ENHANCING COBOL PROGRAM STRUCTURE:
SECTIONS VS. PARAGRAPHS

)
Chasessa, R. M. Richards
Business Gomputer Information Systems
North Texas State University
Denton, TX 76203

Abstract

COBOL is sometimes criticized for its lack of structurability. This is due
primarily to the common but outdated use of paragraphs to achieve structure in COBOL
programming.

In fact. COBOL was designed to be highly structurable, The language itself is based
on a hierarachical structure consisting of DIVISIONS, SECTIONS, paragraphs, sentences,
and statements. The task is to train COBOL programmers to take maximum advantage of the
structures built into the language.

One way to do this is to use SECTION structure in the procedure division rather than
paragraph structure, SECTION structure has several distinct advantages over paragraph
structure and allows for maximum utilization of the structured approach to COBOL
programming,

Introduction

Critics of COBOL argue that the language is not easily structurable (l), Since
structure is the watchword in programming today, this is seen by many as being a limiting
factor in the use of COBOL in the future.

In fact, COBOL is highly structurable. However, since COBOL preceded the structured
approach to programming, the task is to retrofit COBOL programming and COBOL programmers
to the structured programming approach. This is not the case with a language designed
for structure, or designed after the concept of structure became popular,

COBOL As A Structured Language

The designers of COBOL used much foresight in developing the language (2), Even
before the concept of structure became popular, they designed a language that is built
upon a hierarchy of structures with the DIVISION the highest structure and progressing
through the S8ECTION, paragraph, sentence, and statement, in decreasing order. Their
work, at least indirectly, lead to the structured programming concept.

There are four goals or rules of structured programming:

1. eliminate the use of conditional transfers of control;

2. provide only one entry point and only one exit point for each
structure;

3, wutilize only one process per structure; and

4, wuse procedure names to document the function of a procedure
and its level in the program hierarchy.

The first and second goals are the toughest to achieve in COBOL. In order to
eliminate GO T0”8 and provide one entry point and one exit point, the PERFORM verb is
available. As is discussed later, how it is used is critical.

The third goal is a matter of programming logic, no matter what language is being
used., The fourth is actually facilitated by the self-documenting nature of the COBOL
language., But what about the first two goals?

SIGCSE
BULLETIN vol. 16 No. 2 June 1984 i8


http://crossmark.crossref.org/dialog/?doi=10.1145%2F989341.989353&domain=pdf&date_stamp=1984-06-01

The Perils of Paragraph Structure

COBOL programmers achieve varying results when striving for well-structured

programs., Most COBOL texts, especially the earlier ones, typically use paragraph
structure. This leads to many of the problems with COBOL structure "since paragraph
structure 1is relatively cumbersome. A typical COBOL routine structured around the

paragraph is presented below!

PERFORM PARA-1 UNTIL
EOF-INDICATOR =
“DONE” .

PARA-1.
(process)
(process)
READ (filename) INTO
(working-storage)
AT END MOVE “DONE”
TO EOF-INDICATOR,

PARA-2,

A problem 1is <created by this approach since the exit point 1is not specifically
identified. Both the programmer and the computer must look for the place exit will
occur - If a command is issued to exit PARA-1 before the process is complete, a basic
principle of structure is violated, namely the restriction on unconditional transfers of
control.

Having no definite exit point causes some computers to get lost in

processing-=-actually lose their place., Many compilers generate a WARNING message such as
follows to notify the programmer of a possible problem:

EXIT FROM PERFORMED PROCEDURE
ASSUMED BEFORE PROCEDURE-NAME.

Although this problem has been noted on an NAS 8040 in IBM 370 mode, the problem does not
seem to be machine-specific., It has also been observed on a microcomputer system running
an entirely different version of COBOL,

The immediate solution to the above problem was to put an EXIT statement at the end
of the structure (in its own paragraph, of course). With no other change to the program,
the bug was eliminated, at least in that case.

This problem was very perplexing. The IBM compiler treats the EXIT statement as a
"no-op" statement. Apparently, however, the compiler "likes" the inclusion of an EXIT
paragraph at the end of pereformed structures. Some compilers treat EXIT as an operable
statement. But even when it is not operational, the definition of the point of structure
exit is important to the compiler.

Using THRU and EXIT

Avoiding a situation such as this can be accomplished by placing an EXIT at the end
of the procedure and by using the THRU clause in the PERFORM verb. The THRU clause is
frequently used when several paragraphs are to be executed in sequence within a given
structure. These techniques are, however. frowned upon by those who set the standards
for COBOL programming (3).

SIGCSE / ,
BULLETIN vol. 16 No. 2 June 1984 9



An example of this technique is shown below:

PERFORM PARA-1 THRU
PARA-1-X
UNTIL EOF-INDICATOR
= “DONE”,

PARA-1.
(process)
(process)
READ (filename) INTO
(working-storage)
AT END MOVE “DONE~
TO INDICATOR.
PARA-1-X,
EXIT.
The THRU option causes problems with COBOL programming standards because it leads to less
efficient program coding, compilation, and execution. On the other hand, the EXIT has
gsome merit. Overall internal documentation is enhanced because the EXIT verb provides
definite exit points for all procedures. This type of structure exit cannot be mistaken,
either by the programmer or by the computer.

