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ABSTRACT 
The paper presents the design of the Fixed Point Unit (FXU) for 
the IBM eServer z990 microprocessor (announced in 2Q ‘03) that 
runs at 1.2 GHz [2]. The FXU is capable of executing two 
Register-Memory instructions including arithmetic instructions 
and a branch instruction in a single cycle. The FXU executes a 
total of 369 instructions that operate on variable size operands (1 
to 256 bytes). The instruction set include decimal arithmetic with 
multiplies and divides, binary arithmetic, shifts and rotates, 
loads/stores, branches, long moves, logical operations, convert 
instructions, and other special instructions. The FXU consists of 
64-bit dataflow stack that is custom designed and a control stack 
that is synthesized. The current FXU is the first superscalar design 
for the CMOS z-series machines, has a new improved decimal 
unit, and has for the first time a 16x64 bit binary multiplier.   

Categories and Subject Descriptors 
C.5.3 [Computer System Organization]: Computer System 
Implementation - microprocessors. Fixed Point Unit. 

General Terms 
Performance, Design. 

Keywords 
Superscalar FXU. Microprocessor. 

 

 

 

 

 

1. INTRODUCTION 
High end microprocessor (CP) development teams use custom 
circuits for both the dataflow and control logic, and dynamic logic 
to achieve high Giga-Hertz frequencies (GHz). However, a 
custom designed macro requires stable logic and is difficult to 
modify if a late logic bug is found in the design. On the other 
hand, synthesized macros using parameterized standard cells tend 
to be slower and larger than custom designed macros. Using 
custom logic for the dataflow and synthesized macros for the 
control macros, the FXU design was able to reach the desired 
frequency while maintaining design flexibility in the control stack 
for late logic adjustments that results in a shorter turn-around time 
between development and RITs (Release Interface Tape).   

High speed synthesized macros are achieved by a “low-level” 
VHDL coding style and special tweaking of the synthesis and 
placement tools. These include macro decomposition, VHDL 
tuning for critical cones, logic restructuring, placement driven 
synthesis, dedicated wide wires, usage of tapered gates, and low 
Vt are all applied to our control macros to have the design meet 
its set objectives. The main objectives of the z990 FXU is to 
improve the execution cycles (or CPI) relative to previous FXU 
designs while meeting cycle time, area and power requirements. 
Other processor such as the Pentium 4 processor has an FXU 
design that targets high frequencies by concentrating on a subset 
of the instruction set and “critical” loops that are important for 
their workloads, but hurting the performance of other instructions 
[1]. For example, a small execution core with simple instructions 
within the FXU runs at double speed while a slower execution 
part of FXU runs at single speed and with higher execution 
latencies such as integer shift and rotate instructions which 
require up to 4 cycles of execution.  The presented FXU design 
has a 64-bit dataflow stack that allows a 64-bit addition with sign 
extension, rotation, and shifting along with condition code setting 
to be performed in a just single cycle. This is chosen because of 
the commercial work-loads that the z990 processor targets. 

This FXU design is the first superscalar processor for the CMOS 
z-series servers [2] [and has many other enhanced features over 
preceding designs [3-5]. These features include operand 
forwarding, condition code forwarding, muti-port instruction 
dispatch, enhanced decimal performance and a binary multiplier. 
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2. PIPELINE DESCRIPTION 
Table 1 shows the six pipeline stages for the processor. These 
stages do not include instruction fetch cycles (before Dcd stage) 
and check point cycles (after PA cycle). Dcd is the decode cycle 
when two instructions can be decoded in parallel. Stage C0 is the 
address generation cycle (address = base register + index register 
+  20-bit signed displacement). 

