
A PROPOSED GRADUATE COURS E
i n

AUTOMATIC SOFTWARE GENERATIO N

b y
Wendell L . Pope

Utah State University, Logan, Uta h

2 9

Abstrac t
The backlog of demand for applica-

tions software is exceeding the producti -

vity of programmers using conventiona l
procedural languages . One approach t o
solving this problem is increasing pro-
grammer productivity through the use o f
automatic software generation systems .
This paper presents the background of th e
software crunch, the reasons conventiona l
programming languages are not expected t o
meet it, and the possibility of the stat e
of the art being adequate to support a
graduate course in automatic softwar e
generation .

1 .

	

Introduction .
Pressures are increasing to develo p

more software more rapidly and to giv e
users the ability to generate some o f
their own applications . The pressure s
come from the increasing number of compu-
ters being installed with the resultin g
demand for software to make them useful ,
the limited supply of traditionall y
trained programmers, the limited capabili -
ty of educational institutions to trai n
programmers, and from the decreasing cos t
of computers vis-a-vis the cost of pro-
grammers .

"It is estimated that the number o f
computers used for scientific and commer -
cial applications will continue to grow a t
25% per year at least . It is growin g
faster than that now ." [Martin82,pl] . An
IBM survey found that "the number of ap-
plications in today's data processin g
centers is growing at 45% per year ."(Mar-
tin82,p2] . Assuming no change in th e
ratio of programmers to computers, and n o
increase in productivity, the number o f
programmers in ten years time would hav e
to increase over nine times, and the back -
forty-one times! "Any set of estimates o f
computing power 10 years hence indicate s
that the productivity of application deve-
lopment needs to increase Ol two orders o f
magnitude during the next 10 years ."[Mar-
tin82,p2]

Of course the means to increase pro-
ductivity is being developed, but th e

results are slow compared to the demand .

Structured programming techniques wit h

SIGCS E

BULLETIN Vol . 16 No . 2 June 1984

existing procedural languages have pro-
duced productivity gains on the order o f
10%[Martin82,p2] . Of more serious concer n
is the slowness with which improvement s

move into the world of work and the inabi -
lity of existing educational institution s
to train a sufficient quantity of ne w
programmers . Existing faculties are a t
full load and beyond, and the number o f
new faculty members is small compared t o
the demand . The Snowbird Report of July ,
1980 (so-called because the conferenc e
that spawned it was held at Snowbird ,
Utah) states that "there is a severe man -
power shortage in the computing field . I t
is most acute at the Ph .D . level :

	

th e
supply of new Ph .D .'s is about 20 percen t
of the demand ." [Denning8l] Some dat a
indicating the inability of educationa l
institutions to keep up with demand are :

The total number of Ph .D . Com-
puter Science faculty in the Unite d
States increased from 805 in 197 5
to 837 in 1979 . The net gain, 32 ,
is 2 .8 percent of the total of 113 0
Ph .D .'s graduated in the sam e
period .

	

Most faculty outflux i s
into industry, not retirement .

The total number of Ph .D . gra -
duates, the next generation o f
researchers and teachers, has de -
creased from 256 in 1975 to 248 i n
1979 .

In 1979, there were 1300 job s
advertised for these 248 Ph .D .s .

In 1979, fewer than 100 o f
these Ph .Ds chose academic careers ,
and they had over 650 academi c
positions from which to choose .

Undergraduate enrollments hav e
doubled since 1975, while facult y
size and lab space have remaine d
nearly fixed .

Class sizes are significantl y
higher than in other science de-
partments .[Denning82,p370]

It is well known that software cost s
now exceed hardware costs .

The 1973 data processing cost s
in the U . S . Department of Defens e
have been estimated in an IDA stud y
as follows :

http://crossmark.crossref.org/dialog/?doi=10.1145%2F989341.989349&domain=pdf&date_stamp=1984-06-01

Hardware $1 .0-1 .4 Billion goes

	

from Ep L/ I

	

(V*) 3 /(1 .53) 2 to
Software $2 .9-3 .6 Billio n
Operations $2 .3-3 .3 Billion E Engl

	

= (V*) 3 /(2 .16) 2 .

	

Further, we have :

That is, software above is 3 times
EEng1 (V *) 3 (1 .53) 2 (1 .53) 2

the

	

cost of hardware,

	

while

	

soft - ----- - ------- -------

	

_ ------- = 5
ware

	

and operations

	

(which

	

are E p L/I (2 .16) 2 (V *) 3 (2 .16) 2
affected by

	

software

	

quality)

	

is

3 0

more than 5 times the cost of hard -
ware . These figures are typical o f
industry as well . [Mills8O,p798] .

