Check for
Updates

A PROPOSED GRADUATE COURSE

in

AUTOMATIC SOFTWARE GENERATION

Wendell L.
Utah State University,

Abstract

The backlog of demand for applica-
tions software is exceeding the producti-
vity of programmers using conventional
procedural languages, One approach to
solving this problem is increasing pro-
grammer productivity through the use of
automatic software generation systems,
This paper presents the background of the
software crunch, the reasons conventional
programming languages are not expected to
meet it, and the possibility of the state
of the art being adequate to support a
graduate course 1in automatic software
generation,

1. Introduction.

Pressures are increasing to develop
more software more rapidly and to give
users the ability to generate some of
their own applications. The pressures
come from the increasing number of compu-
ters being installed with the resulting
demand for software to make them useful,
the limited supply of traditionally
trained programmers, the limited capabili-~
ty of educational institutions to train
programmers, and from the decreasing cost
of computers vis-a-vis the cost of pro-
grammers.,

"It is estimated that the number of
computers used for scientific and commer-
cial applications will continue to grow at
25% per year at least. It is growing
faster than that now." {Martin82,pl]. An
IBM survey found that "the number of ap-
plications in today's data processing
centers 1s growing at 45%5% per vyear."[Mar-
ting82,p2]. Assuming no change 1in the
ratio of programmers to computers, and no
increase in productivity, the number of
programmers in ten years time would have
to increase over nine times, and the back-
forty-one times! "Any set of estimates of
computing power 10 years hence indicates
that the productivity of application deve-
lopment needs to increase by two orders of
magnitude during the next 10 vyears."[Mar-
ting82,p2)

0f course the means to increase pro-
ductivity is being developed, but the
results are slow compared to the demand.
Structured programming techniques with

SIGCSE

BULLETIN vol. 16 No. 2 June 1984

by

29

Pope

Logan, Utah

existing procedural languages have pro-
duced productivity gains on the order of
10%(Martin82,p2]. Of more serious concern
is the slowness with which improvements
move into the world of work and the inabi-~
lity of existing educational institutions
to train a sufficient quantity of new
programmers, Existing faculties are at
full load and beyond, and the number of
new faculty members 1s small compared to
the demand. The Snowbird Report of July,

1980 (so-called because the conference
that spawned it was held at Snowbird,
Utah) states that "there is a severe man-

power shortage in the computing field. It
is most acute at the Ph.D. level: the
supply of new Ph.D.'"s is about 20 percent
of the demand." [Denninggl) Some data
indicating the inability of educational
institutions to keep up with demand are:
The total number of Ph.D. Com~-
puter Science faculty in the United
States increased from 805 in 1975
to 837 in 1979. The net gain, 32,
is 2.8 percent of the total of 1130

Ph.D.'s graduated in the same
period. Most faculty outflux is
into industry, not retirement.

The total number of Ph.D. gra-
duates, the next generation of
researchers and teachers, has de-
creased from 256 in 1975 to 248 in
1979.

In 1979, there were 1300 jobs
advertised for these 248 Ph.D.s.

Iin 1979, fewer than 100 of
these Ph.Ds chose academic careers,
and they had over 650 acadenmic
positions from which to choose,

Undergraduate enrollments have
doubled since 1975, while faculty
size and lab space have remained
nearly fixed.

Class sizes are significantly
higher than in other sclence de-
partments.[Denning82,p370]

It is well known that software costs
now exceed hardware costs,
The 1973 data processing costs
in the U. S. Department of Defense
have been estimated in an IDA study
as follows:

http://crossmark.crossref.org/dialog/?doi=10.1145%2F989341.989349&domain=pdf&date_stamp=1984-06-01

Hardware $1.0-1.4 Billion
Software $2.9-3.6 Billion
Operations $2.3-3.3 Billion

That is, software above is 3 times
the cost of hardware, while soft-
ware and operations (which are
affected by software quality) is
more thanb times the cost of hard-
ware. These figures are typical of
industry as well, [Mills80,p798].

