way to propagate the 
logic outputs in the same direction as E. 

 

3.2
In 
sign
ma
obt
uni
gat
the
alg
ver
any

-
I
I
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
I
-
 

 

334
-------------------------------------- 
NSERT-FT(G,V) 
F (V is not EMPTY) 
  W = V.POP(); 
  K = W.OUTDEGREE; 
  N = 0; 
  INSERT = FALSE;  
  WHILE(N < K) 
     If(W.CHILD(N).LEVEL>W.LEVEL+1) 
        INSERT = TRUE; BREAK; 
     N = N+1; 
  IF(INSERT) 
     L = NEW GATE; 
     L.SET_LEVEL(W.LEVEL + 1); 
     L.SETPARENT(W); 
     W.SETCHILD(L); 
     G.ADDVERTEX(L); 
     V.ADD(L); 
     WHILE(N<K AND K>0) 
        If(W.CHILD(N).LEVEL>W.LEVEL+1) 
           W.CHILD(N).REMOVEPARENT(W); 
           W.CHILD(N).ADDPARENT(L); 
           L.ADDCHILD(W.CHILD(N));  
           W.REMOVECHILD(W.CHILD(N)); 
           N = N–1;  
           K = K–1; 
        N = N+1; 
NSERT-FT(G,V); 
-------------------------------------- 

Figure 3: Feedthrough Insertion Algorithm 
 
 Construction of K-layer Bipartite Graphs 
order to satisfy the relative ordering and to satisfy the 
al direction constraint, the original graph G(V,E) is 

pped into a k-layered bipartite graph G’(V’,E’) which is 
ained by insertion of feed-through gates, where V’ is the 
on of the original vertex set V and the set of feed-through 
es, and E’ is the corresponding edge set. Figure 3 gives 
 pseudo-code for the recursive feed-through insertion 
orithm. In this algorithm, we traverse through every 
tex in the vertex set of the graph. For a given vertex, if 
 of the outgoing edges terminate at a vertex with 



 

topological order more than one level apart, a new feed-
through vertex is added to the vertex set. The parent of the 
feed-through is set to the current vertex, and all children of 
the current vertex which have a topological order difference 
of more than one is set as the children of the feed-through. 
We do not need to specifically worry about the exact level 
difference between the feed-through and the child nodes, 
since this feed-through insertion is a recursive process. This 
algorithm runs in O(ΚV’), where Κ is the degree of the graph 
vertex υ’ of the graph G’. Figure 4a shows the graph before 
feed-through insertion and Figure 4b shows the graph after 
feed-through insertion. A trivial result of this stage is that all 
short paths have a set of feed-throughs between the last 
logical gate in the path and last row. 
 

 
3.3 Row-folding Algorithm 
After the feed-through insertion stage, some rows in G’ may 
have more gates than the average number of gates per row. 
The row with the largest number of gates defines the width 
of the entire zone, and hence the width of the global column 
that the zone belongs to. This increases the circuit area by a 
huge factor. Hence, rows with a large number of cells are 
folded into two or more rows. This is done by inserting feed-
through gates in place of the logic gates and moving the 
gates to the next row. Row-folding decreases the width of the 
row since feed-throughs have a lower width than the gate it 
replaces. A gate, γ is moved into the next existing row if it 
belongs to the row that needs to be folded and all paths that γ 
belongs to contain at least one feed-through with a higher 
topological order than γ. The reason for the feed-through 
condition is that γ, along with all gates between γ and the 
feed-through can be pushed to a higher row, and the feed-
through can be deleted without violating the topological 
ordering constraint. Figure 5 shows the pseudo-code for 
testing if a gate can be moved into an existing row. The 
algorithm returns true if a node can be moved, and false if a 
new row has to be inserted. If this feed-through criterion is 
not met, and the row containing γ has to be folded, then a 
new row is inserted and γ is moved into that row.  

The number of gates that need to be moved from a row 
that needs folding to a new row is given by the following 
trivial calculation. Let η be the number of gates that need to 
be moved to the next row. Let µ be the original number of 

gates in the row, and let M be the maximum number of gates 
allowed in a row. Further, let α be the ratio of the width of a 
feed-through to the width of the gate. Since width of a gate is 
always greater than the width of a feed-through, α < 1. For 
every gate that is moved to a new row, a feed-through has to 
be inserted in its original place. Hence, after moving η to the 
next row, the width of the original row will now be µ–η+αη 
= M, so η = (µ–M)/(1–α). This calculation is repeated for the 
next row if η is itself greater than the constraint M. The 
principal reason for increasing the height of a zone rather 
than increasing the width of the zone is that the width of 
global column that the zone belongs to is much smaller than 
height of the column since the aspect ratio of the entire 
circuit layout is close to unity. 
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Figure 4. Before and after feed-through insertion. 
Shaded nodes indicate feed-throughs. 
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-----------------------------------
HECK_FT(G,W) 
F(W IS A FEEDTHROUGH) 
   RETURN TRUE; 
F(W.LEVEL = G.MAX_LEVEL) 
   RETURN FALSE; 
ETVAL = TRUE; 
 = W.OUTDEGREE; 
 = 0; 
HILE(RETVAL & I<K) 
   RETVAL = CHECK_FT(G,W.CHILD(I));
   I = I+1; 
ETURN RETVAL; 
-----------------------------------
 