As shown in the graph below, on th e
basis of the cost for 300,000 instruction s
per second, the per hour cost of personne l
exceeded the per hour cost of computer s
for the first time in 1979 (note that th e
vertical scale is logarithmic) .
[Martin82,p3]

1 .000
UNI T
COST S
IS)

10 0

1 0

2 .

	

Language levels .
Intuitively we feel that the time and

effort in writing programs increases wit h
their size and complexity, and decrease s
if we can increase the level of abstrac -
tion . These feelings have been confirme d
by work done by Maurice Halstead, and h e
has developed metrics for measuring thes e
factors in programs . See [Halstead79] and
[Fitzsimmons78] . He measures the level o f
languages and finds that most programmin g
languages are around 1 .0, assembler lang-
uages lower and problem oriented language s
higher, for example, PL/I has a level o f
1 .53 .

	

His measure of level for Englis h
prose is 2 .16 .

To illustrate a consequence of this ,
let L be the level of abstraction of a
given algorithm, let V be the volume o f
the algorithm as written in a given lang -
uage, let V * be the potential volume (i .
e ., the volume in the highest-level repre -

sentation of the algorithm, which is a
constant), let E be the effort to writ e
the algorithm in a given language, and le t

T be the programming language level . Hal -
stead defines E = V/L and X= LV * . It ca n
be shown that E (e) 3 /> 2 . The effort i n
writing a program in PL/I, then in Englis h

S IC C S
BULLETIN) Vol . 16 No . 2 June 1984

We reason that if a more powerfu l
general purpose language than PL/I i s
invented, its level would be between 1 .5 3
and 2 .16, and the effort in programmin g
could be reduced by at most one-half . W e
conclude that attempts to gain improve -
ments in productivity through better gen-
eral purpose programming languages wil l
not produce improvements in the range o f
an order of magnitude or better . In Hal -
stead's words :

Similarly, in computer languages ,
we must expect to reduce the rang e
of applicability if we would rais e
the level . Consequently, we shoul d
expect that the most fruitful di-
rection available is in the desig n
of preprocessors or special purpos e
languages [Halstead79,p136] .

Productivity gains of an order of magni -
tude or better are claimed for some moder n
commercial packages classified as fourth -
generation languages [Read82] .

3. The proposed course .
To give computer professionals th e

skills to create and use such highly pro -
ductive, advanced tools a graduate leve l
course is proposed . The course would dra w
upon state-of-the-art capability in finit e
automata, formal grammars, data abstrac-
tion and automatic software generation .
In broad outline, the course would prepar e
students to create special purpose lang-
uages using an automatic lexical analyze r
generator and an automatic parser genera -
tor to relieve most of the burden of labo r
associated with language creation . Stu-
dents would be encouraged to use, as muc h
as possible, the language of the workplac e
with operations on objects familiar to th e
workplace . Skills in data abstractio n
would then be addressed so that meaningfu l
data objects and operations on them can b e
developed . Finally, current work in auto-
matic software generation systems would b e
studied so as to integrate the preceding
skills into a capability to produce a
working system . Along the way, issues o f
automatic generation of documentation ,
system reliability and efficiency shoul d
be addressed .

	

The following section s
discuss these topics .

4. Special purpose languages .
It has for some time been possible t o

automate the implementation of a lexica l
analyzer and a parser for a language . Th e
tokens (terms) used in a language can b e
represented by regular expressions and a
lexical analyzer automatically generated
to recognize them [Aho77,Lesk75] . Th e
tokens recognized by the analyzer can the n
be passed to a parser, so a statement ca n

10,000

COMPUTER HARDWARE CONFIGURATIO N
IS/HR FOR 3 X 10' INSTRUCTIONS/SECOND)

60 7

0 YEAR

©0
	 i

3 1

be recognized . To generate the parser i t
is necessary that the allowable statement s
in the language be specified by a context -
free grammar . If the context-free gramma r

is presented in Backus-Naur Form (BNF) ,
then the parser can be generated auto-
matically [Johnson74,Wetherell81] . With
this kind of capability, it should be
possible to construct, in the language o f

the workplace, the special purpose lang-

uage useful to implement applications i n
that workplace . Such a language woul d
have terms familiar to the workers in th e
workplace, and would perform operations o n

objects familiar to them . That is, work-
ers could think in terms of 'running th e

payroll' or 'hiring' an employee rathe r
than inserting a record into a database .
[Ledgard70,p384]

