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ABSTRACT.  
This paper presents an architectural proposal for a hardware-based 
interval type-2 fuzzy inference system. First, it presents a 
computational model which considers parallel inference processing 
and type reduction based on computing inner and outer bound sets. 
Taking into account this model, we conceived a hardware 
architecture with several pipeline stages for full parallel execution 
of type-2 fuzzy inferences. The architectural proposal is used for 
specifying a type-2 fuzzy processor with reconfigurable rule base, 
which is implemented over FPGA technology.  Implementation 
results show that this processor performs more than 30 millions of 
type-2 fuzzy inferences per second.  
 
Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and design styles – algorithms 
implemented in hardware, gate arrays.  

General Terms: Design, Experimentation.  
Keywords: Type-2 fuzzy logic, interval type-2 fuzzy systems, 
fuzzy hardware, distributed arithmetic, FPGA. 
 
1 INTRODUCTION 
Type-2 fuzzy logic is an emergent research field. It has been 
demonstrated that type 2 fuzzy systems are capable of dealing with 
noisy training data, noisy measurements and multiple meanings of 
linguistic categories [1]. As a matter of fact, type-2 fuzzy logic is a 
better choice than traditional fuzzy logic for handling phenomena 
which are both non linear and stochastic [1,2]. 
Several applications of type-2 fuzzy logic have been recently 
addressed [3,4]. Some of them require high processing speed so as 
to operate in real-time. In this sense, it is convenient to implement 
hardware-based type-2 fuzzy systems. 
To the best of our knowledge, currently there is no hardware 
realization of type-2 fuzzy systems. It has been proposed a computational 
model and a hardware architecture for an Interval Type-2 Fuzzy Logic 
System (IT2FLS) [12]. This architecture includes the typical stages of an 
IT2FLS [1]: fuzzification, inference engine and type reduction, which is 
based on the computation of inner and outer bound sets, the so called Wu-
Mendel closed forms [5]. 

In this paper, several methodological aspects related to hardware 
implementation of digital type-1 fuzzy systems are revised [6,7,9] in 
order to conceive the architecture of the fuzzification and the 

inference engine stages. For type-reduction, we propose the use of 
Distributed Arithmetic (DA) to compute the Wu-Mendel closed 
forms [13]. Due to the inherently parallel nature of an IT2FLS, we 
consider pipelined parallel organization in order to guarantee the 
speed performance of the final implementation. 
A type-2 fuzzy processor is designed based on the proposed 
architecture. It is conceived to have up to eight type-2 fuzzy sets per 
input and nine type-2 singletons sets at the output. It is implemented 
onto an FPGA (Field Programmable Gate Array).  
This paper is organized as follows: Section 2 describes the 
considered computational model. Our architecture is explained in 
Section 3. Implementation results are presented in Section 4. We 
draw conclusions in Section 5. 
 
 2. COMPUTATIONAL MODEL 
A type-2 fuzzy system is a rule-based fuzzy system that uses type-2 
membership functions to describe its linguistic variables. A fuzzy 
system is interval type-2 (IT2) as long as any of its antecedent or 
consequent sets is IT2 [1,2]. 
Selecting a computational model for processing type-2 fuzzy 
inferences has a considerable impact on the performance that a 
hardware implementation could offer. Regarding the  block diagram 
presented in Figure 1, we consider an inference execution model 
that performs the following tasks: 
 
2.1  Type-2 fuzzification 
The first operation in the logic section is fuzzification, which maps a 
crisp value into a type-2 fuzzy set [1,2]. An example of singleton 
fuzzification over an IT2 fuzzy set is presented in Figure 2. For each 
point of the universe of discourse, two membership levels are 
computed, one called upper membership value which is obtained 
from the upper membership function, and the other called lower 
membership value which is obtained from the lower membership 
function. In this computational  model, Singleton fuzzification is 
selected as it is the simplest method. The acquisition of several 
inputs to be fuzzified, as well as their upper and lower fuzzification 
can be performed in parallel. As long as the acquisition of each 
input is independent on the others, they can be acquired and 
fuzzified simultaneously. 

2.2 Inference engine  
This stage operates according to a set of rules. The rule base does 
not depend on the nature of fuzzy sets. Consequently, it is processed 
exactly as in type-1 fuzzy systems [1,2]. The inference engine 
combines and computes the rules and gives a mapping from type-2 
fuzzy antecedent sets to type-2 fuzzy consequent sets. 
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Figure 1. Block diagram of a type-2 fuzzy inference system. 

