

Hardware Architecture and FPGA Implementation
of a Type-2 Fuzzy System

Miguel A. Melgarejo R.

Laboratory for computational intelligence (LAMIC)
Universidad Distrital FJC
Bogotá D.C, Colombia

mmelgarejo@udistrital.edu.co

Carlos A. Peña-Reyes
Logic Systems Laboratory (LSL)

Swiss Federal Institute of Technology at Lausanne, EPFL
Lausanne, Switzerland
carlos.pena@epfl.ch

ABSTRACT.
This paper presents an architectural proposal for a hardware-based
interval type-2 fuzzy inference system. First, it presents a
computational model which considers parallel inference processing
and type reduction based on computing inner and outer bound sets.
Taking into account this model, we conceived a hardware
architecture with several pipeline stages for full parallel execution
of type-2 fuzzy inferences. The architectural proposal is used for
specifying a type-2 fuzzy processor with reconfigurable rule base,
which is implemented over FPGA technology. Implementation
results show that this processor performs more than 30 millions of
type-2 fuzzy inferences per second.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and design styles – algorithms
implemented in hardware, gate arrays.

General Terms: Design, Experimentation.
Keywords: Type-2 fuzzy logic, interval type-2 fuzzy systems,
fuzzy hardware, distributed arithmetic, FPGA.

1 INTRODUCTION
Type-2 fuzzy logic is an emergent research field. It has been
demonstrated that type 2 fuzzy systems are capable of dealing with
noisy training data, noisy measurements and multiple meanings of
linguistic categories [1]. As a matter of fact, type-2 fuzzy logic is a
better choice than traditional fuzzy logic for handling phenomena
which are both non linear and stochastic [1,2].
Several applications of type-2 fuzzy logic have been recently
addressed [3,4]. Some of them require high processing speed so as
to operate in real-time. In this sense, it is convenient to implement
hardware-based type-2 fuzzy systems.
To the best of our knowledge, currently there is no hardware
realization of type-2 fuzzy systems. It has been proposed a computational
model and a hardware architecture for an Interval Type-2 Fuzzy Logic
System (IT2FLS) [12]. This architecture includes the typical stages of an
IT2FLS [1]: fuzzification, inference engine and type reduction, which is
based on the computation of inner and outer bound sets, the so called Wu-
Mendel closed forms [5].

In this paper, several methodological aspects related to hardware
implementation of digital type-1 fuzzy systems are revised [6,7,9] in
order to conceive the architecture of the fuzzification and the

inference engine stages. For type-reduction, we propose the use of
Distributed Arithmetic (DA) to compute the Wu-Mendel closed
forms [13]. Due to the inherently parallel nature of an IT2FLS, we
consider pipelined parallel organization in order to guarantee the
speed performance of the final implementation.
A type-2 fuzzy processor is designed based on the proposed
architecture. It is conceived to have up to eight type-2 fuzzy sets per
input and nine type-2 singletons sets at the output. It is implemented
onto an FPGA (Field Programmable Gate Array).
This paper is organized as follows: Section 2 describes the
considered computational model. Our architecture is explained in
Section 3. Implementation results are presented in Section 4. We
draw conclusions in Section 5.

 2. COMPUTATIONAL MODEL
A type-2 fuzzy system is a rule-based fuzzy system that uses type-2
membership functions to describe its linguistic variables. A fuzzy
system is interval type-2 (IT2) as long as any of its antecedent or
consequent sets is IT2 [1,2].
Selecting a computational model for processing type-2 fuzzy
inferences has a considerable impact on the performance that a
hardware implementation could offer. Regarding the block diagram
presented in Figure 1, we consider an inference execution model
that performs the following tasks:

2.1 Type-2 fuzzification
The first operation in the logic section is fuzzification, which maps a
crisp value into a type-2 fuzzy set [1,2]. An example of singleton
fuzzification over an IT2 fuzzy set is presented in Figure 2. For each
point of the universe of discourse, two membership levels are
computed, one called upper membership value which is obtained
from the upper membership function, and the other called lower
membership value which is obtained from the lower membership
function. In this computational model, Singleton fuzzification is
selected as it is the simplest method. The acquisition of several
inputs to be fuzzified, as well as their upper and lower fuzzification
can be performed in parallel. As long as the acquisition of each
input is independent on the others, they can be acquired and
fuzzified simultaneously.