4 .1 very high level languages .
As noted in 2 . above, languages in-

crease in level as their level of abstrac -
tion is raised . The abstraction of a
computing language increases as the ob-
jects and operations it deals with mov e
from machine level toward objects in th e

real world . Further characterization o f
very high level languages are that the y
are non-procedural, have aggregate opera -
tors and allow associative referencing

[Schwartz80,p578] . (Schwartz' section o n
very high level languages is quite shor t

and ought to be required reading in th e
course .) Prywes achieves non-procedurali -

ty in his MODEL system by allowing state -
ments to be entered in any order, eve n
when an order of processing is known . A s
the statements are entered, the syste m
generates a directed graph whose edges ar e
precedence relations between statements .
Once the graph is completed, and passe s
the system's completeness test, then a
topological ordering of the graph produce s
an ordering of the statements that satis -
fies the precedence relations amongst th e
statements [Prywes77,p102] .

4 .2 Teaching materials .
To do work in this area, student s

will need to be acquainted with forma l
languages at Chomsky's levels 3 (regula r
expressions) and 2 (context-free) . A goo d
background is given in Chapter 4 of Th e
Handbook for Artificial Intelligence "
[Barr8l,p233] and in Chapter 4 of "Wha t
Can Be Automated" [Karp80,p2l6] .

If an automatic lexical analyze r
generator or an automatic parser generato r
must be written, then information neces-
sary can be found in Chapters 3, 4, 5 an d
6 of "Principles of Compiler Design "
[Aho77] .

5 . Data objects and operations on them .
To achieve the goal of operating o n

objects familiar to the workplace in th e
language of the workplace, we must have a
means of defining the objects and th e
operations on them in addition to th e
language design capability discussed in 4 .
above . The most promising direction fo r

SIGCSE
BULLETIN Vol . 16 No . 2 June 1984

such work seems to be that proposed b y
Parnas[Parnas72], which has come to b e
known as data abstraction . Parnas' idea s
of encapsulating a data object and th e
operations allowed on it have been imple -
mented in the Ada package construct[Le-
Blanc82] . An example of an implementatio n
in Fortran is given by Isner[Isner82] .
Fortran does not lend itself to the notio n
of encapsulating data objects and opera-
tions as well as Ada does, but it is a t
least possible, and with disciplined use ,
it can be made to work .

Considerable programming skill i s
necessary to do a good job and achieve th e
desired results at this stage . The pro-
gramming language used should probably b e
the target language used as output in th e
parsing stage in 4 . above .

6. Generation of documentation .
The generation of documentation be-

gins with the analysis of the problem an d
the design of the special purpose languag e
to be used . As terms (tokens) are col-
lected for use in the language, a diction -
ary of meanings should be developed an d
stored in machine readable form so as t o
be available for inclusion in any documen -
tation of the system . The list of token s
serves as input to the lexical analyze r
generator . Output of the lexical analyze r
generator should include a clean copy o f
the list . Next, the Backus-Naur For m
(BNF) of the context-free grammar must b e
developed for input to the parser genera -
tor . Output from the parser generato r
should include a clean copy once the ambi -
guities and inconsistencies have bee n
removed from the grammar .

The next stage is the development and
coding of the data objects and the opera-
tions on them . This is a traditiona l
programming project, and documentatio n
should be prepared with rather greate r
care than is traditional because of th e
special nature of the objects bein g
created . The documentation should includ e
the design specifications (implementatio n
independent), a description of the imple-
mentation chosen, and a listing of th e
code generated for each data object .

Provision should be made to captur e
some documentation as the system is run-
ning to generate an application . The
source statements can be captured and
listed together with the target softwar e
produced . Provision should also be mad e
for comments to be included with th e
source statements . These would pas s
through and form part of the documentatio n
of the generated software .

7. Reliability considerations .
Some measure of reliability shoul d

derive from the way software is produced
from an automatic softwware generatio n
system . That is, the parser generato r
assures us that we start with a consisten t
grammar, and the software generator, b y
its very nature, produces code in a stand -
ard way .

	

Thus, desirable programming

3 2

standards can be built into the generato r
leading to the opportunity to produc e
consistent, standard code that is mor e
reliable and easier to maintain . Thi s
result does not come automatically and
care should be exercised at each stage o f
the development and generation process t o
plan and provide for reliability .

