
COMPUTER LITERACY SCOPE AND SEQUENCE MODEL S
A CRITICAL REVIEW OF TWO APPROACHE S

Herman Fische r
Litton Data Systems *

Van Nuys, CA 9140 9

Introductio n

Two computer literacy scope and sequence models are reviewed, one by Gary Bitte r
[ACM SIGCSE Bulletin, Fall 83] and another by the Los Angeles Unified School Distric t
[Draft, 3/831 . Both models are described and then compared to each other . In both cases ,

the models separate general literacy issues from expanded computer competency topics ,
though not clearly for the same reasons . The competency, or programming, curricula see m
to have technical errors which are correctable ; primarily these are a tendency to us e
concepts and skills from the last decade, in a time when we must prepare students fo r
employment in the next decade . Comments are provided on the lack of educationa l
curricula material, on the general apprehension of educators towards literacy programs ,
and on other specific problems perceived .

Two Scope and Sequence Model s

The Bitter approach focuses on a bipartite model . The two parts are Compute r
Awareness and Computer Programming . Topics are listed as specific details, e .g ., fourth
graders are introduced to Flowcharting, and BASIC commands print, rem, let, input, and
goto .

	

The Los Angeles (LA) Model, called a continuum, is split into four hierarchies ,
Awareness, Knowledge, Competency, and Expertise . The LA program describes its steps i n
terms of goals, rather than as specific topical items . A fourth grader "uses appropriat e
software to enhance skills in various subject areas, e .g ., mathematics, science, etc ., "
or for flowcharting, a sixth grader "describes standard flowchart symbols," and "reads a
flowchart . " One could say that the Bitter model is, in a sense, more specific, while th e
LA model builds in a greater degree of interpretational freedom for its users (not t o
comment on the merits of either style) .

The Bitter model is more computing oriented while the LA model is more application s
oriented . For example, Bitter notes that fourth graders "can become thoroughly familia r
with the term hardware, describing it as . . .," while LA stresses use : Fifth grader s
"demonstrate how to insert the disk, turn on the computer, and boot a program . . .

	

s"top ,
escape from, and continue a program as needed . "

Both models will be shown to use obsolete technical ideas, focusing on flowcharting ,
not making proper use of LOGO, and in the Bitter curriculum, ending with PASCAL rathe r
than any of its current derivatives .

Misquoting Paper t

Papert, in Bitter ' s article, is implied to advocate that "the primary advantage o f
early computer education is that very young children have not yet developed compute r
phobia that may inhibit computer training in later years ."

	

It is learning phobia tha t
Papert is concerned with .

	

I feel that Papert made a strong point that computers teac h
children how to think, and how to understand their thought processes ; they becom e
epistemologists because they learn how to approach the solving of problems .

	

This, no t
worries about keyboard phobia, is the primary advantage of using computers in a child' s
education .

	

And

	

this drastically

	

requires reorienting

	

the primarily BASIC—aligne d
sequence models to ones which build upon and expand epistemological benefits of computer s
in a child's education . (I believe no youngster will have keyboard phobia anyway ; th e
world of television commercialdom has seen to it that all will have at least som e
subconscious worship of computer game playing and enough keyboard hacking desires to ge t
mom and dad to buy the hyped computer products along with sugar coated cereal .)

* the author presents views which are strictly personal and have neither been reviewed b y
his employer or the ACM .

SIGCSE
BULLET1N Vol . 16 No . 2 June 1984 17

http://crossmark.crossref.org/dialog/?doi=10.1145%2F989341.989346&domain=pdf&date_stamp=1984-06-01

What ' s Wrong with BASI C

There is nothing wrong with BASIC, as a computer language, if there is nothin g
better around . Designed for incredibly tight memory restrictions of the computers of th e
early 1970 ' s, the language yields unstructured and often disorganized programs, wit h
obscure data organizations . LOGO, proposed to be taught first to the very youngest ,
allows problem structuring, abstraction and information hiding, and data structuring .
Yet LOGO is dropped from curricula in both models after the children draw spirals o r
manipulate sprites .