 
There exists several choices to perform the antecedent and 
consequent operations required by the inference engine [1]. The 
inference process for a single rule, shown in Figure 2, proceeds as 
follows: 
1. The upper and lower membership values are t-normed—using 

the minimum operator—in order to obtain, respectively, the 
upper and lower firing values, if  and if . 

2. The upper and lower membership functions of the consequent 
fuzzy set are t-normed respectively with the firing values if  
and if  so as to obtain an output type-2 fuzzy set. 

In our computational model, the antecedent and consequent 
operations are computed separately for each rule. Here again, a 
hardware implementation can exploit parallelism as several rules 
can be processed simultaneously and their firing intervals calculated 
by parallel computation of the t-norms of the upper and lower 
membership values. 
 
2.3  Type reduction 
Type reduction is obtained by applying Zadeh’s extension principle 
to defuzzification. It represents a mapping of a type-2 fuzzy set into 
a type-1 fuzzy set [1,2]. In this sense, type reduction searches the 
best  type-1 fuzzy set that represents a type-2 set. It is possible to 
propose an equivalent type reducer for each defuzzification method.  
Type reduction of general type-2 fuzzy sets is computationally 
expensive. Two algorithmic procedures for computing type 
reduction have been proposed for IT2 fuzzy sets: the Karnick-
Mendel iterative procedure [1] and the Wu-Mendel closed forms[5]. 
 
 

 
Figure 2. An example of fuzzification and inference process 

The former method provides an exact computation of type reduction 
but it is computationally costly, so it is not well suited for hardware 
implementation. The latter method finds bound sets for the output 
type reduced set of an IT2FLS [5]. This computation is performed 
by means of several closed expressions, so it is a better option for 
hardware realization. 
The result of type reducing an IT2 fuzzy set is an interval type-1 
fuzzy set [1,2], so computing type reduction consists on calculating 
the interval [yl, yr]. Due to uncertainty, yr could lie in the interval 
[ ]rr

yy , , while yl in [
ll

yy , ]. Two interval type-1 fuzzy sets can 

be defined: the inner bound set [
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y ] and the outer bound set  

[
l

y , ry ]. The terms yl  and yr are approximated by: 

)2(
2

~)1(
2

~
r

r
r

ll
l

yy
y

yy
y

+
=

+
= . 

The defuzzified point is calculated as the average of  ly~  and ry~ .  

Taking into account that an IT2FLS can be viewed as a collection of 
embedded type-1 fuzzy systems [1,5], it is possible to obtain ly~  

and  ry~  by computing four of those systems, called boundary type-
1 fuzzy logic systems. Particularly for height-type reduction these 
systems are computed as follows: 
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The inner bound set is obtained from (3) and (4) as : 
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while the outer bound set is obtained as follows: 
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Our computational model applies height type reduction as it is, the 
simplest method. Usually yi is chosen as the point with the highest 
primary membership value in the upper membership function of the 
respective consequent set. 
If the terms yL-yi and yi-y1 are considered as the coefficients of linear 
combinations involved in expressions (7) and (8), there is a 
coefficient sharing between several of those linear combinations. 
This is an important fact that should be taken into account for 
reducing silicon area in parallel-hardware implementation. Even 
though two dedicated processors are necessary for computing yl and 
yr, they could share hardware components taking advantage of the 
similarity between the involved expressions. 
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Figure 3.  Proposed hardware architecture. 
 
3. HARDWARE ARCHITECTURE 
Figure 3 depicts our hardware architecture, conceived for digital 
hardware implementation, of an IT2FLS. The architecture is 
specified to have two inputs and one output as well as a rule base 
of maximum M rules. It accepts a maximum of M consequent 
singleton sets and S antecedent IT2 fuzzy sets per input. According 
to the computational model described in the previous section, it is 
organized as a cascade of three pipeline stages. The first stage 
consists of the fuzzification units, which perform parallel singleton 
fuzzification for all antecedent sets. In the second stage, there is an 
array of M configurable rule-computing units, each computing a 
firing interval. The last pipeline stage computes height type 
reduction using the Wu-Mendel closed forms. Following, we detail 
the methodological aspects taken into account to conceive each 
stage. 
 