It would be useful to build into th e
software generator some of the results o f
work being done on program correctnes s
proofs and reasoning about programs a s
mathematical objects . In this regard w e
note that the COSERS report espouses th e
axiomatic approach of Hoare[Mills80,p809] .
O'Donnell thinks the axiomatic approach i s
weak . He cites some rules of the Hoar e
logic that are unsound and observes tha t
"convenient and elegant rules for reason -
ing about certain programming construct s
will probably require a more flexibl e
notation than Hoare's [O'Donnell82,p927] .
Culik and Rizki argue that mathematica l
proofs are more appropriate than logi c
proofs for computer science educatio n
(Culik83] . Backus proposes that an en-
tirely new approach to language develop-
ment be taken . His functional programmin g
style proposal is based on an algebra o f
programs that makes it possible to combin e
parts of programs into demonstrably relia -
ble larger units [Backus78] . Williams ha s
developed a realization of some facets o f
Backus' proposal [Williams82] . It woul d
be prudent to stay in touch with this wor k
and incorporate results as they becom e
available .

8 .

	

Efficiency considerations .
It has been justly observed tha t

automatically generated software tends t o
be inefficient . The sutuation is reminis -
cent of the days when higher-level lang-
uages were being introduced and having t o
overcome the resistance of assembly lang -
uage programmers who knew how to get th e
best performance out of their hardware .
That experience suggests that the targe t
language of the software generator ough t
to be a higher-level language with a goo d
optimizing compiler . One also ought to
plan for a feedback loop that allows inef -
ficiencies to be removed from generated
software in a controlled manner with docu -
mentation of what has been done . Th e
decreasing cost and increasing speed and
capability of hardware is on the side o f
reducing the impact of the efficienc y
problem, but cannot be relied on as th e
entire answer .

Bibliograph y
Aho, Alfred V . and Ullman, Jeffrey D .

"Principles of Compiler Design "
Addison-Wesley, 1977 .

Backus, John, "Can Programming Be Liber -
ated from the Von Neumann Style? A
Functional Style and Its Algebra o f
Programs", (1977 ACM Turing Awar d
Lecture) Comm . ACM 21, 8 (Augus t
1978) pp613-641 .

SIGCSE

BULLETIN Vol . 16 No . 2 June 1984

Barr, Avron and Feigenbaum, Edward A . "Th e
Handbook of Artificial Intelligence" ,
Wm . Kaufman, 1981 . Chapter 4 i s
"Understanding Natural Language "

Culik, K . and Rizki, M . M . "Logic versu s
Mathematics in Computer Scienc e
Education", ACM SIGCSE Bulletin, 15 ,
1 (February 1983) pp14-20 .

Denning, Peter J . ; Feigenbaum, Edward ;
Gilmore, Paul ; Hearn, Anthony ;
Ritchie, Robert W . and Traub, Josep h
"A Discipline in Crisis", Comm . AC M
24, 6 (June 1981) pp370-374 .

Fitzsimmons, Ann and Love, Tom "A Revie w
and Evaluation of Software Science" ,
ACM Computing Surveys 10, 1 (Marc h
1976), pp3-18 .

Halstead, Maurice H . "Advances in Softwar e
Science", Chapter 4 in "Advances i n
Computers", Vol 18, M . Yovits, Ed . ,
Academic Press 1979, pp119-172 .

Isner, John F., "A Fortran Programming
Methodology Based on Data Abstrac-
tion", Comm . ACM 25, 10 (Octobe r
1982), 686-697 .

Johnson, Stephen C . "YACC : Yet Anothe r
Compiler-Compiler", Computing Scienc e
Technical Report #32, Bell Laborato -
ries, Murray Hill, N . J ., July 31 ,
1978 .

Karp, Richard M ., panel chairman fo r
"Theory of Computation", Chapter 4 i n
"What Can Be Automated?", B . W . Arden
Ed ., MIT Press, 1980 . The section w e
refer to is "Language and Automat a
Theory", pp216-235 .

LeBlanc, Richard J . and Coda, John J . ,
"Ada and Software Development Sup-
port : A New Concept in Languag e
Design", IEEE Computer, May 1982, 75 -
81 .

Ledgard, Henry F . and Taylor, Robert W . ,
"Two Views of Data Abstraction "
Comm . ACM 20, 6 (June 1977), 382-384 .

Lesk, M . E . " LEX : A Lexical Analyzer Gene -
rator", Computing Science Technica l
Report #39, Bell Laboratories, Murra y
Hill, N . J ., October 1975 .

Martin, James "Applications Developmen t
Without Programmers", Prentice-Hall ,
1982 .