2.2 Inference engine
This stage operates according to a set of rules. The rule base does
not depend on the nature of fuzzy sets. Consequently, it is processed
exactly as in type-1 fuzzy systems [1,2]. The inference engine
combines and computes the rules and gives a mapping from type-2
fuzzy antecedent sets to type-2 fuzzy consequent sets.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26-28, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-853-9/04/0004...$5.00.

458

Figure 1. Block diagram of a type-2 fuzzy inference system.

There exists several choices to perform the antecedent and
consequent operations required by the inference engine [1]. The
inference process for a single rule, shown in Figure 2, proceeds as
follows:
1. The upper and lower membership values are t-normed—using

the minimum operator—in order to obtain, respectively, the
upper and lower firing values, if and if .

2. The upper and lower membership functions of the consequent
fuzzy set are t-normed respectively with the firing values if
and if so as to obtain an output type-2 fuzzy set.

In our computational model, the antecedent and consequent
operations are computed separately for each rule. Here again, a
hardware implementation can exploit parallelism as several rules
can be processed simultaneously and their firing intervals calculated
by parallel computation of the t-norms of the upper and lower
membership values.

2.3 Type reduction
Type reduction is obtained by applying Zadeh’s extension principle
to defuzzification. It represents a mapping of a type-2 fuzzy set into
a type-1 fuzzy set [1,2]. In this sense, type reduction searches the
best type-1 fuzzy set that represents a type-2 set. It is possible to
propose an equivalent type reducer for each defuzzification method.
Type reduction of general type-2 fuzzy sets is computationally
expensive. Two algorithmic procedures for computing type
reduction have been proposed for IT2 fuzzy sets: the Karnick-
Mendel iterative procedure [1] and the Wu-Mendel closed forms[5].

Figure 2. An example of fuzzification and inference process

The former method provides an exact computation of type reduction
but it is computationally costly, so it is not well suited for hardware
implementation. The latter method finds bound sets for the output
type reduced set of an IT2FLS [5]. This computation is performed
by means of several closed expressions, so it is a better option for
hardware realization.
The result of type reducing an IT2 fuzzy set is an interval type-1
fuzzy set [1,2], so computing type reduction consists on calculating
the interval [yl, yr]. Due to uncertainty, yr could lie in the interval
[]rr

yy , , while yl in [
ll

yy ,]. Two interval type-1 fuzzy sets can

be defined: the inner bound set [
ly ,

r
y] and the outer bound set

[
l

y , ry]. The terms yl and yr are approximated by:

)2(
2

~)1(
2

~
r

r
r

ll
l

yy
y

yy
y

+
=

+
= .

The defuzzified point is calculated as the average of ly~ and ry~ .

Taking into account that an IT2FLS can be viewed as a collection of
embedded type-1 fuzzy systems [1,5], it is possible to obtain ly~

and ry~ by computing four of those systems, called boundary type-
1 fuzzy logic systems. Particularly for height-type reduction these
systems are computed as follows:

)4(

)3(

1

1)0()(

1

1)()0(

∑

∑

∑

∑

=

=

= −

= −

==

==

M

i

M

i

il

r
M

l

M

i

i

M

i

ii

M
rl

f

yf
yy

f

yf
yy

The inner bound set is obtained from (3) and (4) as :

{ }
{ })6(,max

)5(,min
)()0(

)()0(

M
rrr

M
lll

yyy
yyy

=

=

while the outer bound set is obtained as follows:

)8(..1
)()(

)()()(

)7(..1
)()(

)()()(

1

1

1

1

Mi
yyfyyf

yyfyyf

ff

ff
yy

Mi
yyfyyf

yyfyyf

ff

ff
yy

i i

iMiii

i i

iMiii

i i

ii

i

i

i

rr

i i

iMiii

i i

iMiii

i i

ii

i

i

i

ll

=
−+−

−−
×

−
+=

=
−+−

−−
×

−
−=

∑ ∑

∑ ∑

∑ ∑

∑

∑ ∑

∑ ∑

∑ ∑

∑

Our computational model applies height type reduction as it is, the
simplest method. Usually yi is chosen as the point with the highest
primary membership value in the upper membership function of the
respective consequent set.
If the terms yL-yi and yi-y1 are considered as the coefficients of linear
combinations involved in expressions (7) and (8), there is a
coefficient sharing between several of those linear combinations.
This is an important fact that should be taken into account for
reducing silicon area in parallel-hardware implementation. Even
though two dedicated processors are necessary for computing yl and
yr, they could share hardware components taking advantage of the
similarity between the involved expressions.