Table 1. Pipeline stages related to the FXU 

DcD C0 C1 (E-
1) 

C2 
(E0) 

E1 PA 

 
Cycles C1 and C2 are the memory cache access cycle and E1 
stage is the execution stage. PA stage is the put-away stage when 
the GPR and cache write buffer are updated. The execution stage 
of z990 processor is placed a cycle after the data cache return. 
This was necessary since the z990 processor executes register-
Memory and memory-memory instructions where one or both of 
the operands are from storage, and thus the instruction cannot be 
executed until the data is returned from the cache. The instruction 
dispatch occurs on the C1 (or E-1) stage which coincides with the 
D-cache access. During the E-1 cycle, the FXU controls receives 
the instruction text and any previously decoded bits and starts its 
own decoding to set the controls of the dataflow. During the E0 
stage the operands are read from the GPR or they are returned 
from storage and all data dependencies are resolved. During cycle 
E1, instructions are executed and the condition code is set. Also, 
branch resolution, and the final exception determination and 
exception type are decided in E1 stage. An instruction stays in E1 
stage as many cycles as is needed to finish its execution. Also, in 
the case of a D1-cache or translation miss, an instruction is held in 
the E1 stage until its data becomes available. If the instruction 
with a cache miss is the oldest instruction in a group, all 
instructions in that group are held in E1 stage. However, if the 
instruction with a miss is not the oldest, older instructions are 
allowed to complete and update architected facilities. Each one of 
stages E-1, E0, E1 and PA can be held without the need of 
instruction recycle or re-dispatch in order to achieve the best CPI.  
The FXU dataflow and control wraps the FXU results directly 
into the next executing group of instructions without any stalls or 
stages.   

3. FXU DATAFLOW 
The FXU consists of 4 execution pipes labeled R, X, Y and Z, 
where pipe R is a control pipe used for executing conditional 
branches. The dataflow stack, as shown in Figure 1, consists of 
three execution pipes (X, Y and Z), a General Purpose Register 
(GPR 32x64 bits), an Address Register File (AR 32x32 bits), and 
an operand buffer to hold data cache returns. The GPR has four 
64-bits read ports and two 64-bits write ports. The GPR updates 
occur on either a word boundary (32-bits) or double word 
boundary (64-bits). A write port can be used to update bits 0:31, 
bits 32:63, or bits 0:63 of the same GR. The same write port can 
also be used to update a pair of even-odd register with write port 
bits 0:31 updating even-GR bits 32:63 and write port bits 32:63 
updating odd-GR bits 32:63. The special write ports for the GPR 
are used to execute many architected instructions that operate on 
32-bits of a GR, 64-bits or a GR, or on 32-bits of even-odd GR 
pair.  The FXU also has 2 64-bits reads from the cache allowing 
two Register-Memory operations or single Memory-Memory 
instruction to be executed in any specific cycle.  Fetches from the 
cache can be made ahead of execution and the data returns are 
saved in the operand buffer until they are used by the instructions. 
The FXU dataflow also receives two inputs from the address 
generation in the dispatch unit (Addr. Gen. Outputs). Address 
generation is used for memory address calculation, load address 
calculations and branch target address calculations. Finally, the 
FXU has one 64-bit read port from architected control registers 
(RUbus).  Figure 2 shows a layout for the entire FXU. 
Pipes X and Y, which are almost identical, are used to execute 
most of the superscalar single cycle instructions. Each of these 
pipes  consist of a 64-bit binary adder/subtractor (Bin) with a built 
in byte sign extension, a 64-bit rotator  (Rot), a 64-bit bit-logical-
and-insert-under-mask (Blu) and a 64-bit mask generator used for 
shifts and merge instructions. The binary adder performs addition, 
subtraction as well as byte-size sign extension. For example, a 16 
or 32-bits signed number can be added/subtracted to/from a 64-
bits signed number in just a single execution cycle.  Pipe Z 
consists of a decimal arithmetic support unit, 16x64 bit binary 
multiplier and other miscellaneous logic. 

4. FXU EXECUTION 
The current FXU is the first superscalar design for the new 
CMOS generations of z990 processor, offers better performance 
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Figure 1. Block Diagram for the FXU dataflow stack. 
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for decimal arithmetic, better performance for various critical 
complex instructions with execution algorithms that target multi-
execution pipes, includes capabilities to alter execution behavior 
to alleviate logic bugs during processor testing in the lab as well 
as problems that may be encountered at the customer sites. 