As shown in the graph below, on the
basis of the cost for 300,000 instructions
per second, the per hour cost of personnel
exceeded the per hour cost of computers
for the first time in 1979 (note that the
vertical scale is logarithmic).
(Marting82,p3)

COMPUTER HARDWARE CONFIGURATION
{$/HR FOR 3 X 10® INSTRUCTIONS/SECOND)

10,000(—

1,000
UNIT
COSTS
]
100}
A&Q@
10— ‘\zzo
ropLE (S/HR) E@
PN A T TN O NN U S VA ISP SO T OO TN S T S WO O |
60 0 80

YEAR

2. Language levels.

Intuitively we feel that the time and
effort in writing programs increases with
their size and complexity, and decreases
if we can increase the level of abstrac-
tion, These feelings have been confirmed
by work done by Maurice Halstead, and he
has developed metrics for measuring these
factors in programs., See [Halstead79] and
[Fitzsimmons78]. He measures the level of
languages and finds that most programming
languages are around 1.0, assembler lang-
uages lower and problem oriented languages
higher, for example, PL/I has a level of
1.53. His measure of level for English
prose 1is 2.16.

To illustrate a consequence of this,
let L be the level of abstraction of a
given algorithm, let V be the volume of
the algorithm as written in a given lang-
vage, let v* be the potential volume (1.
e., the volume in the highest-level repre-
sentation of the algorithm, which is a
constant), let E be the effort to write
the algorithm in a given language, and let
N be the programming language level, Hal-
stead defines E = V/L and A= LV*, It can
be shown that E = (V¥)3/X2., The effort in
writing a program in PL/I, then in English

SIGCSE

BULLETIN vol. 16 No. 2 June 1984

30

goes from Epp/1 = (v*)3/(1.53)2 to

EEngl = (v*)3/(2.16)2. Further, we have:
EEngl (V¥)3 (1.53)2 (1.53)2
==================== = e e—e = §
Epr/y (2.16)2 (v¥)3 (2.16)2
We reason that if a more powerful

general purpose language than PL/I is

invented, its level would be between 1.53

and 2,16, and the effort in programming

could be reduced by at most one-half., We
conclude that attempts to gain improve-
ments in productivity through better gen-
eral purpose programming languages will
not produce improvements in the range of
an order of magnitude or better. 1In Hal-
stead's words:

Similarly, in computer languages,

we must expect to reduce the range

of applicability if we would raise

the level. Consequently, we should

expect that the most fruitful di-

rection available is in the design

of preprocessors or special purpose

languages [Halstead79,pl36]).
Productivity gains of an order of magni-
tude or better are claimed for some modern
commercial packages classified as fourth-
generation languages [Read82].

3. The proposed course.

To give computer professionals the
skills to create and use such highly pro-
ductive, advanced tools a graduate level
course is proposed. The course would draw
upon state-of-the-art capability in finite
automata, formal grammars, data abstrac-
tion and automatic software generation.
In broad outline, the course would prepare
students to create special purpose lang-
uages using an automatic lexical analyzer
generator and an automatic parser genera-
tor torelieve most of the burden of labor
associated with language creation., Stu-
dents would be encouraged to use, as much
as possible, the language of the workplace
with operations on objects familiar to the
workplace, Skills in data abstraction
would then be addressed so that meaningful
data objects and operations on them can be
developed., Finally, current work in auto-
matic software generation systems would be
studied so as to integrate the preceding
skills into a capability to produce a
working system. Along the way, issues of
automatic generation of documentation,
system reliability and efficiency should
be addressed. The following sections
discuss these topics.

4. Special purpose languages,

It has for some time been possible to
automate the implementation of a lexical
analyzer and a parser for a language. The
tokens (terms) used in a language can be
represented by regular expressions and a
lexical analyzer automatically generated
to recognize them [Aho77,Lesk75]. The
tokens recognized by the analyzer can then
be passed to a parser, so a statement can

be recognized. To generate the parser it
is necessary that the allowable statements
in the language be specified by a context-
free grammar, If the context-free grammar
is presented in Backus~Naur Form (BNF),

then the parser can be generated auto-
matically [Johnson74,Wetherell8l], With
this kind of capability, it should be