3.1  Fuzzification stage 
Memory-based fuzzification is the most used computational method 
in digital type-1 fuzzy processors [6,9]. It allows to implement any 
membership function shape and provides low fuzzification-
computing times being, thus, appropriate for high speed fuzzy 
processing. However, the depth of the memories growths 
exponentially with the desired resolution. 
Given that most of the recent reconfigurable technologies (i.e. 
CPLDs, FPGAs, etc ) have dedicated memory arrays, we choose a 
memory-based look up table scheme to perform fuzzification. The 
width and depth of the memories are selected according to an 
accuracy criterion [9]. We propose to use one memory (marked 
FOU in Figure 3) to perform all the entire fuzzification process for 
one set: each type-2 fuzzy set is represented by means of its upper 
and lower membership functions. Suppose the memory width is Q 
bits ( where Q should be a multiple of two ), so the values of the 
lower bound are stored in the less significant Q/2 bits of the 
memory, while the upper bound values are stored in the Q/2 most 
significant bits.  

The values of the two inputs are stored using two registers. The 
width W of those registers depends on the selected memory depth 
D, where )(2 DLogW = . Each input is fuzzified by addressing 
the memories of its associated fuzzification units with the output  
of the corresponding register. Note that fuzzification for both inputs 
is performed in parallel over all the antecedents sets. 
 
3.2 Rule-computation units 
The rule computation units use minimum t-norm for performing 
type-2 fuzzy inferences. This minimum t-norm is the most used in 
digital type-1 fuzzy processors as it is a better option than product t-
norm for hardware implementation [6,7]. Indeed, minimum 
operators demands less hardware resources than multipliers do and 
they introduce a lower delay in the critical path of the final 
implementation leading to a better speed performance. 
 
3.3 Type reducer and bound sets averaging 
The hardware realization of height-type reduction is the key point 
of our architectural proposal. It is divided in seven pipelined stages, 
as shown in Figure 4, producing a total latency of nine clock cycles. 
The first stage computes the linear combinations required by the 
Wu-Mendel closed forms. It is divided in five functional blocks, 
which calculate the linear combinations with shared coefficients 
and the sums of the upper and lower firing values. Distributed 
Arithmetic is extended in order to compute these linear 
combinations [13].  
The following stages complete the computation of the closed forms. 
The boundary systems as well as the right terms of expressions (7) 
and (8) are computed between pipeline stages Pipe 2 and Pipe 5 
(see Figure 4). Here, operations are performed by using fixed point 
arithmetic, and all components have one cycle latency for full 
parallel operation. When this kind of arithmetic is used, it is 
necessary to introduce integer scaling for both divisions and 
multiplications [11]. 
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Figure 4. Hardware architecture of the height type reducer. 
 
Table I. Implementation results XC2V3000ff1152-4 FPGA 
 

Parameter Value 
Operation 
Frequency 

33.789 MHz 

Slices 2065 (14%) 
18Kb RAM 
BLOCKs 

Fuzzification 
DA schemes 
Reciprocals 

56 (58%) 
16 
24 
16 

Multipliers (18x18) 56 (58%) 
IOBs 44 (6%) 

 
4. A FPGA BASED  TYPE-2 FUZZY  
CO-PROCESSOR 
A type-2 fuzzy co-processor was designed according to our 
architectural proposal. It was specified for two 8-bit inputs, one 
output (32-bit), a rule base of maximum nine rules and a maximum 
of nine output singleton sets.  
Some performance figures of this processor, referred to the 
XC2V3000ff1152-4 FPGA, are provided in table I. One can 
observe the following from the table: 
1. Due to the parallel organization considered in the architectural 

proposal, the speed processing, measured in millions of type-2 
fuzzy inferences per second, coincides with the achieved 
operation frequency. 

2. This processor might be implemented into a smaller target 
FPGA, provided that it has enough memory resources. 

 
5. CONCLUSIONS 
We have presented an architectural proposal intended to implement 
a type-2 fuzzy inference system using reconfigurable hardware.  
In a first methodological step, the analysis of an interval type-2 
fuzzy system led us to the definition of an inference execution 

model, whose main features are: (1)division of the inference 
process in several phases that can be executed concurrently and (2) 
adoption of the Wu-Mendel closed forms for type reduction, which 
can be cost-effectively implemented in hardware. 
Then, we conceived our architectural proposal taking into account 
the aforementioned execution model. This architecture has several 
pipeline stages in which inference processing phases are performed 
in parallel. We proposed the use of Distributed Arithmetic for 
implementing type reduction in hardware.  
A type-2 fuzzy co-processor was then successfully synthesized and 
tested over a FPGA target technology. Its processing speed reaches 
30 millions of type-2 fuzzy inferences per second.  
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