The FXU executes a total of 369 instructions. The instruction set 
the FXU executes include load/stores, decimal arithmetic 
including multiply and divide, binary arithmetic, shifts and 
rotates, standard and multi-register loads/stores, branches, 
complex memory addressing, long moves, logical operations, 
convert instructions, and other special instructions necessary to 
support hardware virtualization and tightly coupled parallel 
processing. Most of the instructions executed in the FXU require 
one cycle of execution. 
The FXU design allows flexibility on grouping and dispatching of 
multi-cycle and/or complex instructions. It allows a multi-cycle 
execution instruction to be dispatched to one execution port but 
executed in multiple execution pipes without cracking the 
instruction and without limiting it to a single execution pipe. The 
dispatch unit dispatches the instruction to one of the FXU pipes, 
but replicates the instruction text information such as opcode to 
all of the execution pipes in parallel.  Few control signals are 
generated to control which pipes will be used for execution of the 
instruction.  The FXU then decides how the instruction is to be 
executed in the available FXU pipes. This provides the FXU with 
ability to utilize all the hardware resources, in all of the FXU 
execution pipes, for the execution of this instruction. This method 
results in optimum performance and little or no complication to 
the exception logic, error detection or recovery logic. It also 
places the flexibility of how these instructions will be executed in 
the FXU, where the actual execution takes place, instead of in the 
instruction dispatch unit (or compiler in the case of VLIW). 

 

Figure 2. Layout for the entire FXU. 
 
As mentioned earlier, the FXU has many capabilities that enhance 
the overall performance of the processor CPI.  Operand 
forwarding and result forwarding, for example, allow the 

grouping and dispatching of two dependent instructions together 
by forwarding the operand or result of the older instruction 
executing on pipe X to the younger instruction executing on pipe 
Y. The following are examples of the description and 
implementation of operand forwarding and result forwarding. 
Example 1: Cache data forwarding: This type of forwarding is 
used when the older instruction is a Load instruction to a GR-R1 
and the GR-R1 is needed by younger instruction. 
Instr. A (X-pipe) :  Load R1, R3   (R1  cache data) 
Instr. B (Y-pipe) :  Add R1, R2    (R1  R1 + R2) 
In this case, the instruction B gets the value of GR-R1 from the 
cache return data for instruction A instead of the GPR read data 
port. The dataflow of the FXU is modified so that the cache return 
for X-pipe is also an input to Y-pipe registers. 
Example 2: GR data forwarding: This type of forwarding is used 
when the older instruction is a Load register instruction to a GR-
R1 and the GR-R1 is needed in younger instruction as follows: 
Instr. A (X-pipe) :  Load R1, R3   (R1  R3) 
Instr. B (Y-pipe) :  Add R1, R2    (R1  R1 + R2) 
Instruction B is dependent on Instruction A. To solve dependency 
and group instructions together, the GR-read port for Instruction 
B is set to R3 instead of R1. 
Example 3: condition code forwarding:  
Instr. A (Y-pipe) :  Add R1, R2    (R1  R1 + R2, sets CC ) 
Instr. B (Y-pipe) :   LTR R1, R1   (R1  R1, sets CC ) 
Instructions A and B are dependent but are grouped together. To 
solve the dependency, instruction A is allowed to update the GR 
while instruction B update to the GR is suppressed. However, 
instruction B uses the result of instruction A to update the 
condition code. 

4.1 Decimal Assist Unit 
The decimal unit has many enhancements over the last generation 
unit [6]. The current decimal unit includes a 16 digit BCD 
adder/subtractor with sign insertion, conversion tables to convert 
between binary and BCD arithmetic formats and other support 
logic to perform packing and unpacking between BCD, ASCII 
and Unicode formats.  The current decimal unit can execute the 
add-instruction, subtract-instruction or compare-instruction in just 
3 cycles. It is also capable of performing decimal division and 
multiplication with variable size operands (size = 1 to 15 bytes). 
For decimal multiplication, leading zero count is performed on 
both operands, and the one with least number of non-zero digits is 
iterated upon. After initialization (4-6 cycles), each iteration in 
multiplication algorithm requires an average of 1.8 cycles The 
number of cycles required for the decimal division is dependent 
on the number of significant quotient digits with an average of 4.4 
cycles for each quotient digit. 

