A PRACPICAL UNDERGRADUATE INTRODUCIICN TO SOFTWARL LENGINLLRING
v

Check for
updates

Jolun Foreman

Texas Instruments, Inc.
Lewisville, Texas

LSTRACT time of this course, 1t was only possible
to grade optional exercises, the design
Much has been writien about proper review and demoustration associated with
software engineering methods and how Lo the tinal project.)
teach these technigyues Lo students.
Several authorities have analyZed our The most important part of the course was
present techniyues as needing significant the programming exercises which were
improvement (1]. This paper discusses & especlally designed to 1illustrate the
practically oriented introduction to implementation of selected data
sotftware engineering aimed at introducing structures, the importance of the design
students to sound development habits and phase of the software life cycle and
life-cycle thinking edrly in their software engineering considerations,
CUreers. Especially important was the idea that
programs have a life and are nol to be
L TRODUCTION programned and thrown away [1]. The rest
of this paper will discuss the exercises
Computer vcience 380, Software Lngineering used in the course.
Fundamentals, is a 1 semester, J hour
course taught at the U. 8. Air Force BALRCISLE 1
Academy (USATA) whose rather general
purpose was the initial transition of bxercise 1 was a control break type
computer science majors 1into computer problem, which produced ¢ military "sStatus
professionals., During the Fall 1979 and of Forces" listing (2]}, and was primarily
Spring 1980 semesters, during which I used to get the students somewhat familiar
directed the course, topics covered with COBOL statements and control
inciuded: program development in an structures, data division capabilities and
interactive environment, advanced proper design. The interesting twist for
programmning, COB0QL, static and dynanic this exercise was that after each student
data structures, algorithm development, successfully ran his program against the
and software engineering concepts and problem data set, they were reyuired to
principles. re-run their program against another data
set, didentical in format, bul different in
The students in this course wvere contents. The intent hiere was to
predominantly sophomores or Jjuniors, had 1llustrate to the students the general
wt least taken the compulsory introductory applicability of algorithm and to identify
Computer Science course, and might thie dangers of "hard wiring" in the code.
concurrently be enrolled in an
architlecture course. Inrolled students EXERCISE 2
had programmed in Burroughs Algol 1in the
compulsory introductory Computer Science Lxercise 2 was a simple payroll type
course; Algol and Pascal would be used 1in application, where the reyuired outputs
subseqguent courses. CUBOL usage in the were to compute regular pay, overtime pay,
military was the prime reason for its use federal tuxes, social security taxes, take
here. In my opinion, COBLOL did not cause home pay, etc. This exercise was the
any major problems to the students; one of vehicle to introduce COBOL array
the course goals was for the students to processing since an employee master file
understand and deal with the control containing pay rates was read in and had
structure deficiencies, and utilize good to be searched for each weekly time card
development practices. (Note: This paper to be processed. Especially important
will NUl address grading policies or here was the idea of algorithmic
technigyues regarding the programming isolation, especially for the sequential
exercises. Due to the administration of search, since the transactions to be
the Cadet honor code .at USAFA during the processed included employees who did not

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F989306.989309&domain=pdf&date_stamp=1981-12-01

for whom error messagpes had L0
pe oulpdt. A classic problem bere Ltor the
students was the 1dea thal the search
funciion returned a fouud or not-lound
tndicuation, wihich then diciLated Lie
reimaining processing to occur. sany of
the students attempted Lo coumpound tue
search runction with what was to be done
when the rndividual was Tound, and had
lots of problems handliing the not-found
situatiol.

exist and

wxereise 2 also introduced another facet
ol the course, oplional bonus exercises.
These "oplionals" would be included on all
Tuture exercises and were deslghoed wilh
the 1atenl that 11 the student had done a
LOUU JUu Ul aodularicio, ols design, Lhe
placement o1 Liie new functions was
sollewhat trivial. Indeed several students
stated: "the optionals ,ust sort of fell
rigut out; is that what you intended?".
The vptionals also ullowed u student to
potentially raise his ygrade in tlie course,
and many avalled themselves of tnis
opportunity. 7The students were encouraged

to design their solutions with tue
optionals in wmind, but uvelay implementing
the optionals until after the main
exerclse was completed. In this way we
toped to encourage sone long=ran,e

thinking.
LABRCISEL Z2a
weeks alter

xercise 2A occurred about 2

the completion of bExercise 2, and was HOT
written wup 1in tuhe course syllabus. The
intent was that the students NOT know it
was cowing; and indeed this was true
except for those who talked with students
lroin the previous sewester. Before 1
discuss this exercise let ue say that by

time 1in the course the students had
exposed to programming standards
whichh was required), were
familiar with top down designh, top down
implementation, stubbing and top down
testing. Exercise zZA required the student
10 complete a series of modifications to
exercise 2; these modifications
specifically addressed array and vrecord
processing. As you can probably imagine,
the thought of having to modify a progranm
did not thrill anybody (some knew their
code was not clean -- I especially knew it
frow debugging mwuch of it), but it is an
important lesson for a student to
appreciate. 'The exercise was made all
the more practical by the requirement
that the modifications be accomplisned on

tuis
been
(udherence to

another students progran. Indeed each
student was told who to cunange with (A did
not exchange with B), instead A gave his
program to B, B gave uls program to C,
etc,) and was forbidden to discuss his
code with the modifier. This was designed
to simulate the 1real life conditions of
personnel turnover, wirleh impact S0
leavily today. As a lasl reyuirement,
each moditier nad to write a critique of

thie program he modified.