	

LOGO would be an ideal language to teach problem decomposition ,
object (real-world) oriented program structuring, and list-oriented data structuring . A
fourth grader educated on this track today will become employable in a post-Ada, or a
Modula world, maybe even a world where Artificial Intelligence becomes commonplace i n
programming applications .

	

One educated in BASIC will need to retrain, to "unlearn" th e
negative habits whch arise from unstructured and non-object oriented problem approaches .

In 1982, one could argue that LOGO was not available to the masses .

	

Today all th e
popular home and office computers support it, even the $199 processors . For the IB M
models, there is even a free subset which is redistributable without copy restrictions ,
called LadyBug . While many vendors distribute BASIC free, with LOGO available on tha t
same basis, even the argument that is was too expensive, becomes moot .

Teaching Programming versus Problem Solving with Computer s

Today, a youngster grown up and joining the ranks of computer professionals, ca n
become a "programmer," whereupon he might earn $10,000 to $28,000, or he can become a `
" software engineer," whereupon his salary limits can go up into the $50,000 ' s .
Programming is a skill where, given a specification, the practitioner produces (hopefull y
debugged) program code .

	

Software engineering is often thought of as an art, where, give n
a set of requirements, the practitioner devises a solution, which usually results in a
specification, design, and implementation in code .

	

Software engineers get paid so muc h
more because they can attack a problem, design a solution, and follow it throug h
implementation . Papert ' s approach, teaching children to discover thought processe s
related to their world (objects, to the computer scientist), and to break comple x
problems into simpler ones (house becomes triangle and square ; face becomes circles an d
arcs) inadvertently practices software engineering instead of programming (coding) . Onc e
children are started on the right track, why stop and switch to the wrong subject ?

Why Are There No Educational Material s

A trip to any popular bookseller will yield shelves primed with hundreds of books o n
BASIC programming . One is lucky to find half a dozen on LOGO, And looking for book s
geared to primary and secondary educators, there are only one or two on LOGO (if they ar e
stocked at all) ,

I visited the MIT AI Laboratory last summer, expecting to come away with an armfu l
of curriculum materials suitable for the intermediate instruction in LOGO, past th e
spiral and sprite stages, and not at the sophistication of physics and artificia l
intelligence researchers .

	

Instead, there was an insular and possibly lofty attitude, on e
where not even the MIT Education department uses its AI Laboratory ' s products .

	

Lists o f
districts using LOGO

	

seemed

	

populated mostly with

	

selected vendor-sponsored tes t
schools .

	

Educational focus between the very young, or learning disabled, and th e
advanced users, seemed absent .

	

That is needless and a pity .

The Bitter Mode l

My understanding of the Bitter model is shown in Table 1 . The figure shows, for eac : _
topic of the two tracks of the model, the starting grade indicated . Most topics are onl y
slated for introduction in the starting grade, with expansion and further activities i n
the next three to eight years . Thus, when reading the topics, one must bear in mind tha t
some of the apparently quite early starts are indeed only "start-ups," and not intende d
to imply mastery or comprehensive familiarity with a topic .

Table 1 .

	

Bitter model, tracks and topics .

Starting

	

Awareness

	

Programmin g
Grade

	

Track

	

Trac k

What a computer is

	

Programming programmabl e
Following directions

	

device s
Vocabulary

	

Turtle graphic s

What a computer can do

	

Turtle graphics (moving
Learning to use a computer

	

shapes on screen)
Using the keyboar d

SIGCS E

BULLETIN Vol . 16 No . 2 June 1984

	

1 8

K

1

2

3

4

5

6

Computer advantage s

disadvantage s
Computers in our live s

History of computer s

And, Or logic ; part s
of computer s

Definitions of hardwar e

and softwar e

Binary representation s

Flowcharting symbol s

Storyboarding a program

Computer generations (tube ,

transistor, IC)

How a "counter" work s

Mainframes vs min i ' s v s

micro ' s .
Processing dat a

Languages and application s

Iteration (looping)

Modeling, to develop pla n

to solve general problem
Robotics exposur e

Social issuse s

Data base use fundamentals

Turtle graphics (rotatin g

shapes)
LOGO (sprites)