4.2 Binary Multiplication 
The current FXU has a binary multiplier than be configured to 
either perform a 16x32 signed multiplication or a 16x64 unsigned 
multiplication. The multiplier is pipelined with two stages. During 
the 1st stage, all partial products are generated and added to form 
two final products, and in the second stage the two products are 
added together to form the final result. The output of the 
multiplier feeds the output register and also wraps back to the 
input registers of pipes X, Y and Z. The wrapping paths are added 
to perform a quick and efficient implementation of long multiples. 
Table 2 shows the typical execution cycles for various multiply 

D
at

af
lo

w 

F in ish  
L o g ic  

R eg ister 
F ile  

T race  &  
In stru m en ta tio n  

O perand  
B uffe rs  

 
C

on
tr

ol  
L

og
ic 

366



instructions. A leading zero count is performed on both operands 
for long multiplies to potentially shorten the execution cycles. 
 

Table 2. Execution cycles for various multiply instructions. 

Instruction Result  operand size cycles 

MH, MHI, 32 16 x 32 2 

MGHI 64 16 x 64 2 

ML, MLR 64 32 x 32 (logical) 4 

M, MR 64 32 x 32 (signed) 4 

MLG, MLGR 128 64 x 64 (logical) 17 

 

5. FXU CONTROL STACK 
There are 12 unique custom macros and 19 control macros in a 
design area dimension of 8.6 mm by 11.5 mm.  A summary of the 
control macros are shown in Table 3. For typical control macros, 
the number of latches per unit area or area per k-cells is supposed 
to be the same. For decode macros, there tend to be more logic 
work (k-cells) done per latch. These numbers will be used to size 
future generation of the FXU and to perform power estimates 
based on area and latch count.  The control is decomposed into 19 
interacting macros (or state machines). The decomposition 
minimizes the overall macro crossing, eliminates macro crossing 
for timing critical logic cones, reduces the overall area, and 
allows multiple designers to work simultaneously on 
implementing different instructions. Control macros are not 
logically stable until very late in the design phase since additional 
functions and logic fixes are expected even days before sending 
the processor for manufacturing. A substantial effort is placed on 
structuring the control and altering the micro-architecture of some 
FXU states to meet cycle time.   

Table 3.  Statistic on FXU control macros. 

Number of macros 19 

Total number of latches 3984 

Total number of k-cells 488k 

Area per latch (mm^2 per 1000 latch) 11.3 

k-cells per latch 0.15 

 

6. FXU VERIFICATION 
Verification of the FXU in the z990 microprocessor proceeds at 
four basic levels defined by the breadth of logic being tested. The 
lowest level, designer macro verification, contains a single 
designer’s hardware description language (in VHDL). The usage 
of formal verification is incorporated in the macro level 
verification [7]. The second level is the unit-level verification, 
where the entire unit (many dataflow and control macros) is 
verified. The third level of verification is done at the 

microprocessor level. A strong architectural-level instruction 
stream test-case generator, AVPGEN is used for the unit level as 
well as for the CP level [8]. Finally, system level verification is 
performed on symmetric multiprocessor (SMP) configurations. A 
substantial time and effort is placed on unit-level simulation 
development and usage.  

7. CONCLUSION 
This paper presents the design challenges for the FXU in the z990 
enterprise microprocessor. The FXU dataflow supports executing 
two Register-memory instructions and a branch in a single cycle 
or a single memory-memory instruction with variable operand 
length. The FXU is also capable of executing decimal arithmetic 
instructions including multiplies and divides as well as binary 
multiples. The FXU in z990 processor improved the performance 
of decimal arithmetic, binary multiplies and other critical 
instructions. The FXU design includes advanced features such as 
operand forwarding that allows dependent instructions to be 
grouped and dispatched simultaneously. Finally, verification of 
the FXU is quite challenging that required multiple levels of 
verification by using random-based and formal verification. 
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