ire length and Wire Crossing Minimization 
 end of the row-folding algorithm, we have a legal 
circuit. The next stage in the cell placement algorithm 
ptimize this layout to minimize the number of wire 
gs and net wire length. We investigated and compared 
lytical solution with a stochastic solution. We used the 
nter heuristic [9] for the analytical solution and 
ted annealing for the stochastic algorithm. The 
ical method only considers wire crossings since there 
rong correlation between wire length and number of 
rossings. 
 compute the net wire length in a circuit we traverse 
h every vertex and accumulate the difference between 
umn numbers of the vertex and all of its children. This 
 O(N), where N is the number of vertices. But, during 
st calculation, we store the sum of all outgoing wire 
s in every vertex. This enables us to incrementally 
 if the position of only one node changes. A node 
 change its row number since at this stage the 
gical level is fixed. If a node changes its position 
 a level, then it is enough to calculate the difference in 
n with respect to its neighbors alone. Hence, 
uent wire length calculation is reduced to O(K) where 
e node’s vertex degree.  
re crossing computation can be done with either the 
ncy list or matrix, depending on the sparseness of the 

Figure 5. Row folding algorithm 



 

graph. We used the adjacency matrix to compute the number 
of wire crossings in a graph. In a graph, there is a wire 
crossing between two layers v and u if vi talks to uj and vx 
talks to uy, where i, j, x, and y denote the relative positional 
ordering in the nodes, and either, i<x<j<y or i<x<y<j or 
x<i<y<j or x<i<j<y without loss of generality. In terms of 
an adjacency matrix, this can be regarded as if either the 
point (i,j) is in the lower left sub-matrix of (x,y) or vice versa, 
there is a crosstalk. Hence, our solution is to count the 
number of such occurrences. If this counting is done 
unintelligently, it can be in the order of O(n4). Our algorithm 
to compute the number of wire crossings runs in O(n2).  

 

 
Figure 6 shown and example of wire crossing 

computation. The graph in Figure 6a can be represented by 
the adjacency matrix shown in Figure 6b. The number of 
crossings in the diagram is 3. This can be obtained from the 
matrix by adding the product of every matrix element and 
the sum of its left lower matrix elements. i.e. the number of 
crossings = Σ(Aij×ΣΣAxy), where i+1<x<n and 1<y<j–1. This 
formula gives a good intuition of the process but is 
computationally very expensive. We illustrate our method of 
calculating the same result. First we take the row-wise sum 
of all entries. Then we compute the column-wise sum. 
Finally, we multiply all the entries in the matrix with its 
lower-left neighbor’s value and the sum of these products 
gives us the number of crossings. Then, we traverse through 
the original matrix and multiply every element with the 
element corresponding to its lower-left neighbor in the above 
matrix O(n2). i.e. A1×(-) + A2×(B´´1´´) + B3×(C´´2´´) + 
C1×(-) + D2×(-) = 3. In the simulated annealing process, 
when we swap two nodes in G”, it is identical to swapping 
the corresponding rows in the above matrices. Hence, it is 
enough if we just update the values of the rows in between 
the two rows that are being swapped. The pseudo-code for 
this incremental algorithm is given in Figure 7. 

 
 

3.5. Optimization Engine 
A widely used method for minimizing wire crossings in a 
graph [9] is to map the graph into a k-layer bipartite graph. 
The vertices within a layer are then permuted to minimize 
wire crossings. This method maps well to this problem as we 
need to only consider the latter part of the problem (since the 
clocking constraint yields us the k-layer bipartite graph). Still, 
even in a two-layer graph, minimizing wire-crossings is NP-
hard. Amongst many heuristics proposed to solve the one-
sided crossing minimization, the barycenter heuristic [9] has 
been found to be the best heuristic in the general case for this 
class of problems. Therefore, an analytical wire crossing 
minimization method based on the barycenter algorithm was 
implemented. 
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A 1 1 0
B 0 0 1
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Figure 6. Illustration of wire crossing computation. (a) 
given graph, (b) initial adjacency matrix, (c) row-wise 