459

Figure 3. Proposed hardware architecture.

3. HARDWARE ARCHITECTURE
Figure 3 depicts our hardware architecture, conceived for digital
hardware implementation, of an IT2FLS. The architecture is
specified to have two inputs and one output as well as a rule base
of maximum M rules. It accepts a maximum of M consequent
singleton sets and S antecedent IT2 fuzzy sets per input. According
to the computational model described in the previous section, it is
organized as a cascade of three pipeline stages. The first stage
consists of the fuzzification units, which perform parallel singleton
fuzzification for all antecedent sets. In the second stage, there is an
array of M configurable rule-computing units, each computing a
firing interval. The last pipeline stage computes height type
reduction using the Wu-Mendel closed forms. Following, we detail
the methodological aspects taken into account to conceive each
stage.

3.1 Fuzzification stage
Memory-based fuzzification is the most used computational method
in digital type-1 fuzzy processors [6,9]. It allows to implement any
membership function shape and provides low fuzzification-
computing times being, thus, appropriate for high speed fuzzy
processing. However, the depth of the memories growths
exponentially with the desired resolution.
Given that most of the recent reconfigurable technologies (i.e.
CPLDs, FPGAs, etc) have dedicated memory arrays, we choose a
memory-based look up table scheme to perform fuzzification. The
width and depth of the memories are selected according to an
accuracy criterion [9]. We propose to use one memory (marked
FOU in Figure 3) to perform all the entire fuzzification process for
one set: each type-2 fuzzy set is represented by means of its upper
and lower membership functions. Suppose the memory width is Q
bits (where Q should be a multiple of two), so the values of the
lower bound are stored in the less significant Q/2 bits of the
memory, while the upper bound values are stored in the Q/2 most
significant bits.

The values of the two inputs are stored using two registers. The
width W of those registers depends on the selected memory depth
D, where)(2 DLogW = . Each input is fuzzified by addressing
the memories of its associated fuzzification units with the output
of the corresponding register. Note that fuzzification for both inputs
is performed in parallel over all the antecedents sets.

3.2 Rule-computation units
The rule computation units use minimum t-norm for performing
type-2 fuzzy inferences. This minimum t-norm is the most used in
digital type-1 fuzzy processors as it is a better option than product t-
norm for hardware implementation [6,7]. Indeed, minimum
operators demands less hardware resources than multipliers do and
they introduce a lower delay in the critical path of the final
implementation leading to a better speed performance.

3.3 Type reducer and bound sets averaging
The hardware realization of height-type reduction is the key point
of our architectural proposal. It is divided in seven pipelined stages,
as shown in Figure 4, producing a total latency of nine clock cycles.
The first stage computes the linear combinations required by the
Wu-Mendel closed forms. It is divided in five functional blocks,
which calculate the linear combinations with shared coefficients
and the sums of the upper and lower firing values. Distributed
Arithmetic is extended in order to compute these linear
combinations [13].
The following stages complete the computation of the closed forms.
The boundary systems as well as the right terms of expressions (7)
and (8) are computed between pipeline stages Pipe 2 and Pipe 5
(see Figure 4). Here, operations are performed by using fixed point
arithmetic, and all components have one cycle latency for full
parallel operation. When this kind of arithmetic is used, it is
necessary to introduce integer scaling for both divisions and
multiplications [11].

460

Figure 4. Hardware architecture of the height type reducer.