Logo animation (turtl e

geom & sprites)
Logo for problem solvin g

BASIC :

	

Print, Remark ,

Let, Input, & Goto ;

Writing formulas in BASI C

String data in BASI C

Relations "<" and "> "

BASIC :

	

If-Then, On-Got o

Read-Dat a

Word Processin g

BASIC :

	

For-Next, Random

Problem solvin g
Graphic s

BASIC :

	

arrays, function s7

8 Computer crime

	

BASIC :

	

2 dimensiona l

Algorithms and their usage

	

arrays :

	

sound & colo r

9

	

Discuss computer capabilities

	

Simulation programmin g

Career and vocation planning

	

BASIC : matrix, file s

PILOT :

	

introductio n

10

	

Data collection and inter-

	

Pascal :

	

introductio n

pretation, reporting

Artificial intelligence ,

concept and application s

11

	

Systems, types vs . brands

	

PILOT :

	

programmin g

Statistical samplin g

12

	

Societal impact of computers

	

Pascal :

	

programming

Privacy protection

	

Data bases : updatin g

LA Mode l

My understanding of the LA model is shown in a hierarchy chart, figure 1, becaus e
the LA model is not tied to specific grades ; instead it is goal oriented and appears t o

have a variation of three to five grades from earliest to latest grade when subject ma y

be introduced .

	

Shown in braces are the grade level where the topics in the area ar e

suggested to be started,

	

followed by a pair of numbers representing the lowes t

(presumably optional) starting grade and the highest grade ending the program .

Coaparison of Models : Topics and Starting Age s

The common elements of the two models are next compared to show where topica l

agreement exists, and how diverse the opinions of start-up age varies .

The LA model ' s hierarchy is used here, because the reader has the Bitter mode l

above, and because the LA model has a more hierarchical (topic development continuu m

versus age progression) organization .

Topics are described, followed by the coding LA :x,y B :z . The codes mean that the L A
curriculum has the x-th grade for general start-up, the y-th grade for optional earlies t

start-up, and the Bitter model has the z-th grade for its start-up . Where an item has a n

asterisk in an entry it means that the topic is not required or not present in th e
curriculum . Where a topic has a question mark entry, it means that the topic probably i s

covered but cannot be clearly identified as to which grade . Not every topic of bot h

models is separately identified ; several have been grouped to make the table mor e

readable .

SIfCSE

BULLETIN vol . 16 No . 2 June 1984
19

(grades :}

	

(5 ;3-11}

	

(4 ;1-10 }

Effect on lives
Histor y
Moral issues

Achievemen t
for all student s
/

	

\
/

	

\
/

	

\
computer

	

computer
awareness

	

knowledge

\

For every interested
and capable studen t
/

	

\

	

/

	

\

	

/

	

\
computer

	

computer
competency

	

expertise

(6 ;1-12}

	

(10;6-12}

Makeup of computer

	

LOGO

	

Advanced topic s
keyboard skills

	

Programming strat -
General uses

	

egies
Specific uses

	

Using a DOS
Applications

	

BASIC

\

Computer Literacy

+	 +	 +
/

	

\

Figure 1 . Hierarchy chart showing topic organization of LA model, an d
grade ranges in which they may be taught .

Computer Awarenes s
Computers effect on our live s

Recognize applications of computers

	

LA :5,3

	

B : 2
Recognize ways used in daily life

	

LA :7,4

	

B : 2

Identify computer-related occupations

	

LA :8,6

	

B : 9
Limitations and capabilities of computers

	

LA :8,6

	

B : 2

Reading related books, magazines

	

LA :8,3

	

B : *

History of computer s

Characteristics of each generation

	

LA :6,4

	

B : 5
Differentiate mainframe, mini, micro

	

LA :8,5

	

B : 6

Moral issues and computer us e

Copyright laws

	

LA :8,6

	

B : 8
Advantages and dangers of data bases

	

LA :10,8

	

B :1 2
Legal issues from widespread usage

	

LA :10,8

	

B : 8

Computer Knowledge/Operatio n

Makeup of a Compute r

Identify components

	

LA :5,1

	

B : 3

Use prepared program in a microcomputer

	

LA :4,3

	

B : 1
Definitions, hardware, and software

	

LA :4,3

	

B : 4
How it works (input/output, etc .)

