
ENHANCING COBOL PROGRAM STRUCTURE :
SECTIONS VS . PARAGRAPH S

R . M . Richard s
Business Computer Information System s

North Texas State Universit y
Denton, TX 7620 3

Abstrac t

COBOL is sometimes criticized for its lack of structurability . This is due
primarily to the common but outdated use of paragraphs to achieve structure in COBO L

programming .

In fact . COBOL was designed to be highly structurable .

	

The language itself is base d
on a hierarachical structure consisting of DIVISIONS, SECTIONS, paragraphs, sentences ,
and statements .

	

The task is to train COBOL programmers to take maximum advantage of th e

structures built into the language .

One way to do this is to use SECTION structure in the procedure division rather tha n
paragraph structure . SECTION structure has several distinct advantages over paragrap h
structure and allows for maximum utilization of the structured approach to COBO L
programming .

Introduction

Critics of COBOL argue that the language is not easily structurable (1) . Sinc e
structure is the watchword in programming today, this is seen by many as being a limitin g
factor in the use of COBOL in the future .

In fact, COBOL is highly structurable .

	

However, since COBOL preceded the structure d
approach to programming, the task is to retrofit COBOL programming and COBOL programmer s
to the structured programming approach .

	

This is not the case with a language designe d
for structure, or designed after the concept of structure became popular .

COBOL As A Structured Languag e

The designers of COBOL used much foresight in developing the language (2) . Eve n
before the concept of structure became popular, they designed a language that is buil t
upon a hierarchy of structures with the DIVISION the highest structure and progressin g
through the SECTION, paragraph, sentence, and statement, in decreasing order . Thei r
work, at least indirectly, lead to the structured programming concept .

There are four goals or rules of structured programming :
1. eliminate the use of conditional transfers of control ;
2. provide only one entry point and only one exit point for eac h

structure ;
3. utilize only one process per structure ; and
4. use procedure names to document the function of a procedur e

and its level in the program hierarchy .

The first and second goals are the toughest to achieve in COBOL . In order t o
eliminate GO TO ' s and provide one entry point and one exit point, the PERFORM verb i s
available .

	

As is discussed later, how it is used is critical .

The third goal is a matter of programming logic, no matter what language is bein g
used . The fourth is actually facilitated by the self—documenting nature of the COBO L
language . But what about the first two goals ?

SIGCSE
BULLETIN vol . 16 No . 2 June 1984

	

48

http://crossmark.crossref.org/dialog/?doi=10.1145%2F989341.989353&domain=pdf&date_stamp=1984-06-01

The Perils of Paragraph Structur e

COBOL programmers

	

achieve varying

	

results

	

when striving

	

for well-structured

programs .

	

Most COBOL texts,

	

especially the earlier ones,

	

typically use paragrap h

structure .

	

This leads to many of the problems with COBOL structure 'since paragrap h

structure is relatively cumbersome .

	

A typical COBOL routine structured around th e

paragraph is presented below :

PERFORM PARA-1 UNTI L
EOF-INDICATO R
' DONE ' .

PARA-l .
(process)
(process)
READ (filename) INT O

(working-storage)
AT END MOVE ' DON E '
TO EOF-INDICATOR .

PARA-2 .

A problem is created by this approach since the exit point is not specificall y
identified .

	

Both the programmer and the computer must look for the place exit wil l
occur . If a command is issued to exit PARA-1 before the process is complete, a basi c
principle of structure is violated, namely the restriction on unconditional transfers o f
control .

Having no definite exit point causes some computers to get lost i n
processing--actually lose their place . Many compilers generate a WARNING message such a s
follows to notify the programmer of a possible problem :

EXIT FROM PERFORMED PROCEDURE
ASSUMED BEFORE PROCEDURE-NAME .

Although this problem has been noted on an NAS 8040 in IBM 370 mode, the problem does no t
seem to be machine-specific . It has also been observed on a microcomputer system runnin g
an entirely different version of COBOL .

The immediate solution to the above problem was to put an EXIT statement at the en d

of the structure (in its own paragraph, of course) . With no other change to the program ,
the bug was eliminated, at least in that case .

This problem was very perplexing .

	

The IBM compiler treats the EXIT statement as a

" no-op " statement .

	

Apparently, however, the compiler "likes" the inclusion of an EXI T
paragraph at the end of pereformed structures .

	

Some compilers treat EXIT as an operabl e
statement .

	

But even when it is not operational, the definition of the point of structur e
exit is important to the compiler .

Using THRU and EXIT

Avoiding a situation such as this can be accomplished by placing an EXIT at the en d

of the procedure and by using the THRU clause in the PERFORM verb . The THRU clause i s

frequently used when several paragraphs are to be executed in sequence within a give n

structure .

	

These techniques are, however . frowned upon by those who set the standard s
for COBOL programming (3) .

SIGCSE
BULLETIN Vol . 16 No . 2 June 1984 49

An example of this technique is shown below :

PERFORM PARA-1 THRU
PARA-I-X

UNTIL EOF-INDICATOR
_ ' DONE' .

PARA-1 .
(process)
(process)
READ (filename) INT O

(working-storage)
AT END MOVE ' DON E '
TO INDICATOR .