possible to construct, in the language of
the workplace, the special purpose lang-
uage useful to implement applications in
that workplace. such a language would
have terms familiar to the workers in the
workplace, and would perform operations on
objects familiar to them, That is, work-
ers could think in terms of 'running the
payroll' or 'hiring' an employee rather
than inserting a record into a database.
[Ledgard?0,p384]
4.1 Vvery high level languages,

in 2, above, languages

As noted in-
crease in level as their level of abstrac-
tion is raised. The abstraction of a
computing language increases as the ob-
jects and operations it deals with move
from machine level toward objects in the
real world. Further characterization of
very high level languages are that they
are non-procedural, have aggregate opera-
tors and allow associative referencing
[Schwartz80,p578]. (Schwartz' section on
very high level languages is quite short
and ought to be required reading in the
course,) Prywes achieves non-procedurali-
ty in his MODEL system by allowing state-
ments to be entered in any order, even
when an order of processing is known. As
the statements are entered, the system
generates a directed graph whose edges are
precedence relations between statements.,
Once the graph is completed, and passes
the system's completeness test, then a
topological ordering of the graph produces
an ordering of the statements that satis-
fies the precedence relations amongst the
statements [Prywes?77,pl02].

4,2 Teaching materials.

To do work in this area, students
will need to be acquainted with formal
languages at Chomsky's levels 3 (regular
expressions) and 2 (context-free), A good
background is glven in Chapter 4 of "The
Handbook for artificial Intelligence"
[Bart81,p233] and in Chapter 4 of "What
Can Be Automated" [Karp80,p2l6].

I1f an automatic lexical analyzer
generator or an automatic parser generator
must be written, then information neces-
sary can be found in Chapters 3, 4, 5 and
6 of "Principles of Compiler Design"
[Aho77] .

5. Data objects and operations on them.

To achieve the goal of operating on
objects familiar to the workplace in the
language of the workplace, we must have a
means of defining the objects and the
operations on them 1in addition to the
language design capability discussed in 4.
above. The most promising direction for

SIGCSE

BULLETIN Vol. 16 No. 2 June 1984

31

such work seems to be that proposed by
Parnas(Parnas72], which has come to be
known as data abstraction. Parnas' ideas
of encapsulating a data object and the
operations allowed on it have been imple-
mented in the Ada package construct[Le-
Blanc82). An example of an implementation
in Fortran is given by Isner[Isner82].
Fortran does not lend itself to the notion
of encapsulating data objects and opera-
tions as well as Ada does, but it is at
least possible, and with disciplined use,
it can be made to work,

Considerable programming skill 1is
necessary to do a good job and achieve the
desired results at this stage. The pro-
gramming language used should probably be
the target language used as output in the
parsing stage in 4, above.

6. Generation of documentation,

The generation of documentation be-
gins with the analysis of the problem and
the design of the special purpose language
to be used. As terms (tokens) are col-
lected for use in the language, a diction-
ary of meanings should be developed and
stored in machine readable form so as to
be available for inclusion in any documen-
tation of the system. The list of tokens
serves as input to the lexical analyzer
generator. Output of the lexical analyzer
generator should include a clean copy of
the list. Next, the Backus-Naur Form
(BNF) of the context-free grammar must be
developed for input to the parser genera-
tor. Output from the parser generator
should include a clean copy once the ambi-
guities and inconsistencies have been
removed from the grammar.

The next stage is the development and
coding of the data objects and the opera-
tions on them. This is a traditional
programming project, and documentation
should be prepared with rather greater
care than is traditional because of the
special nature of the objects being
created, The documentation should include
the design specifications (implementation
independent), a description of the imple-
mentation chosen, and a listing of the
code generated for each data object.

Provision should be made to capture
some documentation as the system is run-
ning to generate an application. The
source statements can be captured and
listed together with the target software
produced. Provision should also be made
for comments to be included with the
source Statements, These would pass
through and form part of the documentation
of the generated software.