	

LA :5,4

	

B : 3

How a "counter" circuit works

	

LA :*,*

	

B : 5
Capabilities of types and sizes, by brand

	

LA :7,5

	

B :1 1

Keyboard skill s

Letters and numbers

	

LA :3,1

	

B : 1
Special-purpose keys

	

LA :5,2

	

B : ?
Correct keyboarding skills

	

LA :5,2

	

B : *

General uses of compute r

Care, how to handle floppy and boot

	

LA :5,3

	

B : 1

Run from catalog (directory), or menu, etc .

	

LA :6,4

	

B : *

Recognize simple error messages

	

LA :7,4

	

B : ?

Specific use s

Usage of drills, tutorials, and simulations

	

LA :4,2

	

B : ?

Problem solving program

	

LA :6,4

	

B : ?

SIGCSE

BULLETIN Vol . 16 No . 2 June 1984
20

Word Processing (These

	

topics

	

are

	

in

	

LA ' s) LA :7,5 B : 5
Use

	

Data

	

Base (

	

track

	

for

	

all

	

students) LA :9,6 B : 7
Use

	

spreadsheet (

	

but

	

in

	

Bitter's

	

pro°

	

) LA :9,7 B : *
Use

	

utilities (

	

gramming

	

track .

	

) LA :9,6 B : *

Applications

LA :8,5 B : 6Know major

	

application s
Exposure

	

to

	

robotics LA :*,* B : 7
Artificial

	

intelligence LA :*,* B :1 0

Computer competency. (program for those who desire i t

LOG O

Simple

	

programs,

	

graphical

	

design LA :*,K B : K
Text

	

programs,

	

dialogues LA :*,3 B :1 1
Sound

	

in program LA :*,3 B : *
Sprites :

	

movement

	

and

	

direction LA :*,* B : 2

Programming

	

strategies

	

(BASIC)

LA :6,4 B : 4Flowchart s
Predict

	

output

	

from

	

a

	

listing LA :7,4 B :5(?)
Fundamental

	

programming LA :6,4 B : 4
Sound

	

and

	

color

	

(graphics)

	

programming LA :6,4 B : 8
Structured

	

programming LA :7,4 B : *

Computer expertis e

Advanced computer utilizatio n

Multiple languages

	

skills LA :10,8 B :1 0
Evaluate hardware,

	

software

	

for

	

own use LA :11,9 B :1 1
Programs using

	

algorithms,

	

graphics LA :11,9 B : 8
Formatting

	

techniques LA :11,9 B :*
Both models have a great number of parallels .

	

They stress teaching what might b e
called the "social study" of computers, and they stress providing programming skills t o
the interested and capable students . They neither effectively stress using computers t o
help children discover learning (more to follow), nor provide plans for using computer s
to help learning disabled to progress better . And what is most neglected is building a a
track for teaching children how to approach real world problems, be they simple o r
complicated, and using subtle but incredibly important "methodologies" to break the rea l
world into objects, actions, functions, and attributes which can be expressed in a serie s
of increasingly more detailed but hidden subproblems, until the complete solution is a t
hand .

	

A major point of "Mindstorms" is missed .

Is it fair to compare these two models by citing the starting ages for the variou s
topics? That is hard to say . Some classrooms are filled with bright self motivate d
children while others have children who will never really read, even after becomin g
adults .

	

Papert seems to show that both can benefit from the process of discoverin g
non-Euclidian geometry and basic programming in Turtle Graphics . Yet neither of the abov e
curricula abress this benefit of computers in the classroom .

	

Maybe neither can, becaus e
Papert feels [ACM '83 Plenary Lecture] that one computer per five students is needed t o
achieve results he describes . (LA ' s average is one per 206 students [LA Times ,
11/27/931 .) Few districts will survive taxpayer fury if they try to create specia l
assessments to bring the number of computers up this high .

