
A PRACTICAL UNDERGRADUATE INTRODUCTION TO SOFTWARE ENGINEERIN G

John Forema n

Texas Instruments, Inc .
Lewisville, Texa s

ABSTRACT

liuch has been

	

written

	

about

	

prope r
software engineering methods and how t o
teach these

	

techniques

	

to

	

students .
Several

	

authorities have analyzed our
present techniques as needing significan t
improvement [1] .

	

This paper discusses a
practically oriented introduction t o
software engineering aimed at introducin g
students to sound development habits and

life-cycle

	

thinking

	

early

	

in

	

thei r
careers .

INTRODUCTION

Computer Science 360, Software Engineerin g
Fundamentals, is a 1 semester, 3 hou r
course taught at the U . S . Air Force
Academy (USAFA) whose rather genera l
purpose was the initial transition o f
computer science majors into

	

computer

professionals .

	

During the Fall 1979 and
Spring 1960 semesters, during which I
directed

	

the

	

course,

	

topics covere d

included :

	

program development

	

in

	

an
interactive environment, advance d
programming, COBOL, static and dynami c
data structures, algorithm development ,
and software engineering concepts

	

and

principles .

The students in this course wer e
predominantly sophomores or juniors, ha d
at least taken the compulsory introductor y

Computer

	

Science

	

course,

	

and

	

migh t
concurrently

	

be

	

enrolled

	

in

	

an

architecture course . Enrolled students
had programmed in Burroughs Algol in the
compulsory introductory Computer Scienc e
course ; Algol and Pascal would be used i n
subsequent courses .

	

COBOL usage in th e
military was the prime reason for its us e

here . In my opinion, COBOL did not caus e
any major problems to the students ; one of
the course goals was for the students t o
understand and deal with the contro l
structure deficiencies, and utilize good
development practices . (Note : This pape r

will

	

NOT address grading policies o r

techniques

	

regarding

	

the

	

programming

exercises .

	

Due to the administration of
the Cadet honor code at USAFA during the

time of this course, it was only possibl e
to grade optional exercises, the desig n
review and demonstration associated wit h
the final project . )

Thu most important part of the course wa s
the

	

programming

	

exercises which wer e
especially designed to illustrate

	

th e
implementation of selected dat a
structures, the importance of the design
phase of the software life cycle an d
software engineering considerations .
Especially important was the idea tha t
programs have a life and are not to be
programmed and thrown away [1] . The res t
of this paper will discuss the exercises
used in the course .

EXERCISE 1

Exercise 1 was a control break typ e
problem, which produced a military "Statu s
of Forces" listing [2], and was primaril y
used to get the students somewhat familia r
with COBOL statements and contro l
structures, data division capabilities an d
proper design . The interesting twist fo r
this exercise was that after each studen t
successfully ran his program against th e
problem data set, they were required t o
re-run their program against another dat a
set, identical in format, but different i n
contents . The intent here was t o
illustrate to the students the genera l
applicability of algorithm and to identif y
the dangers of "uard wiring " in the code .

EXERCISE 2

Exercise 2 was a simple payroll typ e
application, where the required outputs
were to compute regular pay, overtime pay ,
federal taxes, social security taxes, tak e
Lome pay, etc .

	

This exercise was th e
vehicle to introduce COBOL arra y
processing since an employee master fil e
containing pay rates was read in and had
to be searched for each weekly time card
to be processed .

	

Especially importan t
here

	

was

	

the

	

idea

	

of

	

algorithmic
isolation, especially for the sequentia l
search,

	

since the transactions to b e
processed included employees who did no t

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F989306.989309&domain=pdf&date_stamp=1981-12-01


exist and for whom error messages had to
oe output . A classic problem here for the
students was the idea that the search
function returned a found or not--foun d
Indication, which

	

then

	

dictated

	

Lh e
rewainiimg processing to occur . any o f
the students attempted to compound th e
search lunctlon with what was to be don e
when the Individual was found, and had
lots of problems handling the not--found
situation .

Exercise 2 also introduced another facet
of tike course, optional bonus exercises .
These "optionals" would be included on al l
future exercises and were designed wit h
the Intent that ii the student had dune a
,00a jut, el ,,,uhulari<:ihh zJ .,is

	

l ;l ;,u,

	

the
placu,,,ent of the new functions wa s
somewhat trivial . indeed several student s
stated : "the optionals just sort of fel l
right out ; is that what you intended?" .
The optionals also allowed a

	

student to
potentially raise his grade in the course ,
and

	

many

	

availed themselves of thi s
opportunity . The students were encourage d
to design their

	

solutions

	

with

	

th e
optionals in mind, but delay implementin g
the optionals until

	

after

	

the

	

mai n
exercise was completed .

	

In this way we
hoped

	

to

	

encourage

	

some

	

long-rang e
thinking .