Table I. Implementation results XC2V3000ff1152-4 FPGA

Parameter Value
Operation
Frequency

33.789 MHz

Slices 2065 (14%)
18Kb RAM
BLOCKs

Fuzzification
DA schemes
Reciprocals

56 (58%)
16
24
16

Multipliers (18x18) 56 (58%)
IOBs 44 (6%)

4. A FPGA BASED TYPE-2 FUZZY
CO-PROCESSOR
A type-2 fuzzy co-processor was designed according to our
architectural proposal. It was specified for two 8-bit inputs, one
output (32-bit), a rule base of maximum nine rules and a maximum
of nine output singleton sets.
Some performance figures of this processor, referred to the
XC2V3000ff1152-4 FPGA, are provided in table I. One can
observe the following from the table:
1. Due to the parallel organization considered in the architectural

proposal, the speed processing, measured in millions of type-2
fuzzy inferences per second, coincides with the achieved
operation frequency.

2. This processor might be implemented into a smaller target
FPGA, provided that it has enough memory resources.

5. CONCLUSIONS
We have presented an architectural proposal intended to implement
a type-2 fuzzy inference system using reconfigurable hardware.
In a first methodological step, the analysis of an interval type-2
fuzzy system led us to the definition of an inference execution

model, whose main features are: (1)division of the inference
process in several phases that can be executed concurrently and (2)
adoption of the Wu-Mendel closed forms for type reduction, which
can be cost-effectively implemented in hardware.
Then, we conceived our architectural proposal taking into account
the aforementioned execution model. This architecture has several
pipeline stages in which inference processing phases are performed
in parallel. We proposed the use of Distributed Arithmetic for
implementing type reduction in hardware.
A type-2 fuzzy co-processor was then successfully synthesized and
tested over a FPGA target technology. Its processing speed reaches
30 millions of type-2 fuzzy inferences per second.

REFERENCES
[1] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems ,
introduction and new directions, Prentice Hall PTR, Upper Saddle
River, NJ, 2001.
[2] Q. Liang and J. Mendel, Interval type-2 fuzzy logic systems:
theory and design, IEEE Trans. on Fuzzy Systems, Vol 8. pp 535-
550, Oct. 2000.
[3] Q. Liang, N. Karnik, J.M. Mendel, Connection admission
control in ATM networks using survey based type-2 fuzzy logic
systems, IEEE Trans. Systems, Man, and Cybernetics, Vol 30, pp
329-339, Aug. 2000.
[4] Q. Liang, N. Karnik, J.M. Mendel, Equalization of nonlinear
time-varying channels using type-2 fuzzy adaptive filters, IEEE.
Trans. on Fuzzy Systems, Vol. 8, No. 5, pp 551-563, Oct 2000.
[5] H. Wu, J. Mendel, Uncertainty bounds and their use in the
design of interval type 2 fuzzy logic systems, IEEE Trans. on Fuzzy
Systems, October 2002, pp. 622–639.
[6] I. Baturone et al.,Microelectronic design of fuzzy logic based
systems, CRC Press , March , 2000.
[7] G Ascia, V. Catania and M. Russo , “ VLSI Hardware
Architecture for Complex Fuzzy Systems”, IEEE Transactions on
Fuzzy Systems, October 1999, pp. 553-570.
[8] S. A. White, “Applications of Distributed Arithmetic to
Digital Signal Processing: A tutorial Review”, IEEE ASSP
Magazine, Vol. 6 No 3, 1989.
[9] Djuro G., Jaime and Bo, “Hardware implementations of fuzzy
membership functions, operations, and inference”, Computers &
Electrical Engineering, Volume 26, Issue 1, 17 January 2000,
Pages 85-105.
[10] Kurt Baundendistel, “An improved method of scaling for real-
time signal processing applications”, IEEE Transactions on
Education, Vol. 3, No. 3, August 1994.
[11] S.F Obermann, M. J Flynn, “Division algorithms and
implementations”, IEEE Transactions on Computers, Vol. 46,
Issue: 8, Aug. 1997, pp 833-854.
[12] M. Melgarejo, C. A. Peña-Reyes, A. García, “Computational
model and architectural proposal for a hardware type-2 fuzzy
system“, 2nd IASTED Conference on Neural Network and
Computational Intelligence(NCI 2004), Grindelwald, Switzerland,
February 2004.
[13] M. Melgarejo, A. García, C. A. Peña-Reyes, “Architectural
proposal an hardware implementation of a type-2 fuzzy system”, X
workshop IBERCHIP IWS 2004, Cartagena , Colombia, March,
2004.

461

	Main Page
	GLSVLSI'04
	Front Matter
	Table of Contents
	Author Index