7. Reliability considerations,

Some measure of reliability should
derive from the way software is produced
from an automatic softwware generation
system, That 1is, the parser generator
assures us that we start with a consistent
grammar, and the software generator, by
its very nature, produces code in a stand-
ard way. Thus, desirable programming

standards can be built into the generator

leading to the opportunity to produce
consistent, standard code that is more
reliable and easier to maintain. This

result does not come automatically and
care should be exercised at each stage of
the development and generation process to
plan and provide for reliability,

It would be useful to build into the
software generator some of the results of
work being done on program correctness
proofs and reasoning about programs as
mathematical objects, 1In this regard we
note that the COSERS report espouses the
axiomatic approach of Hoare[Mills80,p809].
0'Donnell thinks the axiomatic approach is
weak, He cites some rules of the Hoare
logic that are unsound and observes that
"convenient and elegant rules for reason-
ing about certain programming constructs
will probably require a more flexible
notation than Hoare's [0'Donnell82,p927].
Culik and Rizki arqgue that mathematical
proofs are more appropriate than logic
proofs for computer science education
[Culik83). Backus proposes that an en-
tirely new approach to language develop-
ment be taken., His functional programming
style proposal is based on an algebra of
programs that makes it possible to combine
parts of programs into demonstrably relia-
ble larger units [Backus78]. Williams has
developed a realization of some facets of
Backus' proposal [Williams82)]. It would
be prudent to stay in touch with this work
and incorporate results as they become
available.

8., Efficiency considerations.

It has been justly observed that
automatically generated software tends to
be inefficient. The sutuation is reminis-
cent of the days when higher-level lang-
uages were being introduced and having to
overcome the resistance of assembly lang-
uage programmers who knew how to get the
best performance out of their hardware.
That experience suggests that the target
language of the software generator ought
to be a higher-level language with a good
optimizing compiler., One also ought to
plan for a feedback loop that allows inef-
ficiencies to be removed from generated
software in a controlled manner with docu-
mentation of what has been done. The
decreasing cost and increasing speed and
capability of hardware is on the side of
reducing the impact of the efficiency
problem, but cannot be relied on as the
entire answer.

Bibliography

Alfred v. and Ullman,

"Principles of Compiler Design"

Addison-Wesley, 1977.

Backus, John, "Can Programming Be Liber-
ated from the Von Neumann Style? A
Functional Style and Its Algebra of
Programs", (1977 ACM Turing Award

Aho, Jeffrey D.

Lecture) Comm, ACM 21, 8 (August
1978) pp613-641.

SIGESE

BULLETIN vol. 16 No. 2 June 1984

32

Edward A. "The
Intelligence",

Barr, Avron and Feigenbaum,
Handbook of Artificia

Wm. Kaufman, 1981. Chapter 4 is
"Understanding Natural Language"
Culik, K. and Rizki, M., M. "Logic versus

Science
15,

Mathematics in Computer
Education", ACM SIGCSE Bulletin,
1 (February 1983) ppld4-20.

Denning, Peter J.; Feigenbaum, Edward;
Gilmore, Paul; Hearn, Anthony;
Ritchie, Robert W, and Traub, Joseph
"A Discipline in Crisis", Comm, ACM
24, 6 (June 1981) pp370-374.

Fitzsimmons, Ann and Love, Tom "A Review
and FEvaluation of Software Science",
ACM Computing Surveys 10, 1 (March
1976), pp3-18.

Halstead, Maurice H. "Advances in Software
Science", Chapter 4 in "Advances in
Computers", vol 18, M. Yovits, Ed.,
Academic Press 1979, ppllo-172.

Isner, John F., "A PFortran Programming
Methodology Based on Data Abstrac-
tion", Comm. ACM 25, 10 (October
1982), 686-697.

Johnson, Stephen C. "YACC: Yet Another
Compiler-Compiler", Computing Science
Technical Report #32, Bell Laborato-

ries, Murray Hill, N, J., July 31,
1978,
Karp, Richard M., panel chairman for

"Theory of Computation", Chapter 4 in
"What Can Be Automated?", B, W. Arden
Ed., MIT Press, 1980. The section we
refer to is "Language and Automata
Theory", pp2l6-235.

LeBlanc, Richard J. and Goda, John J.,
"Ada and Software Development Sup-

port: A New Concept in Language
Design", IEEE Computer, May 1982, 75-
81.