Mills, Harlan D ., panel chairman fo r
"Software Methodology" ; Chapter 11 i n
"What Can Be Automated?", B . W . Arden
Ed ., MIT Press 1980, pp791-820 .

O'Donnell, Michael J . "A Critique of th e
Foundations of Hoare Style Program-
ming", Comm . ACM 25, 12 (Decembe r
1982) pp927-935 .

Parnas, D . L ., "On the Criteria To Be Use d
in Decomposing Systems into Modules" ,
Comm . ACM 15, 12 (December 1972)
pp1053-1058 .

Prywes, Noah S., " Automatic Program Gene-
ration" ; Chapter 2 in "Advances i n
Computers", M . Rubinoff and M . C .
Yovits, Eds ., Vol . 16, Academi c
Press, 1977, pp57--125 .

Read, Nigel S . and Harmon, Douglas L .
"Language Barrier to Productivity" ,
Datamation, February 1982, pp209-212 .

Schwartz, Jack, panel chairman for "Prog-
ramming Languages " , Chapter 8 i n

"What Can Be Automated " , B. W. Arden ,

Ed ., MIT Press, 1980 . The section w e

refer to is "very High Level Lang-
uages", pp577-583 .

Wetherell, Charles and Shannon, Alfred ,

" LR-Automatic Parser Generator an d

LR(1) Parser, IEEE Transactions o n

Software Engineering, SE-7, 3 (Ma y

1991), pp274-278 .

Williams, John H . "Notes on the FP Styl e
of Functional Programming" in "Func-
tional Programming and Its Applica-
tions : An Advanced Course", J . Dar-
lington, P . Henderson and D. A . Tur-
ner Eds ., Cambridge University Press ,
NY, 1982, pp73-101 .

*******•********•**********************0** *

MANAGING PROGRAMMING ASSIGNMENTS - continued from page 2 8

3 3

has remarkably efficient string-handlin g

machine code (programs can be compiled ,

not just interpreted) . So our fina l
version is a fairly simple one where th e

range

	

string

	

is

	

progressively

	

munche d

away .

	

If the next piece munched is itsel f

a

	

groupname,

	

its

	

definition range

	

i s

appended at the leading end of the strin g

instead .

	

Simple, eh Watson ?

And each time the Group definitio n

table is referred to in the munching awa y
of a range string, a counter is bumped .

Over

	

32

	

references

	

mean

	

'circula r

definition ' .

	

Like all (we hope) othe r
error situations when using FLOG, th e
error is trapped and dealt with graciousl y
so the user need never re-run the progra m

from scratch (which would lose him all th e
stored values in main memory) .

The range string is simply used t o
tag a " boolean " array or bit map covering
programmer numbers 0 to 214 . Any rang e
specification given further along th e
string overrides any prior specification ,
which makes for convenient updating o f
group definitions .

And finally

	

the supporting files .

Every instructor has two data files :

LIST .DAT with the list of his password s

(in his alloted range, say from 150 t o

210) to which he adds student names .

	

Whe n
homeworks are printed out, the studen t
name

	

is

	

printed

	

at

	

the

	

top

	

in

	

bi g
letters .

	

Then GROUP .DAT which holds th e
instructor's semi-permanent grou p
definitions (names with ranges) and whic h
he is free to update at any time .

The

	

Project

	

Manager

	

(me)

	

wh o
allocates blocks of programmer numbers ha s

a couple of special programs . One ha s

"privilege" (even though none of the Wals h

instructors has a 1 as first number)--th e

program was submitted to the System
Manager who approved it and has the powe r

to attach a privilege code to a program ,

once compiled . This program allows th e
Project Manager to change passwords, o r

change the disk quota, of any programmer .

SIGCSE
BULLETIN Vol . 16 No . 2 June 1984

Another program finds out what th e
passwords are, and transfers a block o f
them to a given instructor ' s LIST .DA T
file . The same program makes a copy o f
the student names from this LIST .DAT fo r
the benefit of the Group Manager .

Finally, the very first item of
virtual array LIST .DAT contains the firs t
and last programmer number of the bloc k
allocated to an instructor and the dat e
allocation was made . This is really fo r
information : an instructor could not us e
programmer numbers outside his allocatio n
because the passwords have not been copie d
into his LIST .DAT array .

Now you would think that student s
would object to such a "superspy" but the y
don ' t--because no-one takes advantage o f
it to hurt them in any way . They soo n
learn that two things must be adhered to :
give the right file name to the nex t
program, and have it in by deadline .