This type of exit is effected in other languages by the use of delimiters called
"capstone" statements such as the END statement, Capstone statements are used to signify
the one and only exit from a given procedure, Usage of the EXIT verb in this manner
certainly has precedent.

The THRU Statement Is Hot Heeded In SECYION Structure

The criticism of the THRU is well-taken. If the function of THRU can be implemented
without actually coding the THRU clause, why use it? In fact, the THRU function can be
implemented in another way--a way that makes a great deal of sense when striving for
structure in COBOL programming.

The convention that allows this is using SECTIONS rather than paragraphs as the
basis of COBOL structure, By wusing SECTIONS, the advantages of using EXIT can be
realized while, at the same time, eliminating the need for THRU., An example follows:

PERFORM SECTION-1 UNTIL
EQF-INDICATOR =
“DONE”,

SECTION=-1 SECTION.
SECTION-1-~PARA.
(process)
(process)
(process)
READ (filename) INTO
(working-storage)
AT END MOVE “DONE”
TO EOF~INDICATOR.,
SECTION-1-X,
EXIT.

Structuring the COBOL program in this manner achieves virtually all of the goals of
structured programming. There are no unconditional transfers of control. Each procedure
has one entrance and one exit, both of which are well-defined,. Plus, the problem of
premature exit is eliminated since EXIT must occur in a paragraph by itself, according to
the syntax of COBOL,

HRAXARRARAR A AT AR ERARREARRE AR A AR T AR A ARR AN IR TR REAARI AR AR ARRAR XA ARE IR A RRRRE A A TR IR ARERARRAR T RR LI RAA R AR KKk
COBOL PROGRAM STRUCTURE - continued on page 55

SIGCSE
BULLETIN Vol. 16 HNo. 2 June 1984 50



Assign to HIGHEST VOLUME the value of 0.00,
For CITY COUNTER going from 1 to 10 do
If VOLUME [CITY COUNTER] > HIGHEST VOLUME then
Assign to HIGHEST VOLUME the value of VOLUME [CITY COUNTER].
Assign to CITY WITH HUIGHEST VOLUME the value of CITY [CITY COUNTER].

Write out CITY WITH HIGHEST VOLUME, HIGHEST V OLUME,

Conclusion

Since the essential feature of stepwise refinement is its hierarchical structure,
this is best illustrated with a tree. 4 solution tree is a tool that assists in the
gradual development of an algorithm, A solution tree provides an advantage over a linear
implementation of stepwise refinement in that a tree shows the entire development process
at a glance, with the algorithm clearly distinguished as the leaves of the tree, For a
complex problem, there would be a main solution tree and one or more subtrees, The
leaves of each subtree constitute a subalgorithm, which is routinely translated into a
subprogram in the target language.

Bibliography

1. Collins, William, An Introduction to Programming and Pascal, Macmillan, 1984

2. Shelly, Gary and T. Cashman, Advanced Structured COBOL, Anaheim Publishsing
Company, 1978,
Jokd RS AR AR KRR AR AR AR RAR R AR ARRERINE AR TR AR AR R Rk kol Rk ok Rk ok ok ke deodok ok kR ko ke dek ko k ek ok Rk Ak ARk
COBOL PROGRAM STRUCTURE - continued from page 50

Summaxry

Structuring COBOL programs around SECTIONS rather than paragraphs allows the
programmer to achieve the maximum structurability in COBOL., In fact, except for the EXIT
paragraph and the paragraph immediately following the SECTION name (as required by many
compilers), there is very little need for paragraphs in this scenario. Since there are
no unconditional transfers of control in totally structured programming, why wuse
paragraphs?

The technique described above is rapidly becoming a standard practice with many
COBOL experts and authors. Because of this, COBOL is attaining a new reputation for
structurability,

It is important to note that COB0L “81 will provide even better programming
techniques to achieve structure. The inclusion of an "inline" PERFORM, an actual CASE
structure. and capstone statements such as END PERFORM will aid immensely in structuring
COBOL programs.

COBOL is a highly structurable programming language. Because the language 1is
evolving to meet future programming needs, it will maintain its dominance in the business
world for many years to come. Because of the ability of the language to perform well in
the structured programming environment of today, its popularity as a general use language
should increase as well,

Footnotes

1. Feingold, Carl, Fundamentals of COBOL Programming, Dubuque: Wm. C. Brown Company
Publishing, 1983, p. 131.

2. Hopper, G, M,, Automatic Coding for Digital Computers (Talk presented at The High
Speed Computer Conference, Louisiana State University, Feb. 16, 1955), Remington Rand
Corp., ECD-1 (1955),

3. Spence, J., Wayne. COBOL foxr the 8078, St. Paul: West Publishing Co., 1982, p.
158,

SIGCSE
BULLETIN Vol. 16 No. 2 .Junc 1984