PARA-I-X .
EXIT .

The THRU option causes problems with COBOL programming standards because it leads to les s

efficient program coding, compilation, and execution .

	

On the other hand, the EXIT ha s

some merit .

	

Overall internal documentation is enhanced because the EXIT verb provide s

definite exit points for all procedures .

	

This type of structure exit cannot be mistaken ,

either by the programmer or by the computer .

This type of exit is effected in other languages by the use of delimiters calle d
"capstone" statements such as the END statement . Capstone statements are used to signif y
the one and only exit from a given procedure . Usage of the EXIT verb in this manne r
certainly has precedent .

The THRU Statement Is Not Needed In SECTION Structur e

	

The criticism of the THRU is well-taken .

	

If the function of THRU can be implemente d
without actually coding the THRU clause, why use it? In fact, the THRU function can b e
implemented in another way--a way that makes a great deal of sense when striving fo r
structure in COBOL programming .

The convention that allows this is using SECTIONS rather than paragraphs as th e

basis of COBOL structure . By using SECTIONS, the advantages of using EXIT can b e
realized while, at the same time, eliminating the need for THRU . An example follows :

PERFORM SECTION-1 UNTI L
EOF-INDICATOR =
'DONE ' .

SECTION-1 SECTION .
SECTION-I-PARA .

(process)
(process)
(process)
READ (filename) INT O

(working-storage)
AT END MOVE 'DONE '
TO EOF-INDICATOR .

SECTION-I-X .
EXIT -

Structuring the COBOL program in this manner achieves virtually all of the goals o f
structured programming .

	

There are no unconditional transfers of control .

	

Each procedur e
has one entrance and one exit, both of which are well-defined . Plus, the problem o f
premature exit is eliminated since EXIT must occur in a paragraph by itself, according t o

the syntax of COBOL .

******** x '.cic**4e :t'****'e****xiek*>4 :t*********** ** *x' ********** ',ex****9c******9cie>Yx*****kx :c '.c :c*********** **x' ****** *
COBOL PROGRAM STRUCTURE - continued on page 5 5

BIGCE E
BULLETIN Vol . 16 No . 2 June 1984

	

50

Assign to HIGHEST VOLUME the value of 0 .00 .
For CITY COUNTER going from 1 to 10 d o

If VOLUME [CITY COUNTER] > HIGHEST VOLUME the n

Assign to HIGHEST VOLUME the value of VOLUME [CITY COUNTER] .
Assign to CITY WITH HIGHEST VOLUME the value of CITY [CITY COUNTER] .

Write out CITY WITH HIGHEST VOLUME, HIGHEST VOLUME .

Conclusio n

Since the essential feature of stepwise refinement is its hierarchical structure ,

this is best illustrated with a tree . A solution tree is a tool that assists in th e

gradual development of an algorithm . A solution tree provides an advantage over a linea r

implementation of stepwise refinement in that a tree shows the entire development proces s

at a glance, with the algorithm clearly distinguished as the leaves of the tree .

	

For a
complex problem, there would be a main solution tree and one or more subtrees . Th e

Leaves of each subtree constitute a subalgorithm, which is routinely translated into a

subprogram in the target language .

Bibliography

1. Collins, William, An Introduction to Programming and Pascal, Macmillan, 1984 .

2. Shelly, Gary and T . Cashman, Advanced Structured COBOL, Anaheim Publishsing

Company, 1978 .

-*•*********a*****•******•** *

COBOL PROGRAM STRUCTURE - continued from page 5 0

Summar y

Structuring COBOL programs around SECTIONS rather than paragraphs allows th e
programmer to achieve the maximum structurability in COBOL . In fact, except for the EXI T
paragraph and the paragraph immediately following the SECTION name (as required by man y

compilers), there is very little need for paragraphs in this scenario . Since there ar e
no unconditional transfers of control in totally structured programming, why us e

paragraphs ?

The technique described above is rapidly becoming a standard practice with many

COBOL experts and authors . Because of this, COBOL is attaining a new reputation fo r

structurability .

It is important to note that COBOL ' 81 will provide even better programmin g

techniques to achieve structure . The inclusion of an "inline" PERFORM, an actual CAS E

structure . and capstone statements such as END PERFORM will aid immensely in structurin g

COBOL programs .

COBOL is a highly structurable programming language .

	

Because the language i s

evolving to meet future programming needs, it will maintain its dominance in the busines s

world for many years to come . Because of the ability of the language to perform well i n

the structured programming environment of today, its popularity as a general use languag e

should increase as well .

Footnotes

1. Feingold, Carl, Fundamentals of COBOL Programming, Dubuque : Wm . C . Brown Company

Publishing, 1983, p .

	

131 .

2. Hopper, G . M ., Automatic Coding for Digital Computers (Talk presented at The Hig h
Speed Computer Conference . Louisiana State University, Feb . 16, 1955), Remington Ran d

Corp ., ECU-1 (1955) .

3. Spence, J . Wayne . COBOL for the 80 ' s, St . Paul : West Publishing Co ., 1982, p .

158 .

SIGGSE

BULLETIN Vol . 16 No . 2 June 1984