EXEr,CILL 2 A

Exercise 2A occurred about 2 weeks afte r
the completion of Exercise and was NO T
written up in the course syllabus . Th e
intent was that the students NOT know i t
was cowing ; and indeed this was true
except for those who talked with student s
from the previous semester, before I
discuss this exercise let we say that by
tills time in the course the students had
been exposed to programming standard s
(adherence to which was required), were
familiar with top down design, top down
implementation, stubbing and top down
testing . Exercise 2A required the studen t
to complete a series of modifications t o
exercise

	

2 ;

	

these

	

modifications
specifically addressed array and record
processing . As you can probably imagine ,
the thought of having to modify a progra m
did not thrill anybody (some knew thei r
code was not clean -- I especially anew i t
from debugging much of it), but it is an
important

	

lesson

	

for

	

a

	

student to
appreciate . The exercise was

	

made al l
the

	

more practical by the requirement
that the modifications be accomplished o n
another students program . Indeed eac h
student was told who to change with (A did
not exchange with b) ; instead A gave hi s
program to 3 ; L gave his pro rao to C ,
etc .) and was forbidden to discuss hi s
code with the modifier . This was designe d
to simulate the real life conditions o f
personnel turnover,

	

which

	

impact

	

so
heavily today . As a last requirement ,
each modifier had to write a critique of
the program he modified .

toe consequences of this exercise (othe r
than the mulcbling of many 4 letter words )
should ue obvious . Indeed perhaps th e
most Interesting surface effect (otne r
than an appreciation for the real world of
software development) was the improved
qualit

	

of the listings on subsequen t
exercises .

	

fhe indentation improved, th e
variable names were much more significant ,
the modules and paragraphs were

	

more
single

	

function oriented, and it was
evident that more up-front planning had
been

	

done .

	

(I often wonder if th e
students were just trying to

	

protec t
themselves

	

from another "exchange an d
modify" . )

LliEuCISE 3

Exercise

	

3

	

was

	

a

	

message
encryptiuh/decryption exercise L2] which
required the students to utilize strin g s
and stacks . An extensive set of optiona l
exercises was included .

EXEUCISE 4

Exercise 4 addressed linked lists

	

b y
requiring that an airline reservatio n
system be implemented . The functions were
add a passenger to a flight, delete a
passenger from a flight, list all persons
on a specific flight, add a flight, delet e
a flight, etc . Examples of such a syste m
can be found in [3] . This exercis e
provided a natural weans of introducin g
the COBOL case construct (go to dependin g
on) and re-emphasized the importance o f
early design and modularity . Transactions
were included for every possibility ,
including non existent flights, individua l
flights being full, no available space
left

	

in

	

tile

	

link

	

list,

	

incorrec t
transaction types, non existin g
passengers, so the students had to b e
prepared . It is interesting to note tha t
the sequential search required in Exercise
2 had to be used again in both Exercise 3
and 4, further reinforcing time idea o f
single function modules . A poorly writte n
search from Exercise 2 had to be "stripped
down" to re-use it in Exercise 3 and 4 .

Exercise 4 also required that the student s
work in teams of 2 or 3, as designated b y
the Instructor, so that the students wer e
exposed to the further problems of havin g
to develop software in a group . The ide a
here was to show trhat if the desi g n an d
interface specification was done correctl y
work could proceed independently .
Additionally, it familiarized the student s
with the problems of communication an d
coordination

	

inherent

	

in

	

softwar e
development .

Thin, : PROJECT

The term proj ect was again a team exercis e
and required the students to use th e
exercises they had created during thl e
semester . The requirement was to link th e

14



"status of force s " , encryption/decryption ,

and airline reservation system into a n

interactive user oriented system . Thi s

required that a driver/menu program b e
written which allowed the user to selec t
which capability was desired, and th e

binding

	

utility

	

be

	

utilized .
Additionally, modifications were require d
in each of the component programs .

	

Thi s

approacn

	

worked

	

well

	

witn the tear s

concept . The objectives of this exercis e

were many ; re-use of existing software ,
teas-work, progra ., codification, use o f
Inc binder, interactive programs, and use r
interlace .

Requirements for completing the term
project included a 1 hour design review
and an interactive demonstration by eac h
team of their system . Students were give n
free rein as far as the capabilities thei r
system provided ; several produced hel p
facilities,

	

while

	

others utilized a n
instructor supplied file of Burrough s
Tbd22 terminal control cuaracters in orde r
to provide reverse video, flashing, an d
other terminal control capabilities .

rive design review addressed tile majo r
areas of each group's overall design an d
implementation plan, work breakdown an d
allocation, and individual team membe r
responsibilities . Requiring such int o
required the teams to have agreed on thes e
areas ; additionally, it greatly curtaile d
the student tendency to "wait 'til th e
last minute " .

	

An added benefit was tha t
each student had an opportunity t o
practice some communications skills . Th e
design reviews were attended by othe r
faculty members to make them even more
realistic .

she demonstration provided an excellen t
opportunity to quiz students about th e
internal workings of their software, an d
some basic architectural questions . Th e
importance of user interface wa s
emphasized by occasionally having one o f
the department secretaries run th e
products, and by also throwing "garbage "
Input against the system .

CONCLUSION

While unquestionably a significant effor t
was required from the students in thi s
course, they were challenged, for the mos t
part learned a lot and generally had fu n
doing it . This was especially true on th e
term project . The course met its conten t
objectives and in several cases cause d
some marginal students to re-evaluat e
their choice of major .

Academic programming education snoulu b e

the training ground for the development o f
proper design and engineering practices ,
and provide insight into

	

real

	

worl d
production software, lu addition to
teaching algoritnms and data structures .
'mere is plenty of opportunity to achiev e
this goal in just about all courses ;
hopefully this course can provide a mode l
for future efforts .

15