We are faced with two curricula models which have spelled out academic details, an d
programming introduction, with the goal of "literacy" instead of the goal of direc t
benefits to the students in their learning and developing process . And a dilemma tha t
there are neither teaching materials nor sufficient computing hardware to prepare th e
educators for either the planned course (above) or the "better" course (Papert's goal o f
creating epistemologists out of children) .

Apprehensive Educator s

I have consulted with several primary and secondary educators, in the LA area (jus t
because that is where I live), and find a consistent reaction when they read either o f
the literacy curricula : they appear frightened of the thought that they have neither any
concept of what the mandatory and optional topics are about, nor any hope of being abl e
to master these new topics while carrying out their day to day chores .

	

Some have basi c

S1GCSE
BULLETIN Vol . 16 No . 2 June 1984

	

2 1

programming skills, say sufficient to add up numbers in BASIC or draw up houses and face s
in LOGO . Strangely no one had ever used either a spreadsheet or database program . They
do not have any feel for the material which needs to be known to present the topics i n
the list, REGARDLESS OF GRADE OF START-UP . Furthermore, there does not appear to be an y
competent teaching materials for preparation of the subjects (with the possible exceptio n
of

	

vendor-dependent

	

and

	

vendor-limited

	

material

	

supplied

	

by

	

several

	

of

	

th e
manufacturers) .

Another element of fright seems to arise when these educators eventually relize tha t
the children they will educate WILL have the skills outlined above, and many sel f
starters will have them earlier than the ages indicated ; the prospects of BASIC and LOG O
hackers in the classroom, either because of the questions they might ask, or the feare d
antisocial behavior machine-bound concentration might yield, are of significant concern .
And then, probably every now and then, a hacker of Defense Department ARPAnet fame migh t
come about and maliciously destroy the other students' work, alter grades, or cause havo c
extremely difficult to detect and prevent .

Must We Push Technological Obsolescenc e

Both curricula abandon LOGO after early grades and use BASIC to teach programming .
That anachronism in technology needs to be corrected . It may be political suicide t o
tell a parent just learning BASIC that he has started on the wrong language ; that hi s
child will program LOGO instead .

	

But the realities require that, for the programmin g
experience to be useful, it should be in a structured environment, appropriate fo r
real-world

	

(object)

	

orientation,

	

with modularity,

	

hiding

	

(of

	

subprocedures),

	

and
abstraction .

	

Big words which children will not know, but nonetheless do practice i n
drawing LOGO happy-faces .

	

They cannot perform these necessary methodological practice s
in BASIC . (I feel that I am hyperventilating on this point by now .)

Bitter ' s model introduces PASCAL to tenth graders . PASCAL became very popular amon g
college educators in the 197 0 ' s, and has formed the basis which underlies a number of ne w
languages . PASAL never had great commercial or business acceptance (a different languag e
called "C" has that acclaim, today) . However, two of the newer languages, which ow e

roots to PASCAL are important, not necessarily to teach this year or next, but for nea r

term planning to replace PASCAL as the " advanced language" of the model . Wirth, th e
"father" of PASCAL, more recently "fathered" Modula 2, a strongly typed language wit h
numerous important advantages over PASCAL . Though Modula 2 compliers are just coming o f
age on microcomputers (as is the case with LOGO), there appears to be a need for test s
and teaching materials for this language . Separately, the Defense Department, workin g
with a world wide set of experts, recently completed specification of the Ada language ,
also a strongly typed language derived from PASCAL . Numerous commercial and defens e
suppliers are preparing for the need to have educated Ada programmers on their staffs i n
the upcoming years ; training materials for that language are presently slanted for th e
well-experienced, not the beginners . Teaching PASCAL may eventually be somewhat lik e
teaching Latin ; modern languages have their roots in it, but speaking it will not orde r
one a meal in a restaurant .

(If one were to replace PASCAL with a current language for the immediate short term ,
then there probably is only one choice--"C ." A vocational student trained in "C "
probably has as assured a future as a COBOL programmer had twenty years ago .)

Flowcharting is a part of both curricula . Flowcharts are relics of the 1960's whic h
went out before "top down" programming, which also went out in the previous decade [Ke n
Orr, Dallas AdaTEC, 10/20/83] . There are graphical design methods, and they are importan t
to the methodologies which use them .