14

Tue conseyuences ol thls exerclse (olher
than the nuwabling of wany 4 letter words)
should e obvious, Indeed perhaps the
most Llnteresting surtface eflect (otuer
than an appreciation for the real world of
sollwalre development) was the improved
gquality of the listings on subsejuent

exercises. e indentation improved, toe
variaple names were mucll nore siguificant,

Lite modules and paragruphs were nore
single function oriented, and 1t was
evident that more up-frout planning had
been done. (I often wonder 1if the
students were Jjust trying to protect
themselves from aunothier "exchange and
moulfy".)

LapnClsh 3

Laercise 3 was a HesSsSape
encryptioti/decryption cxereise [2] which
regqulred the students to utlllze strings

and stacks. 4n extensive set of optiounal
exercises was included.

pALRCISE 4
linked 1lists by

airline reservation
Tue functious were

Lxercise 4 addressed
requiring that an

systen be implemented.
add a passenger to a flight, delete a
passenger rrowm a flight, list all persons
oh a gpecific flight, aud a flight, delete
a flignt, etc. Lxamples of such a systew
can be found in [34]. This exercise
proviued a natural weans of introducing
tiie COBOL case construct (go Lo depending
on) and re-emphasized the importance of
carly design and modularity. fTransactious

were included for every possibility,
1ucluding non existent flights, indiviadual
flights being full, no available space
left in the link list, incorrect
transaction types, non existing
passengers, so the students had to ve

prepared. It is interesting to note that
the seyuential search required in bxercise
< had to be used agaln in voth Lxercise 3
and 4, further reinforcing tue idea of
single function wodules. A poorly written
seurcli from Lxercise 2 had to be "stripped
down" to re-use it in bExercise 3 and 4.

bExercise 4 also reguired that the studeuts
WOork in teains of 2 or 4, as designated by
the 1nstructor, so that the students were

gxposed to the further probleins of having
to develop software in a ygroup. The idea
here was to show tuat il the design and

interface specification was done correctly
wOrk could proceed independently.
Additionally, it familiarised the students
withh the problems of comuunication and
coordination inherent in software
developmeunt.

Thit PROJECT

The term project was agaln a teall exelrclse
and reguired the students to use the
exercises they had created during ‘lue

semester. The regulrement was to link the

encrypiion/decryption,
system 1nto an

system. This
program be
select

"status of forces",
and airline reservation
interactive user oriented
reyuired that a driver/wmeunu
written which allowed the user to
which capability was desired, and the
bindiu, utility be utilized.
adaitionally, mwouifications were reguired
in each of tne componeill progruns. This
approacn worhked well witu the teuw
concept. The objectives of this :xercise
were nally . re-use of existing software,
teaw=Work, program modification, use of
tue binder, interactive prograwms, and user
lnteriace.

Reyuirements for
project included & 1 lLour design
aud an interactive demonstration Ly each
teaw of thelr system. Students were given
free rein ag far as the capabilities their
system provided, several produced help
facilities, while others utilized an
instructor supplied {file of Durroughs
TLlo2d terminal control cuaracters in order
to vprovide reverse video, flashing, and
other terminal control capabilities.

tern
review

completin, the

the design review addressed tine major
aredas ol euclh group's overall design and
inplesientation plan, work breakdown and
allocation, and individual team gember
responsibilities., legulring such info
regyuired tue teawns to have agreed oun thesec
areas; aduitionally, it yreatly curtailed
the student tendency to "wait 'til the
last winute". An added beneritv was that
each student had atl opportunity to
practlice some communications skills, The
design reviews were attended by other
faculty mewbers to make them even more
realistic.

excellent
about the

ihe deamonstration
opportunity to

provided an
gquliz students

iuternal workings of their software, and
some basic architectural guestions. The
importance of user intertace vas
cuphiasized by occasionally having one of
the department secretaries run the
products, and by also throwing "garbage"
Luput against the systen.

CONCLUSION

while unguestionably a significant effort

was required from the students in this
course, they were challenged, ifor the most
part learned a lot and generally had fun
doing it. This was especially true on the
term project. The course mel its content
obyectives and 1in several cases caused
solne margiunal students o re-evaluate
their choice ol major.

(&3]

Acauenic programaing education suoula be
the training ground for the development of
proper design and engineering practices,
and provide insight into real world
production software, 1 addition to
teaching algoritnms and dala structures.
Tnere 1is plenty of opportunity to achileve
this goal in Jjust about all courses;

this course can provide a nodel

hopefully
for future efLorts.