Ledgard, Henry F. and Taylor, Robert W.,
"Two Views of Data Abstraction"
Comm, ACM 20, 6 (June 1977), 382-384,

Lesk, M. E, "LEX: A Lexical Analyzer Gene-

rator", Computing Science Technical
Report #39, Bell Laboratories, Murray
Hill, N, J., October 1975,

Martin, James "Applications Development
Without Programmers", Prentice-Hall,
1982,

Mills, Harlan D., panel chairman for

"Software Methodology"; Chapter 11 in
"What Can Be Automated?", B. W. Arden
Ed., MIT Press 1980, pp791-820.

O'Donnell, Michael J. "A Critique of the
Foundations of Hoare Style Program-
ming", Comm., ACM 25, 12 (December
1982) pp927-935.

Parnas, D. L., "On the Criteria To Be Used
in Decomposing Systems into Modules",

Comm, ACM 15, 12 (December 1972)
ppl053-1058.
Prywes, Noah S,, "Automatic Program Gene-

ration"; Chapter 2 in "Advances in
Computers", M. Rubinoff and M. C.

Yovits, Eds., Vol. 16, Academic
Press, 1977, pp57-125.
Read, Nigel S, and Harmon, Douglas L.

"Language Barrier to Productivity",
Datamation, February 1982, pp209-212.

schwartz, Jack, panel chairman for "Prog-
ramming Languages", Chapter 8 in
"What Can Be Automated", B. W. Arden,
Ed., MIT Press, 1980. The section we
refer to is “"very High Level Lang-
uages", pp577-583.

Wetherell, Charles and Shannon, Alfred,
"LR-Automatic Parser Generator and
LR(l) Parser, IEEE Transactions on
software Engineering, SE-7, 3 (May
1981), pp274-278.

Williams, John H. "Notes on the FP Style
of Functional Programming" in "Func-
t@onal Programming and Its Applica-
tions: An Advanced Course", J. Dar-
lington, P, Henderson and D. A, Tur-
ner Eds., Cambridge University Press,
NY, 1982, pp73-101.

B D R L L L e e T L e E P ST
MANAGING PROGRAMMING ASSIGNMENTS ~ continued from page 28

has remarkably efficient string-handling
machine code (programs can be compiled,
not just interpreted). So our final
version is a fairly simple one where the
range string is progressively munched
away., If the next piece munched is itself
a groupname, its definition 1range is
appended at the leading end of the string
instead, Simple, eh Watson?

And each time the Group definition
table is referred to in the munching away
of a range string, a counter is bumped.

Over 32 references mean “circular
definition”. Like all (we hope) other
error situations when wusing #L0OG, the

error is trapped and dealt with graciously
s0 the user need never re-run the program
from scratch (which would lose him all the
stored values in main memory).

The range string is simply wused to
tag a "boolean" array or bit map covering
programmer numbers O to 214, Any range
specification given further along the
string overrides any prior specification,
which makes for <convenient wupdating of
group definitions,

And finally the supporting files.
Every instructor has two data files:
LIST.DAT with the 1list of his passwords
(in his alloted range, say from 150 to
210) to which he adds student names. When
homeworks are printed out, the student
name is printed at the top in big
letters. Then GROUP.,DAT which holds the
instructor”’s semi-permanent group
definitions {(names with ranges) and which
he is free to update at any time,

The Project Manager (me) who
allocates blocks of programmer numbers has
a couple of special programs. One has

"privilege" (even though none of the Walsh
instructors has a 1 as first number)--the
program was submit ted to the System
Manager who approved it and has the power
to attach a privilege code to a program,
once compiled, This program allows the
Project Manager to change passwords. or
change the disk quota, of any programmer,

SIGCSE

BULLETIN vol. 16 No. 2 June 1984

Another program finds out what the
passwords are, and transfere a block of
them to a given instructor”s LIST.DAT
file. The same program makes a copy of
the student names from this LIST.DAT for
the benefit of the Group Manager.

Finally, the wvery first item of
virtual array LIST.DAT contains the first
and last programmer number of the block
allocated to an instructor and the date
allocation was made. This is really for
information: amn instructor could not use
programmer numbers outside his allocation
because the passwords have not been copied
into his LIST.DAT array.

Now you would think that students
would object to such a "superspy" but they
don“t~~-because no-one takes advantage of
it to hurt them in any way. They soon
learn that two things must be adhered to:
give the right file name to the next
program, and have it in by deadline.