	

There is considerable dispute over which (an d
whose) methodologies are better .

	

Educators should be able to get some advice and hel p
from the design methodology experts in setting up curricula (and staying current) in th e
design aids field .

	

And they should bury the old flowchart for good .

Both curricula teach computer generations .

	

Does a fifth grader care about tub e
computers, transistor computers, or integrated circuit computers?

	

Will this make him a
better person for society?

	

Is knowledge of the binary

	

system even relevant?

	

N o
microcomputer user needs to know about

	

tubes,

	

or about binary numbers,

	

to us e
spreadsheets, wordprocessors, or data bases .

Did Anybody Notice CAI Missing

Neither program has an element where computers are used to replace teachers ,
"computers programming children" as Papert would call it . That is incredibly positive !
Large numbers of advocates of computers in primary and secondary grades assume that th e
computer will be used for drill, for tutoring, and to perhaps alleviate the "teache r
shortage ." Typical experience with Computer Assisted Instruction (CAI) shows that youn g

SICCSE
BULLETIN vol . 16 No . 2 June 1984

	

22

students have short attention spans, get bored, and quit early .

	

College level student s

may have better track records with non-human tutors .

	

But for primary and secondary

levels, unless there is some breakthrough, technologically,

	

in CAI, that usage o f

computers is best omitted as a major element of curricula .

	

There will always be larg e

numbers of CAI-type software programs available ; they will supplement teaching, tutoring ,

and assist students with special learning requirements .

	

But the main point is, they wil l

not form the basis for a major part of a curriculum .

Will There be a Camelo t

Planning curricula will be difficult ; honing them will be a lengthy trial and erro r

process . Some school boards will have success stories (particularly where they ar e

well-heeled), and for every success story, large numbers of districts will creat e

educator discontent, upset the funding sources, and build a few squeaky wheels who wil l

complain endlessly .

Camelot, if one will ever arise, will do so because of perseverance, or perhap s
because the district was burned badly enough to become ambitious in correcting it s
curricula . I doubt that any one-vendor district will have success ; vendor hardware get s
obsolete so fast that there are no benefits from picking the temporal "best ." Hopefull y
successful districts will be compatible (software-wise) between the multiplicity o f
equipment which eventually will be available .

	

And adaptable to changing languages ,
methods, and technology .

	

Only time will tell .

a********************** *

BATCH LOGO - continued from page 16

2 3

3 .

	

Accomplishment Surve y

SUMMER COMPUTER INSTUTUTE 198 3

WORKSHOP ON STRUCTURED PROGRAMMING FO R
JUNIOR HIGH STUDENT S

Accomplishment Surve y

Name	 Approximate Age	

The final task of this workshop is a
hands-on questionnaire . This is not a
test . Although you may find some of th e
questions challenging, please try t o
answer all of the questions to the best o f
your ability . Your answers will help us t o
assess the success of this workshop .

Concepts in LOG O
1 . Write

	

the

	

PL/1 code to draw an
equilateral triangle .

	

(remember

	

t o
approach the angle of each turn fro m
the turtle's point of view .)

2 . If the procedure RIGHT were remove d
from LOGO :

a. Could you still draw any figur e
that you were previously able t o
draw ?

b. If your answer to above was yes ,

write the PL/1 code for a
procedure called RITE to perfor m
the work of the missing procedur e

RIGHT .

SIGCSE

BULLETIN Vol . 16 No . 2 June 1984

3 . Using LOGO, draw a circle of any siz e

you wish . Hand in your printout (you r
WIDJET listing file) .

PL/1 Languag e

Explain the purpose of the following PL/ 1
constructs :
1. DECLARE

2. DO WHILE

3. DO I - 1 TO 5 ; contrast this statemen t

with DO WHILE .

4. CAL L

5. GET LIS T

6 .

	

/*

	

* /

Concepts in Programming
1. What

	

is

	

the

	

purpose

	

of

	

usin g
procedures ?

2. What are arguments and parameters ?
Explain their importance .

3. Explain

	

the

	

importance

	

o f
documentation .