sum, (d) column-wise sum. 
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-----------------------------------------
CALCXROWS(R1, R2, MATRIX) 
IF(R2<R1) 
   RETURN CALCXROWS(R2,R1,MATRIX); 
LET SUM = POS = NEG = DIFF = j = 0; 
WHILE(J < NumRows) 
   TEMP = DIFF; 
   I = R2-1; 
   WHILE(I > R1) 
      SUM = SUM + MATRIX[I][j]*(POS–NEG);
      DIFF = DIFF + MATRIX[i][j]; 
      I = I + 1; 
   SUM = SUM – MATRIX[R1][j]*(TEMP+NEG); 
   SUM = SUM + MATRIX[R2][j]*(TEMP+POS); 
   POS = POS + MATRIX[i][j]; 
   NEG = NEG + MATRIX[R2][j]; 
RETURN SUM; 
-----------------------------------------
 

Figure 7. Incremental wire-crossing computation.  

 

 In simulated annealing, a move is done by randomly 
oosing a level in the graph and then swapping two 
ndomly chosen gates [g1, g2] in that level in order to 
inimize the total wire length and wire crossing. In our 
plementation, the initial calculation of the wire length 

kes O(n) and updating wire crossing takes O(n2) where n is 
e number of nodes in a layer of the bipartite graph. In our 
proach, we initially compute the wire length and wire 
ossing and incrementally update these values after each 
ove so that the update can be done much faster as 
ustrated above. This speedup allows us to explore a greater 
mber of candidate solutions, and as a result, obtain better 
ality solutions. We set the initial temperature such that 
ughly 50% of the bad moves were accepted. The final 
mperature was chosen such that less than 5% of the moves 
ere accepted. We used three different cost functions. The 
rst cost function only optimized based on the net wire 
ngth. The second cost function evaluated the number of 
ire crossings, while the last cost function looked at a 
eighted combination of both. The weights used were the 
tio between the wirelength and the number of wire 
ossings obtained in the analytical solution.  

 



 

 
4. EXPERIMENTAL RESULTS 
Our algorithms were implemented in C++/STL, compiled 
with gcc v2.96 run on Pentium III 746 MHz machine. The 
benchmark set consists of six circuits from ISCAS89 and 
two circuits from ITC99 suites due to the availability of 
signal flow information. We performed cell placement for 
these circuits based on QCA’s structure and building blocks. 
There was an average of around 100±10 gates per partition 
in each of the circuits. Table 1 shows our cell placement 
results where we report net wire length and number of wire 
crossings for the circuits using our analytical solution and all 
three flavors of our simulated annealing algorithm. We 
further tried simulated annealing from analytical start, and 
the results were identical to analytical solution. We observe 
in general that analytical solution is better than all three 
flavors of the Simulated Annealing methods, except in terms 
of wire length in the case of the weighted Simulated 
Annealing process. But, the tradeoff in wire crossings makes 
the analytical solution more viable, since wire crossings pose 
a bigger barrier than wire length in QCA architecture. 

One interesting note is that when comparing amongst the 
three flavors of simulated annealing we find that simulated 
annealing with wire crossing minimization alone has the best 
wire crossing number, but surprisingly, in terms of wire 
length, the simulated annealing procedure with wire length 
alone as the cost function is not as good as the simulated 
annealing procedure which optimizes both wire length and 
wire crossing. We speculate that this behavior is because 
lower number of wire crossings has a strong influence on 
wire length, but smaller wire length does not necessarily 
dictate lower number of crossings in our circuits.  
 
5. CONCLUSIONS 
In this paper, we presented the first QCA cell placement 
algorithm. We are currently working on wire routing and 

node duplication for QCA circuits. A better picture of the 
QCA circuit design could be painted if we compare the 
results from QCA placement to the placement of a CMOS 
circuit with the same functionality, and our ongoing work 
focuses on this issue as well. 
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Table 1. Cell placement results. We report wirelength (wl) and wire crossing (wc) for 
both analytical and Simulated Annealing based methods. 

 
 Analytical SA+WL SA+WC SA+WL+WC 

ckts wl wc wl wc wl wc wl wc 
b14 5586 1238 28680 23430 54510 3740 5113 4948 
b15 9571 1667 23580 40400 69030 7420 8017 8947 

s13207 3119 548 14060 15530 30610 1450 3250 1982 
s15850 3507 634 18610 22130 42700 2140 3919 2978 
s38417 9414 1195 45830 48400 80240 7320 9819 9929 
s38584 19582 4017 59220 75590 140130 9820 20101 33122 
s5378 1199 156 6280 6690 13600 730 1344 841 
s9234 2170 205 10720 11540 23290 980 1640 2159 
Ave 4192 741 16980 19950 38950 2740 3880 6878 

Ratio 1.00 1.00 4.05 26.9 9.29 3.69 0.92 9.27 
runtime 180 604 11280 12901 
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